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I CFT review

Scale-invariant quantum field theories are important as possible end-

points of RG flows. Knowledge of them and their relevant deformations

(partially) organizes the space of QFTs.

UV CFT

IR CFTCFT

It is believed that unitary scale-invariant theories are also conformally

invariant: the space-time symmetry group Poincaréd×Dilatations en-

larges to the Conformald group.

(d = no. of space-time dimensions.)

Equivalently, there exists a local, conserved, traceless energy-momentum

tensor Tµν(x).
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CFT review: conformal algebra

Conformald = group of reparameterizations which preserve the (flat)

space-time metric up to a local scale factor. Generators are (Lorentz)

rotations, Mµν, plus translations, dilatations, and special conformal

transformations (d > 2):

Pµ : xµ → xµ + αµ

D : xµ → (1 + ε)xµ (µ, ν = 1, . . . , d)

Kν : xµ → xµ + εν(gµνx2 − 2xµxν)

and have algebra (other commutators vanish or follow from rotational

invariance)

[D,Kµ] = iKµ [D,Pµ] = −iPµ [Pµ,Kν] = 2iMµν − 2igµνD

Conformald ' SO(d,2) (Minkowski) or ' SO(d + 1,1) (Euclidean) by

defining 2d+ 1 other rotations

Mµd+1 ≡ (Kµ − Pµ)/2, Mµd+2 ≡ (Kµ + Pµ)/2, Md+1 d+2 ≡ D
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CFT review: primary operators

In radial quantization each local operator O(xµ) defines a state by

O(0)|0〉. In a CFT, by scale invariance this is a state on any size Sd−1

around the origin. Conversely any state on an Sd−1 can be written this

way by shrinking the sphere.

Classify local operators by their Lorentz rep, any internal quantum

no.s, and their scaling dimension, ∆,

O∆(λxµ) = λ−∆O∆(xµ) ⇔ [D,O∆(0)] = −i∆O∆(0)

Unitarity puts lower bounds on ∆. Acting with Pµ (Kµ) increases (de-

creases) ∆ by 1.

Primary operators are those annihilated by Kµ. Their descendants are

those made by acting on the primary with Pµ’s. All local operators are

found in this way.
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CFT review: conformal bootstrap

OPE of two (scalar) primaries:

O∆i
(x)O∆j

(0) ∼
∑
k

cijk|x|−∆i−∆j+∆k(O∆k
(0) + descendants)

OPE plus conformal invariance determines all correlators:

〈O∆1
(x1)O∆2

(x2)〉 = δ∆1,∆2
|x12|−∆1−∆2

〈O∆1
(x1)O∆2

(x2)O∆3
(x3)〉 = c123 |x12|−∆1−∆2+∆3|x23|−∆2−∆3+∆1|x31|−∆3−∆1+∆2

〈O∆1
(x1)O∆2

(x2)O∆3
(x3)O∆4

(x4)〉 = |x12|−∆1−∆2|x34|−∆3−∆4 F1234

(
x12x34

x13x24
,
x14x23

x13x24

)
...

So the list of the quantum numbers (∆i, spins, . . .) of the primaries

together with the cijk is sufficient to determine a CFT. However, it is

not necessary: unitarity and associativity (“crossing symmetry”) of the

OPE puts many non-trivial relations among these numbers, so arbitrary

lists will not in general define consistent CFTs.
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CFT review: partition function

A useful way of encoding a CFT is with its partition function

Z[φ∆i
] ≡

〈
exp

(∫
ddxφ∆i

(x)O∆i
(x)

)〉
CFT

which generates correlation functions by taking derivatives wrt sources

φ∆ for each primary

〈O∆1
(x1)O∆2

(x2) . . .〉 =
∂nZ[φ∆i

]

∂φ∆1
(x1)∂φ∆2

(x2) · · ·

∣∣∣∣∣
φi=0

Conformal (and other) invariance of the correlators is reflected in the

the conformal invariance of Z[φ∆]. E.g., under scaling,∫
ddxφ∆(x)O∆(x) =

∫
dd(λx)φ∆(λx)O∆(λx) = λd−∆

∫
ddxφ∆(λx)O∆(x)

so Z invariant under

φ∆(x)→ λd−∆φ∆(λx).

In general, the sources transform in field representations of the confor-

mal group (plus any internal symmetry group) and Z[φ∆] is an invariant

combination of these fields.
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II AdS/CFT correspondence

We now introduce a trick to generate conformally invariant Z[φ∆]’s. It

will not generate all CFTs, just a special subset.

The idea is to copy the way we write actions as invariants of field

representations of the Poincaré group, and apply it instead to the con-

formal group.

Local field representations of the Poincaré group are functions on

Rd valued in finite dimensional representations of the Lorentz group.

Poincaré invariant actions are formed by taking translationally invariant

integrals over Rd of scalar combinations of fields and their derivatives

formed using the Minkowski (Euclidean) metric on Rd.
The key point here is that d-dimensional Minkowski (Euclidean) space

is the space whose isometry group is Poincaréd.
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AdS/CFT correspondence: AdS geometry

So, find the space whose isometry group is Conformald ' SO(d+ 1,1).

(Work in Euclidean signature for now.)

This looks just like the d+ 2-dimensional rotation group, so flat Rd+2

might work. But it has additional translational symmetries. Remove

them by restricting to a d + 1-dimensional “sphere” of radius R: this

preserves the rotational symmetry, but leaves no translations.

For SO(d+ 1,1), really want a Lorentzian “sphere” = hyperboloid

~X2 + V 2
+ − V

2
− = R2

where ~X = {X1, . . . , Xd} and V± are Cartesian coordinates on Rd+1,1

with metric

ds2 = d ~X2 + dV 2
+ − dV

2
− .

This is called anti de Sitter space, or AdSd+1, of radius R.
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AdS/CFT correspondence: AdS geometry (cont.)

Useful coordinates are {~x, z} defined by

~X =
R

z
~x, V± =

1

2

(
z +

~x2 ±R2

z

)

which parametrizes solutions of the hyperboloid constraint for ~x ∈ Rd

and z > 0. In these coordinates (called Poincaré patch coordinates),

the AdS metric reads

ds2 =
R2

z2
(dz2 + d~x2).

Thus AdSd+1 is conformal to the upper-half space z > 0 of Rd+1

x

z

AdS
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AdS/CFT correspondence: AdS geometry (cont.)

[ A closely related set of coordinates are ~x and r = R2/z, in which

ds2 =
R2

r2
dr2 +

r2

R2
d~x2.

r is often called the radial coordinate of the AdS. Here r = ∞ is the

boundary of AdS, and r = 0 can be thought of as a horizon. Note that

both are infinitely distant from any finite r.

In Minkowski signature, simply change in the AdS metric

d~x2 → −dt2 + d~x2

the d-dimensional Minkowski metric, where now on the right side ~x =

(x1, . . . xd−1). Minkowski-AdS has the interesting feature that though

the boundary is radially infinitely far from any interior point, it can be

reached in finite time by radial light-like signals.

I will stick mostly to Euclidean-signature AdS from now on. ]
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AdS/CFT correspondence: partition function

Any generally covariant function of (tensor) fields φ(z, ~x) on AdS will

be conformally invariant. But these fields live in one more dimension

(z) than we want. So we want to restrict to fields on a d-dimensional

subspace of AdSd+1 while keeping general covariance in the full AdSd+1.

The boundary, ∂AdS' {z=0, ~x}, is special because the group of confor-

mal isometries acts on it in the same way as the conformal group acts in

d-dimensional space-time: (Lorentz) rotations acting as {z, ~x} → {z,Λ~x}
and the scaling transformation {z, ~x} → {λz, λ~x} are clearly isometries.

(The special conformal transformations are more complicated.)

So boundary values of (tensor) functions on AdS transform as rep-

resentations of the conformal group on space-time, and the partition

function can be any generally covariant (on AdSd+1) function of the

boundary values.
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AdS/CFT correspondence: partition function (cont.)

A way of writing a general class of such functions is as a functional

integral over fields φ(z, ~x) on AdSd+1 with a generally covariant measure

keeping the boundary values φ(0, ~x) ∼ φ(~x) fixed:

Z[φ(~x)] =
∫
φ|∂=φ

Dφ(z, ~x) e−S[φ(z,~x)]

Then, e.g., Z is invariant under scale transformations taking scalar

fields φ(z, ~x) → φ(λz, λ~x). In particular, if φ behaves near the boundary

like

φ(z, ~x) ∼ zd−∆φ(~x) + O(zd−∆+1)

it follows that the boundary value φ(~x) transforms under scaling as

φ(~x)→ λd−∆φ(λ~x).

Comparing to CFT scaling(p.7) it follows that φ ≡ φ∆ is the source of

a (scalar) primary operator O∆ of dimension ∆ in the CFT.

(Similarly for non-scalar fields ...)
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AdS/CFT correspondence: partition function (cont.)

Since Z given as a path integral, it defines a quantum theory if the φ

have kinetic terms (fluctuate).

E.g., if φ is free scalar on AdS,

S[φ] =
1

2

∫
AdSd+1

√
g φ(−DµDµ +m2)φ

then eom has 2 independent solutions scaling near the boundary as zd−∆

and z∆ so asymptotically

φ(z, ~x) ∼ zd−∆φ(~x) + · · ·+ z∆ϕ(~x) + · · ·

with

∆ =
d

2
+

√(
d

2

)2
+m2R2.

and φ is the source for O∆ in the CFT. In the limit m → ∞ where

φ-fluctuations turn off, ∆→∞.
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AdS/CFT correspondence: partition function (cont.)

Every CFT has a local energy-momentum tensor, Tµν(~x), as a primary

operator of dimension ∆ = d. It is sourced by
∫
hµνTµν, so hµν is the

boundary value of a spin-2 field on AdS. An argument similar to the

one for the scalar field shows that ∆ = d for Tµν implies that m2 = 0

for hµν.

So the AdS theory must have a dynamical, massless spin-2 field: a

graviton.

The partition function of a quantum gravity theory

on an asymptotically AdSd+1 space-time as a function

of the boundary values of its fields is the partition

function of a CFTd with the boundary values acting

as sources for the primary operators:

Zqu−grav[φ] = ZCFT[φ]
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AdS/CFT correspondence: partition function (cont.)

This result begs the questions:

(1) Are there consistent quantum gravity theories in which we can

compute the lhs?

(2) What class of CFTs do they correspond to?

(1a): The only examples of quantum gravity theories whose consistency

we have confidence in are string theories.

(1b): It is difficult to compute string theory partition functions on AdS

backgrounds, except in the weak-coupling, low-energy limit, in which

case is reduces to classical Einstein gravity coupled to other massless

string fields. (more below...)

(2): We need specific computable examples to answer this question

(tomorrow’s lecture).

16



AdS/CFT correspondence: partition function (cont.)

[Some comments:

• If replace AdSd+1 by AdSd+1×X with X any space without boundary,

same procedure still works. Isometry group of X becomes global internal

symmetry of CFT.

• If define a partition function by the same procedure but cut off the

AdS at z = ε > 0 (i.e., make z = ε the boundary), then keep Poincaré

invariance, but break conformal invariance, locality, on length scales

smaller than ε.

• For 0 > m2 > −d2/4R2, scaling dimns d > ∆ > d/2, real. AdS

scalars stable for negative mass-squared in this range (Breitenlohner-

Friedmann).

• For (d+2)/2 > ∆ > d/2, zd−∆ as well as z∆ solution is normalizable,

so can use either as source of operator O∆ or Od−∆, resp., allowing

operators down to unitarity bound (d− 2)/2 (Klebanov-Witten).]
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AdS/CFT correspondence: semi-classical gravity limit

Gravitational theory has low-energy effective action

1

κ2

∫
dd+1x

√
g
(
R+ α′R2 + · · ·

)
Define length scales governing strength of gravity and size of higher-

derivative terms by

Planck length: `p ∼ κ
2
d−1, String length: `s ∼

√
α′.

In AdS background R ∼ R−2, so weak gravity and small higher-derivative

terms when

`p � R, and `s � R.

Then semi-classical (saddle-point) approximation to gravitational parti-

tion function is

Zqu−grav[φ] ∼
∑
{φcl}

e−SEinstein[φcl]

where {φcl} are the classical field values from extremizing the action

subject to the φ|∂ = φ boundary conditions, and the sum is over al the

such extrema.
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AdS/CFT correspondence: correlation functions

In this semi-classical gravity limit, there is now a concrete calculational

procedure for extracting correlation functions of the associated CFT via

the AdS/CFT correspondence.

(i) Find the dominant saddle point.

(ii) Each d+ 1-dimensional (or “bulk”) field, φ, obeys a 2nd order pde

eom on the (asymptotically) AdS space, with near-boundary asymptotic

expansion

φ(z, ~x) ∼ zd−∆φ(~x) + · · ·+ z∆ϕ(~x) + · · ·

(iii) So φ ≡ φ∆ is associated to the source for an O∆ CFT primary.

(iv) With boundary conditions fixing φ(~x), then ϕ(~x) is determined by

the eom, so φ = φ[φ].

(v) Evaluate SEinstein on these solutions to get, by AdS/CFT,

SEinstein[φ] = − ln
(
ZCFT[φ]

)
≡ −WCFT[φ].

(vi) So “connected” correlators in CFT are

〈
O∆1

(~x1) · · · O∆n(~xn)
〉

CFT−conn
= −

∂nSEinstein[{φ}]
∂φ∆1

(~x1) · · · ∂φ∆n
(~xn)

∣∣∣∣∣
φ=0
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AdS/CFT correspondence: correlation functions (cont.)

To actually compute SEinstein[φ] and its derivatives, one must regulate

(by cutting off consistently at z = ε > 0), renormalize (by adding local

counterterms on the z = ε boundary) to preserve conformal invariance,

then take the ε→ 0 limit to extract finite answers.

See K. Skenderis’ lectures for details. E.g., for a free massive scalar

plus −(g/4)φ4 interaction term:

〈O∆(~x)e
∫
φ∆O∆〉CFT = (2∆− d)ϕ(~x)

〈O∆(~x1)O∆(~x2)〉CFT = (2∆− d)
Γ(∆)

πd/2Γ(∆− d
2)

1

|x12|2∆

〈O∆(~x1)O∆(~x2)O∆(~x3)〉CFT = 0

〈O∆(~x1)O∆(~x2)O∆(~x3)O∆(~x4)〉CFT = . . . explicit but complicated . . .
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III Large N review

U(N) YM in ’t Hooft limit: N →∞ keeping λ ≡ g2
ymN fixed.

Fields φ in adjoint representation of U(N) with action of the form

L ∼
N

λ
tr
(
dφdφ+ φ2dφ+ φ4

)
,

so the ’t Hooft limit looks classical.

Write adjoint indices as φij , i, j = 1, . . . , N , corresponding to the

N ⊗N decomposition of the adjoint representation. Then 〈φijφ
k
` 〉 ∝ δ

i
`δ
j
k,

so notate propagators in Feynman diagrams as double lines with each

line tracking the fundamental or antifundamental indices.

∼ Ν  λ2 3 0 2∼ Ν  λ

Associate to each interaction a vertex (no.=V ), to propagators edges

(no.=E), and to loops faces (no.=F ), to form a triangulation of some

oriented surface.
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Large N review: planar limit

Count powers of N and λ: each vertex has N/λ, each propagator λ/N ,

each face has N (from trace over fundamental indices). So diagram has

weight NV−E+FλE−V .

Since V − E + F = 2 − 2g where g is the genus of the surface, and

extending to diagrams with n external propagators (with appropriate

normalization), you find that connected correlators have the general

form

〈O1 · · · On〉 ∼
∞∑
g=0

N2−2g−nFg,n(λ)

So are dominated by g = 0, “planar”, diagrams in ’t Hooft limit.

In this limit, 2-point functions ∼ N0, 3-point functions ∼ N−1, etc., so

1/N acts like an effective coupling constant in large N YM (in addition

to λ).
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IV D3 branes and AdS5×S5

Now we will use a specific quantum gravity theory—string theory—to

derive a specific example of the AdS/CFT correspondence. In particular:

type IIB string on AdS5 × S5

⇔
4-dimensional N = 4 supersymmetric SU(N) YM

The same type of argument can be used to find many other examples.

The basic steps:

• SU(N) SYM from low energy limit of open strings on N D3-branes

• Near horizon AdS geometry and decoupling of the distant

(asymtotically flat) gravitational modes

• Mapping of parameters, and strong/weak coupling duality.
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D3 branes and AdS5×S5: SYM from D-branes

In IIB string theory place a stack of N parallel D3-branes extended

along the ~x = x0,1,2,3 directions, and take the limit in which they become

coincident.

At weak enough string coupling, gs � 1, this stack is well-described

as 4-manifolds where open strings may end. Label the D3-branes by

indices i, j, . . . = 1, . . . , N .
g

φb
r

φg

Lightest modes of open strings connecting the branes then carry

adjoint U(N) labels and fill out massless N = 4 supermultiplet of U(N)

SYM.

The SYM coupling is gym ∼
√
gs (the open string coupling).
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D3 branes and AdS5×S5: SYM from D-branes (cont.)

For small enough gs at fixed N , the gravitational backreaction of the

Dbranes is small, since even though the Dbrane tension ∝ Ng−1
s , the

gravitational coupling κ2 ∝ g2
s .

Take the low energy limit, E � `−1
s or E2α′ → 0, so only excite massless

string modes. Then there are only the bulk (10-d) supergravity modes

of the closed strings and the U(N) SYM modes of the open strings.

The couplings between the two sectors are higher-derivative, and so

vanish in the low-energy limit.

The supergravity sector is IR-free. (κ ∼ gsα′2, so the dimensionless

coupling is E4κ→ 0 as E → 0.)

The SYM sector stays at fixed coupling, g2
ym, since N = 4 SYM is

a CFT for all gym. (I.e., the gauge coupling is an exactly marginal

coupling.)
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D3 branes and AdS5×S5: SYM from D-branes (cont.)

The diagonal U(1) ⊂ U(N) also decouples and is free. This corresponds

to the overall translational degrees of freedom of the N D3-branes.

Net result:

In the small gs, fixed N limit, the low energy effective action of

IIB strings in the presence of N coincident D3-branes is three

decoupled sectors:

(free 10-d supergravity)×
(free 4-d U(1) SYM)×

(4-d SU(N) SYM CFT with g2
ym ∼ gs)
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D3 branes and AdS5×S5: D-brane near horizon geometry

Now look at the same system in the gs → 0, N → ∞ limit, keeping

gsN ≡ λ fixed.

In this limit the gravitational backreaction of the Dbranes cannot be

neglected, since Dbrane tension × gravitational coupling ∝ Ng−1
s × g2

s =

λ.

In the low energy, gs → 0 limit, the D3-brane classical supergravity

solution is

ds2 = f−1/2(−dt2 + d~x2) + f1/2(dr2 + r2dΩ2
5)

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ df−1

f ≡ 1 +
R4

r4
, R4 ≡ 4πgsNα

′2.

F5 is the RR 5-form flux sourced by the N D3-branes.
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D3 branes and AdS5×S5: D-brane near horizon geometry (cont.)

For r � R, f → 1 solution asymptotes to flat R9,1.

For r � R, f1/2 → R2/r2, so metric becomes

ds2 ∼
R2

r2
dr2 +

r2

R2
(−dt2 + d~x2) + dΩ2

5

which we recognize as AdS5×S5 in Poincaré patch coordinates.

5

(r<<R)
AdS  x S5

10−d Mink.
(r>>R)

The AdS boundary (r →∞) is replaced by the transition to flat R9,1.
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D3 branes and AdS5×S5: D-brane near horizon geometry (cont.)

We now want to consider the low energy effective description of physics

in this geometry.

There are massless supergravity scattering states in the R9,1 asymp-

totic region.

There are also arbitrarily low-energy modes far down the AdS “throat”.

To see this:

Consider an object of fixed energy E∗ as measured in the frame of a

co-moving observer. From the point of view of an asymptotic observer

at r =∞ (where we are measuring all our observables) it has redshifted

energy E =
√
gttE∗ = f−1/4E∗. So E ∼ rE∗/R → 0 as r → 0. Therefore

states of arbitrary finite energy E∗ in the AdS5×S5 throat are low-energy

excitations.

Finally there are also a few massless modes corresponding (from the

asymptotic R9,1 perspective) to the translational zero-modes of the

whole throat. (They are the “singleton” boundary modes on the AdS.)

Since they are the translational modes of the whole stack of D3-branes,

they are equivalent to a free 4-d U(1) SYM theory.
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D3 branes and AdS5×S5: D-brane near horizon geometry (cont.)

In summary,

In the small gs, fixed λ = gsN limit, the low energy effective

action of IIB strings in the presence of N coincident D3-branes

has three sectors:

(free 10-d supergravity)×
(free 4-d U(1) SYM)×

(IIB string theory on AdS5×S5

with R4 = 4πλα′2 and κ = gsα′2)
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D3 branes and AdS5×S5: D-brane near horizon geometry (cont.)

Furthermore, these three sectors decouple in the low-energy limit:

The cross-section for an R9,1 supergravity wave of frequency ω to

scatter off the throat (r < R) region is σ ∼ ω3R8, so vanishes in the

low-energy ω → 0 limit.

As the low-energy throat modes are localized closer to r = 0, escape

to the asymptotically flat region is energetically suppressed.

Low energy R9,1 gravitational waves can’t excite the massive throat

translational modes, while the associated singleton modes on the bound-

ary of AdS decouple from bulk AdS modes.

Thus all three sectors decouple.
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D3 branes and AdS5×S5: strong/weak duality

Comparing these two low energy descriptions leads to the “Maldacena

conjecture”:

type IIB string on AdS5 × S5

⇔
4-dimensional N = 4 supersymmetric SU(N) YM

with parameters identified as

4πgs = g2
ym, R4/α′2 = λ ≡ g2

ymN

It is just a conjecture because the AdS geometry came from a classical

supergravity solution, i.e., did not contain gs or α′ corrections.

Note that o(α′) string worldsheet corrections are o(1/
√
λ), and a fixed

λ, o(gs) string loop corrections are o(1/N).
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D3 branes and AdS5×S5: strong/weak duality

The string theory on AdS5×S5 is calculable in the classical supergravity

limit where gs � 1 (so no string loops) and `s � R (so no α′ corrections).

In terms of YM parameters this means that N � λ � 1, which is the

planar limit, but at strong ’t Hooft coupling.

There are different possible versions of the conjecture:

Weak—valid only for gsN →∞: neither α′ nor gs corrections agree.

Medium—valid ∀ gsN , but only for N →∞: only α′ corrections agree.

Strong—valid ∀ gsN and ∀ N : exact.

The strong version of the conjecture allows all kinds of finite energy

interior processes and objects in the AdS space-time, including space-

times with different topologies (e.g., balck holes). So in this version,

ZCFT =
∑
∀ asymptotic AdS geometries

Most tests of the conjecture are by computing at large N quantities

whose λ-dependence is determined by supersymmetry, though a few are

also checks that 1/N corrections match as well.
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V Extensions

There are many examples, refinements, extensions and deformations of

the AdS/CFT correspondence ... see the other talks in this school.

Two extensions which are basic and play an important role in many

other applications are adding:

• finite temperature, and

• brane probes.

The finite temperature extension can be derived by the same argument,

but keeping a finite energy density on the D3-branes. In this case the

supergravity solution become a black 3-brane, and the near-horizon limit

is the AdS5-black hole × S5 geometry. The AdS black hole Hawking

temperature is the same as the temperature of the SYM theory.

In what follows I will describe the brane probe approximation.
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Extensions: brane probes

How can one add fundamental (as opposed to adjoint) matter to the

SYM theory in the AdS/CFT correspondence?

In the weak coupling limit, we need string states with one end on the

D3-brane stack (carrying a fundamental color index) and the other end

elsewhere.

Since fundamental strings end on Dbranes, we should add other kinds

of Dbranes to the initial setup. We call these other branes “flavor

branes” since they will label different flavors of fundamental matter.

In general it is hard to find supergravity solutions for the gravitational

backreaction of adding flavor branes. However, if the number, Nf , of

flavor branes is much smaller than the number, N , of (color) D3-branes,

this backreaction can be ignored in the large N limit.

35



Extensions: brane probes (cont.)

To see this, recall that:

• Newton’s constant κ2 ∼ g2
s ∼ N−2 in the ’t Hooft limit (where λ = gsN

is kept fixed),

• the tension of Nf Dp-branes is NfT
Dp
µν ∼ Nfg−1

s ∼ NfN ,

• so the gravitational backreaction of the flavor branes is κ2NfT
Dp
µν ∼

Nf/N which vanishes as N →∞ with Nf fixed.

Thus such probe branes need only satisfy their classical equations of

motion in the unperturbed background space-time generated by the N

color branes. These equations come from extremizing the probe branes’

worldvolume (or the DBI action if the brane’s U(1) field is turned on).
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Extensions: D7 example

N=2 SU(Nc) SYM with Nf massive quarks at temperature T

equivalent to

IIB strings on (AdS5 black hole)×S5 background with Nf D7-branes.

T ∝ rh, black hole horizon:

x

t

r

AdS  BH

φ

3
2S

rh
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Extensions: D7 example

N=2 SU(Nc) SYM with Nf massive quarks at temperature T

equivalent to

IIB strings on (AdS5 black hole)×S5 background with Nf D7-branes.

D7 ⊂ AdS5× S5. Quark mass ∝ r7. [Karch...0205236, Babington...0306018]

φ

3
2S

r7

x

t

AdS  BH
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Extensions: D7 example

N=2 SU(Nc) SYM with Nf massive quarks at temperature T

equivalent to

IIB strings on (AdS5 black hole)×S5 background with Nf D7-branes.

D7 ⊂ AdS5× S5. Quark mass ∝ r7. [Karch...0205236, Babington...0306018]

r

3

r7

r7

rh
x

t
φ

φ

AdS  BH
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Extensions: probes on probes

(Anti)quarks = endpoints of strings on 7 branes

Quark dynamics = extremize string worldsheet area

SNG =
−1

2πα′

∫
d2σ

√√√√−det

[
gµν

∂xµ

∂σα
∂xν

∂σβ

]
, xµ ∈ {t, ~x, r, φ, . . .}.

h

quark worldlines

string

r

x

t

r

r

7

Gives rise to much interesting work: e.g., Herzog et.al., Gubser et.al.,

H.Liu et.al., Chesler et.al. ...
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