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Abstract: In these introductory notes we define constant curvature spacetimes and discuss their

symmetries, basic properties and the construction of their spacetime diagram. We then discuss

the important properties of anti de Sitter spacetime giving global and local parametrisations. We

study the static black holes and then discuss their basic properties and novel topological effects

due to the presence of a negative cosmological constant. Finally we discuss via the Euclidean

path integral approach their thermodynamic properties in the canonical ensemble with a heat

bath of constant temperature.
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1. Spacetimes of constant curvature

1.1 Spaces of maximal symmetry and constant curvature

The simplest vacuum solutions of Einstein’s equations with cosmological constant,

GAB + Λ gAB = 0 (1.1)

are spacetimes of constant curvature. They are locally characterised by the condition,

RABCD =
R

(d − 1)d
(gAC gBD − gAD gBC) (1.2)

where d is the spacetime dimension. Using (1.1) we see that,

GAB = −R gAB
d − 2

2d
= −Λ gAB

ie R = 2d
d−2

Λ are the constant curvature solutions of the Einstein equations with cosmologi-

cal constant. In particular for Λ = 0 we have flat-Minkowski spacetime, for Λ > 0 positively

curved, de-Sitter spacetime and for Λ < 0 anti-de-Sitter spacetime. The above three spacetimes

are of maximal symmetry and therefore admit the maximal number of Killing vectors. Flat

spacetime for example is isometric under the group of Poincaré transformations, in other words
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d-dimensional Lorentz coordinate transformations plus d translations. This is obvious in the in-

ertial Cartesian system of coordinates. Therefore we have d + d(d−1)
2

= d(d+1)
2

Killing vectors as

generators of these symmetries all together. Since this is the maximal number of Killing vectors

(see exercise 1) this spacetime is maximally symmetric. Flat spacetime is defined as the unique

space of zero Riemann curvature.

Before moving on to non zero constant curvature spacetimes it is useful to classify the

maximally symmetric n = d − 1-spacelike sections. They are respectively representing locally

Euclidean, spherical and hyperbolic sections and their line element can be written in a compact

fashion as,

dK2
n =

dχ2

1 − κχ2
+ χ2dΩ2

n−1 (1.3)

for κ = 0, 1,−1 respectively. The spherical line element dΩ2
n−1 (n > 1) is given by the iterative

relation,

dΩ2
k = dθ2

k + sin2(θk)dΩ2
k−1, . . . , dΩ1 = dθ1, θk ∈ [0, π[, ..., θ1 ∈ [0, 2π[, k = 1, ..., n − 1

(1.4)

Setting χ = sin ϕ or χ = sinh ϕ in (1.3) for κ = 1,−1 respectively gives us the usual line element

for the unit sphere and hyperboloid,

dΩ2
n = dϕ2 + sin2 ϕdΩ2

n−1, ϕ ∈ [0, π[ (1.5)

dH2
n = dψ2 + sinh2 ψdΩ2

n−1, ψ ∈ [0, +∞[ (1.6)

1.2 Flat spacetime

1.2.1 Conformal space-time diagram

Let us now turn our attention to flat spacetime and in particular to its conformal spacetime

diagram [1]. One can write d dimensional Minkowski spacetime (1.3) as,

ds2 = −dt2 + dr2 + r2dΩ2
n−1 (1.7)

in a spherical coordinate system. Note that we have to take two copies of this to obtain the whole

of (cartesian) Minkowski spacetime, r > 0 and r < 0. To obtain the structure of flat spacetime

at infinity [1] we will go to a spacetime metric which is conformally equivalent,

gAB(x) = Ω2(x)gmink
AB

to the initial one (1.7). The structure we obtain at infinity will be common to all asymptotically

flat spacetimes. This is due to the fact that a conformal transformation will shrink or stretch

spacetime but will not alter the null cones and therefore the asymptotic properties of spacetime.

The main idea therefore is to use conformal transformations in order to bring asymptotic infinities

to finite values for the conformally transformed metric. This is the central idea of Carter-Penrose

diagrams.

To achieve this for flat spacetime we first pass to null retarded and advanced coordinates,

u = t − r, v = t + r, where u or v = constant correspond to null geodesics of (1.7). Now we can

bring coordinate infinity to finite values via the coordinate transformation, tan Ũ = u, tan Ṽ = v

with −1
2
π < Ũ, Ṽ < 1

2
π. Go once again to time-space like coordinates t̃ = Ũ + Ṽ , r̃ = Ṽ − Ũ .

Then (1.7) is conformally equivalent to

ds̃2 = −dt̃2 + dr̃2 + sin2 r̃dΩ2
n−1
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with conformal factor, Ω = sec(Ũ) sec(Ṽ ), i.e.,ds2 = Ω2ds̃2. Its important to keep track of the

coordinate ranges,

− π < t′ + r′ < π, −π < t′ − r′ < π, r′ > 0 (1.8)

We can now draw the Carter-Penrose spacetime diagram for flat spacetime. The domain defined

by (1.8) is a triangle with its boundary defining asymptotic infinity of flat spacetime and with

r′ = 0 as a mirror for the other portion r′ < 0. It will correspond to a diamond shaped region

of the Einstein cylinder. In the diagram ℑ− and ℑ+ stand for null past infinity and future null

infinity respectively, whereas i−, i+ are the endpoints of timelike geodesics r = constant. i0 is

that of spacelike geodesics t = constant. A Cauchy surface is a spacelike surface intersecting all

null and timelike inextensible geodesics and will inevitably touch i0 asymptotically. A Cauchy

surface is therefore a valid set of initial data. Note that a non geodesic curve can reach null

infinity ℑ+ if it is uniformly accelerated approaching the speed of light as t → +∞. The tangent

curve emanating from C at ℑ+ is the acceleration horizon of the worldline C. No events above

this line can be witnessed by the observer. Concrete simple examples are those involving Rindler

and Milne spacetimes which we briefly turn to now.

1.2.2 Rindler and Milne spacetimes

The line element for Rindler spacetime is given by,

ds2 = −x2
Rdt2R + dx2

R + x2
R cosh2 tRdΩ2

n−1, xR > 0 (1.9)

and we immediately note that for xR = 0 we have a singularity. Direct calculation of the Riemann

tensor for this spacetime gives us identically zero i.e.,we have a coordinate (and not curvature)

singularity and furthermore Rindler spacetime is just a coordinate patch of flat spacetime. Indeed

the coordinate transformation relating it to (1.7) is given by,

tanh tR =
t

r
=

sin(Ṽ + Ũ)

sin(Ṽ − Ũ)
, xR =

√
r2 − t2 =

√
− tan Ũ tan Ṽ (1.10)

We can see that Rindler spacetime covers only part of the global spacetime diagram since Ũ Ṽ < 0.

The lines Ṽ = 0 and Ũ = 0 corresponding to, xR = 0 and tR ∼ ±∞, are event horizons for

the observer with coordinate time tR and trajectory xR = constant. An observer with worldline

xR = constant is in uniform acceleration a = 1
xR

since his trajectory in the original inertial

Minkowski coordinates are hyperbolas (1.10). The inverse transformation reads,

t = xR sinh tR, r = xR cosh tR

To get Milne spacetime we can consider,

xR → itM , tR → xM +
iπ

2
,

This transformation, is one involving complex coordinates, however it maps us to a real metric

which is a different portion of flat spacetime (Ũ Ṽ > 0). It is Milne spacetime,

ds2 = −dt2M + t2MdH2
n, tM > 0 (1.11)

which is now a cosmological or time dependent type of metric. Notice it has no initial big bang

singularity. An observer of Milne spacetime has rather a cosmological horizon at tM = 0 and has

Hubble expansion rate H = 1
tM

in proper time. Note that (just like in de Sitter spacetime) there

is no horizon problem in this cosmological metric due to the fact that Milne spacetime is free of

curvature singularities.
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Figure 1: Spacetime diagram of Minkowski spacetime. The quarter diamonds are the regions of Rindler
and Milne spacetimes.

1.3 Anti de Sitter spacetime

1.3.1 Definition, boundary and isometries

Useful and elegant representations of de-Sitter and anti de Sitter spacetimes are obtained by

embedding d dimensional hypersurfaces in d + 1 dimensional flat spacetime. Then de Sitter

spacetime of curvature scale a is defined as the hyperboloid,

− X2
0 +

d∑
i=1

X2
i = a2 (1.12)

embedded in d + 1 dimensional Minkowski spacetime. De-Sitter space is topologically R× SD−1

and thus its spatial sections are compact (for a full analysis see [1] or [3]). We will focus on adS

space from now on.

AdS spacetime in turn is obtained by considering the hyperboloid,

X2
0 + X2

d −
d−1∑
i=1

X2
i = l2 (1.13)

of radius of curvature l > 0 embedded in the spacetime,

ds2 = −(dX2
0 + dX2

d) +
d−1∑
i=1

dX2
i (1.14)

where note the double time coordinates. Clearly, any element of the Lorentz group SO(2, d− 1)

will leave (1.14) and (1.13) unchanged (by construction). Also we see that translation invariance
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is broken by (1.13). Since SO(2, d−1) has d(d+1)
2

Killing generators just like flat spacetime, which

is of maximal symmetry, SO(2, d− 1) is the precise isometry group of adS. A second important

point is that adS spacetime has a conformal boundary1 at infinity. To see this we rescale all

coordinates by XA → XAλ and take λ → ∞. This limit defines the boundary as,

X2
0 + X2

d −
d−1∑
i=1

X2
i = 0, (1.15)

XA = XAλ, i = 1..d + 1 (1.16)

Suppose first that X0 ̸= 0: we can divide by X0 and then rescale. We therefore have that the

boundary verifies,

−X2
d +

d−1∑
i=1

X2
i = 1

which is a hyperboloid in d − 1 dimensions. This is just d − 1 dimensional de Sitter space

according to (1.12). The topology is that of R × Sd−2 Alternatively, if X0 = 0 we have a

sphere in d − 2 dimensions (times a point). Adding the two spaces together the boundary is

a maximally symmetric space S1×Sd−2. Since the adS isometry acts on this space the boundary

preserves SO(1, d− 2) symmetry. Note however that additionally we still have d extra dilatation

transformations (1.16) for the boundary metric. All in all the boundary of adS admits as many

symmetries as adS space.

1.3.2 Parametrisations

Let us now construct line elements for adS space in d dimensions. A global parametrisation

is constructed as follows. Given the form of (1.13) we consider two spheres X2
0 + X2

d = r2
1,∑i=d−1

i=1 X2
i = r2

2 of radii r1, r2 such that

r2
1 − r2

2 = l2 (1.17)

This equation is solved setting r1 = l cosh(u/l), r2 = l sinh(u/l) where u ∈ [0, +∞[. Now we just

take the relevant parametrisations in polar spherical coordinates, (1.3) for κ = 0, and replace

them in the line element (1.14),

ds2 = −(dr2
1 + r2

1dψ2) + dr2
2 + r2

2dΩd−2 =

= −l2 cosh2(u/l)dψ2 + du2 + l2 sinh2(u/l)dΩ2
d−2 (1.18)

This is the global parametrisation of adS since all points of the hyperboloid are taken into account

exactly once. This metric is solution to the Einstein equations with cosmological constant,

2Λ = −(d − 1)(d − 2)

l2
. (1.19)

Note that the timelike coordinate ψ is an angular coordinate ψ ∈ [−π, π[. This signifies that

adS is a spacetime with closed timelike curves! We can however get around this; since the space

is not simply connected (ie the time circle cannot be topologically reduced to a point) we can

unwrap the circle of the time coordinate and take a new coordinate t ∈] −∞, +∞[ with t ≡ ψ

in each 2π-interval. This means that we are effectively taking infinite copies of the hyperboloid.

This is the universal covering of adS space,

ds2 = −l2 cosh2(u/l)dt2 + du2 + l2 sinh2(u/l)dΩ2
D−2 (1.20)

1The boundary is called conformal for it admits not one but an equivalence class of metrics which are related
via an overall conformal transformation, gboundary

µν = Ωγboundary
µν
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which is however not a Cauchy space. In other words a Cauchy surface presents no longer

sufficient initial data to describe the entire space. Data on the boundary of adS have to be

specified. We will come back to this when studying the spacetime diagram. Note in passing that

∂u is not a Killing vector for adS. In adS space we miss a global spacelike Killing vector generating

translational invariance in u (just like in de-Sitter space we do not have a global timelike Killing

vector). Taking u = u0 constant with u0 large we see that,

ds2 ∼ l2e
2u0

l

(
−dt2 + dΩ2

d−2

)
that the geometry of the boundary is indeed topologically R × Sd−2 for the Universal covering

of adS. Had we considered ψ we would have got, S1 × Sd−2.

Let us now consider a local parametrisation defined by,

y = l ln
Xd + Xd−1

l
, t =

X0

Xd + Xd−1

,

xi =
Xi

Xd + Xd−1

, i = 1...d − 2 (1.21)

This parametrisation covers only half of the hyperboloid since we must have Xd + Xd−1 > 0

in order for (1.21) to be well defined. In order to find the relevant line element we must invert

(1.21). Using (1.13) it is easy to show that,

Xd + Xd−1 = le
y
l , Xd − Xd−1 = le

−y
l

(
1 + e

2y
l

∑d−2
j=1 x2

j − t2

l2

)

Taking the sum and the difference we then obtain the inverse transformation,

Xd−1 = l sinh(
y

l
) − l

2
e

y
l (x2 − t2)

X0 = lte
y
l , Xi = lxie

y
l

Xd = l cosh(
y

l
) +

l

2
e

y
l (x2 − t2) (1.22)

Inserting into (1.14) we now get the desired line element,

ds2 = l2e
2y
l (−dt2 + dx2) + dy2 (1.23)

with y ∈]−∞, +∞[ measuring proper distance. Note that by rescaling the (t, x) coordinates we

can get rid of the l2 factor. Poincaré coordinates are obtained by setting r = le
y
l . We obtain,

ds2 = r2(−dt2 + dx2) +
l2dr2

r2
(1.24)

with r ≥ 0. Again note from (1.21) that Poincaré coordinates cover only half of the hyperboloid.

To cover all of adS we take two portions r > 0 and r < 0. Note that the boundary is attained at

r → ∞ whereas we have a horizon at r = 0 due to the fact that we cannot cover all of adS space.

This is a degenerate (no temperature) Killing horizon associated to the Poincaré flat slicing of

adS space. Finally a proper time parametrisation of adS is given by the line element,

ds2 = −dτ 2 + l2 cos2 τdH2
d−1 (1.25)

This coordinate system is only defined for τ ∈] − 1
2
π, 1

2
π[. Keeping spatial sections constant it

gives us the timelike geodesics of adS which are obviously going to be periodic in τ .
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p

q

null geodesic from p

timelike geodesics from p

t=-

t=

π/2

π/2

const.

u=0

adS boundary

χ=

accelerating timelike trajectory

trajectories τ= const.

Figure 2: Spacetime diagram with timelike geodesics of adS spacetime (1.25). All timelike geodesics
from τ = 0 focus in the past at p and and in the future at q. The resulting “geodesic” triangular region
covers only part of the timelike future of p. Also a Cauchy surface at τ = 0 covers only the triangular
region in between p and q and their null past and future respectively. Any event beyond this triangle is
not causally connected to τ = 0 unless suitable boundary conditions are imposed at the adS boundary.
The accelerating timelike curve C gets to see beyond this region (and ends up at the boundary).

1.3.3 Spacetime diagram

Let us turn our attention now to the spacetime diagram for adS. Our starting point is the global

coordinate system (1.20). As before we write the metric in a conformally flat form and define

novel coordinates so as to bring infinity of the radial coordinate to a new finite coordinate value.

Time however is either periodic in ψ or infinite in t. This amounts to solving dθ = du
l cosh u

l
and

therefore considering the coordinate transformation,

tan(
θ

2
+

π

4
) = e

u
l (1.26)

with θ ∈ [0, π
2
[. The line element is,

ds2 =
l2

cos2 θ

(
−dt2 + dθ2 + sin2 θdΩ2

n−1

)
(1.27)

and it is conformally equivalent to a quarter of the Einstein cylinder (1.7). The difference here is

that θ ∈ [0, π
2
[ rather than θ ∈ [0, π[ for flat space. Also note that we cannot make a conformal

transformation which brings time infinities to finite values for then the conformal factor explodes.

Therefore the spacetime diagram consists of an infinite strip of length π (for the Universal

covering). The boundary resides at θ = π
2
, the endpoint of both future and past null geodesics.

Note that timelike infinity in the past i− or future i+ is infinite. As a consequence there is no finite

Cauchy spacelike surface at all in this space. This is because although any constant t0 surface,

X say, covers the whole of adS at t = t0, however, we can find null surfaces that never intersect

X. This means that Universal adS is not globally hyperbolic: Cauchy data on arbitrary spacelike

surface X, determines the system’s evolution only in a region bounded by a null hypersurface
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(called a Cauchy horizon). Physics on adS depends also on the boundary conditions imposed

at the boundary. Secondly all timelike geodesics emanating from t = 0 focus at point q and

diverge at p never reaching the boundary of adS. Unlike de-Sitter space which inflates spacetime

anti-de-Sitter never allows free-falling particles to escape to the boundary. There are actually

regions in the future of p which can never be reached by any geodesic as is shown in the figure

but only by accelerated observers as the curve C in (2). This is a sign that the gravitational

potential in adS will be

Poincaré coordinates cover the region r = l
cos θ

(cos t+sin θ) > 0 which gives us the triangular

region in the spacetime diagram. Note that r = const worldlines are now accelerating trajectories

and as a result we have the presence of an adS horizon at r ∼ ∞. The Poincaré patch is in this

sense similar to the Rindler patch in flat spacetime.

i

i−

+

adS Horizon
r=const. trajectories

Poincare Region r>0

Global coords

t=π/2

t=−π/2

adS boundary

θ=0
θ=−π/2

Figure 3: Spacetime diagram of adS spacetime

Exercise 1: Show that for a Killing vector we have,

∇A∇BξC = −R D
BCA ξD

Deduce that any Killing vector can be obtained by its values ξA and ∇AξB at any point P ∈ M.

From Killing’s relation deduce therefore that there are at most d(d+1)
2

linearly independent Killing

vectors in M and hence at most d(d+1)
2

isometries of the metric (see [2]).

Exercise 2 The constant curvature slicings of adS are given by the following line element,

ds2 = −(κ +
r2

l2
)dt2 +

dr2

κ + r2

l2

+ r2dK2
n−1 (1.28)

For κ = 0 we obtain the flat slicing already encountered (1.24). Show that the spherical slicing

is nothing but that of global coordinates (1.20). Find the coordinate transformation relating the

flat and spherical parametrisations. Find then the region of validity of the Poincaré coordinates.
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Show that the hyperbolic slicing gives a time dependent version of adS. Find its domain of

validity.

Exercise Show that the global coordinate system for de-Sitter space is,

ds2 = −dt2 + a2 cosh2(
t

a
)dΩ2

n (1.29)

Therefore there is no global timelike Killing vector in de-Sitter space. Construct the Poincaré

slicing and the Carter-Penrose diagram for de-Sitter space (see [1]).

2. Static black holes

2.1 Basic properties

Assume a d = n + 1 dimensional spacetime such that it has n − 1 dimensional sections of

constant curvature given by the line element (1.3). Then one can show that the general solution

of Einstein’s equations with cosmological constant admits a locally timelike Killing vector. This

is a slightly generalised version of Birkhoff’ s theorem for vacuum spacetime. The solution reads

(see [8], [9])

ds2 = −Vκ(r)dt2 +
dr2

Vκ(r)
+

r2

l2
dK2

n−1 , (2.1)

where

Vκ(r) = κ − µ

rn−2
+

r2

l2
, (2.2)

where the (n−1) dimensional metric dK2
n−1 is given by (1.3) and the adS curvature length l is

related to the cosmological constant (1.19). µ is an integration constant which, as we will see, is

associated to the black hole mass [11].

Unlike de Sitter or flat spacetime, black holes in adS [4] will exist for all 3 values of κ. In

other words black hole horizons do not have only spherical topology in adS, we can have toroidal

or even hyperbolic black holes. The horizons have to undergo topological identifications so as to

make the horizon surface compact. For flat horizons one gets a torus or non orientable surfaces

such as the Klein bottle. For a locally H2 horizon (in a 4 dimensional hyperbolic black hole)

one considers a quotient space Σ = H2/Γ by a discrete subgroup Γ made of discrete boosts of

SO(2, 1) which is as we saw earlier on the symmetry group of H2. Then Σ is a compact space

of genus g. The compact space has 4g sides and the sum of its angles has to give an overall

angle of 2π in order to avoid conical singularities. The fundamental domain is a polygon whose

edges are geodesics of H2. The simplest case is a regular hyperbolic octagon with opposite edges

identified [13]. Often these black holes are referred to as topological black holes [13], [8] due to

the identifications one has to undergo in order to compactify the horizon geometries. In fact, any

Einstein space of dimension n − 1 can form a horizon for an adS black hole [8].

The solutions for k = +1 are sometimes called “Schwarzschild-adS” solutions because they

reduce to the standard Schwarzschild solution when the cosmological constant vanishes, l → ∞,

and to adS in global coordinates when µ = 0. In fact, these are the real asymptotically adS

solutions precisely because asymptotically we recover the full adS space. Moreover, their topology

is IR2 × Sn−1, and the horizon is the sphere Sn−1, like that of the Schwarzschild solution. The

case κ = 0 appears at the near–horizon limit of (non-dilatonic) p-branes and their horizon has

the geometry of IRn−1.

Given that these black holes are static their horizons are the zeros of the potential. We will

denote their outermost event horizon by r = r+, V (r+) = 0. This event horizon has typically
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a non zero temperature which can be calculated the standard Euclidean way: Indeed consider

t → iτ . We have

ds2 = V (r)dτ 2 +
dr2

V (r)
+ r2dK2

n−1 (2.3)

and the metric is then of Euclidean signature for r > r+. This can be seen by expanding around

r = r+,

ds2 ∼
(

1
4
V ′2

r±

)
ρ2
±dθ2 + dρ2

± + ... (2.4)

with radial isotropic (or cylindrical) coordinate ρ± =
√

2(r−r±)
|V ′

r± | . Clearly in order to evade a

conical singularity at the origin of the axis,r = r+ we must impose the periodicity,

β =
4π

|V ′(r+)|
(2.5)

As we will see, the Euclidean quantum field propagator, with the imposed periodic boundary

conditions, describes a canonical ensemble of states in thermal equilibrium at a heat bath of

temperature T = β−1 [5] where,

β =
4πl2r+

nr2
+ + κ(n − 2)l2

, (2.6)

This relation can be inverted to find

r+ =
2πl2

nβ

[
1 ±

√
1 − κ

n(n − 2)β2

4π2l2

]
(2.7)

which allows us to take β as the parameter that determines the solution For k = +1 the minus

branch for r+ exists, which corresponds to small black holes in adS. Notice that in the limit

where r+ ≫ l the k = ±1 classes of solutions approach the planar black hole class k = 0. This

admits an interpretation in terms of an “infinite volume” limit, in which the curvature radius of

Sn−1 or Hn−1 is much larger than the thermal wavelength of the system [6].

Setting µ = 0 we recover differing patches of adS space. For κ = 0 we obtain the Poincaré

patch which covers only part of adS. In this case r → ∞ is the boundary of adS whereas r = 0

is a horizon. This is a degenerate Killing horizon and there is no temperature associated with it

(This is also true for the κ = 1 case). They are then the ground states for their respective class of

solutions parametrised by µ. For κ = −1 however, we have a bifurcate Killing horizon at r+ = l

with r > l. Again the hyperbolic slicing covers a yet smaller triangular portion of adS but the

horizon in question has temperature, β = 2πl. This patch is very similar to the Rindler patch of

flat spacetime. Therefore in this case it is not clear what is the ground state. We stress however

that the µ = 0 case is the only one which has no curvature singularity. This is an important

question since when calculating the partition function it is important to specify the background

solution with which to annihilate divergences. AdS/CFT is capital in resolving this and we will

come back to this in a moment [11].

Furthermore, for the κ = −1 class of black holes [9], and in contrast to the κ = +1, 0 classes,

the zero temperature solution exists and is different from the one that is isometric to adS. In

fact, for κ = −1 there is a range of negative values for µ such that the solutions still possess

regular horizons. The minimum values of µ and r+ that are compatible with cosmic censorship,

for which the horizon is degenerate, are

µext = − 2

n − 2

(
n − 2

n

)n/2

ln−2 , rext =

√
n − 2

n
l , (2.8)

– 10 –



and, in particular,

µext = − l2

4
, rext =

l√
2
, for n = 4 . (2.9)

For these values of the parameters, the black hole is extremal. The Penrose diagram for a hyper-

bolic black hole with negative µ is like that of a Reissner-Nordström-adS black hole. For positive

µ it is instead like that of a Schwarzschild-adS black hole [13].

2.2 Path integral formulation, thermodynamics and the Hawking-Page phase tran-

sition

The thermodynamics of adS black holes pocess many interesting properties which are rather

different from their asymptotically flat or de Sitter cousins. We will use the path integral method

developed by Hartle and Hawking [14] in order to calculate the partition function and then,

using standard thermodynamic formulas, the basic thermodynamic quantities for adS black

holes. Already as we mentioned above the κ = −1 case presents subtleties due to the fact

that the background adS solution possesses a temperature at r+ = l whereas at the same

time there is an extremal black hole of zero temperature. So which background should we use?

The adS/CFT correspondence cures this ambiguity by providing through the CFT the correct

geometric counter-terms. These are used to cancel out the infinities and provide a background

independent way to calculate the partition function [10], [12] [11]. In order to avoid confusion

we will concentrate on pre adS/CFT methods and leave this as one of the many motivations

for adS/CFT to be studied later on. We therefore concentrate here on the κ = 1 case (for the

conserved charges see [16]) giving in particular a summary of the Hawking-Page phase transition.

We will consider a canonical ensemble with a constant temperature heat bath. In asymp-

totically flat space although a black hole can be in equilibrium with thermal radiation at some

constant temperature T0 this equilibrium is unstable once gravitational corrections are taken into

account. In other words, if the mass of the black hole increases its temperature decreases. This

means that the canonical ensemble, where the black hole is in thermal equilibrium with a heat

bath of constant temperature, is ill defined in this case. In adS space however the thermal radia-

tion remains confined close to the black hole since the gravitational potential, V ∼ r2/l2 increases

for large r. Non-zero rest mass particles are confined and prevented from escaping to infinity and

one can consider a canonical ensemble description for given temperature T . Effectively, though

volume is infinite adS provides a gravitational box. The canonical ensemble partition function is

defined via a path integral [15] that takes us from a given configuration S (S, g, ϕ) −→ (S ′, g′, ϕ′)

to S ′ via all possible paths. These paths represent matter fields and metrics flowing to zero and

adS respectively in periodic time τ with period β (2.5). Here ϕ represents collectively matter

fields and g Euclidean metrics.

⟨g′, ϕ′, S ′|g, ϕ, S⟩ =

∫
D(ϕ, g) exp (−I[ϕ, g]) (2.10)

The path integral is taken in Euclidean signature in order for the amplitude to be an elliptic

operator with an exponential damping factor rather than an oscillating one. All defined above

possible configurations are allowed but one can expect that regular classical solutions, ie saddle

points of the action, are going to give the dominant contributions to this integral and in particular

to the partition function Z = e−I where,

Isol = − 1

16πG

∫
ddx

√
g(R − 2Λ) + BT =

d − 1

8πG

∫
ddx

√
g =

d − 1

8πG
V ol (2.11)
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where the boundary term (BT) can be neglected for adS (unlike flat space). The volume integral

is infinite, both for adS space and the black hole in question. We therefore resort to [7] considering

an upper cut-off r < R, subtracting the two volume integrals and then taking the limit R → ∞.

Let us take a closer look [6]. For adS and the black hole we have respectively,

V ol1(R) =

∫ β0

0

dτ

∫ R

0

dr

∫
Sd−2

dΩrd−2 (2.12)

V ol2(R) =

∫ β

0

dτ

∫ R

r+

dr

∫
Sd−2

dΩrd−2 (2.13)

and note the boundary differences in the two integrals. Although the period β for the black hole

is fixed by (2.6) for adS space it is arbitrary, β0. We therefore fix β0 so that the temperature of

both configurations is the same at r = R. Remember we are assuming a common heat bath for

the canonical ensemble at temperature T . This sets,

β0 =
β
√

1 + R2

l2
− µ

Rd−3√
1 + R2

l2

(2.14)

After evaluating the action difference and taking the limit we finally obtain,

−log(Z) = I =
V ol(Sd−2)(l2rd−2

+ − rd+2
+ )

4G((d − 1)r2
+ + (d − 3)l2)

(2.15)

We see that I is positive for small r+ which means that the tunneling probability from adS to

a black hole is exponentially suppressed. We have thus semi-classical stability. On the contrary

the sign is inverted for large r+ which points to an instability physically favouring tunneling

to black holes. Clearly in between we expect to find a phase transition. Let us now pursue to

find in a standard way the thermodynamic quantities. The mean energy of thermal radiation is

E =
∑

states piEi, where pi = 1
Z
e−βEi and therefore,

E = − ∂

∂β
logZ =

(d − 2)V ol(Sd−2)(l−2rd−1
+ − rd−3

+ )

16πG
= M (2.16)

where M = d−2)V ol(Sd−2)µ
16πG

is the gravitational mass of the black hole ([16] for κ = 1), (the general

conserved charges for locally asymptotically adS spacetimes are given in [11]). The entropy

S =
∑

states pi log pi is given by,

S = βE − I =
1

4G
rd−2
+ V ol(Sd−2) =

A

4G
(2.17)

where A is the volume of the horizon. Therefore is adS the entropy-area relation is verified.

The heat capacity ie, the amount of heat energy required to increase the temperature by a unit

quantity, is given by,

C =
∂E

∂T
=

∂E

∂r+

∂r+

∂T
=

=
(n − 1)V ol(Sd−2)rn−3

+

8n
(nr2

+ + (n − 2)l2)

[
1 ±

√
1 − κ

n(n − 2)β2

4π2l2

]
(2.18)

C, the second derivative of the action with respect to temperature, gives thermodynamic stability.

The free energy is given by, F = E − TS = IT

– 12 –



First we note that r+ is an increasing function of the mass M . Now it is easy to check that

0 ≤ β < βmax, where βmax = 2πl√
(d−3)(d−1)

. Hence for temperatures T < Tmin = 1
βmax

there is

no black hole and we have a pure (adS) phase of thermal radiation with negative free energy.

For T > Tmin there are two black holes with M− < M+ (2.7). The black hole with the smaller

mass has negative specific heat. It is therefore unstable to decay either to a larger black hole

or to pure thermal adS. The bigger black hole has on the contrary positive specific heat and is

thus thermodynamically stable. Furthermore for Tmin < T < THP the free energy of the plus

branch is less than pure thermal adS which is energetically favoured. However, for T > THP the

situation is inversed and the large black hole state has less free energy than thermal adS space.

AdS space can therefore tunnel towards this large black hole which becomes the energetically

preferred state.
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