Reconstruction of the Scalar-Tensor Lagrangian from 2
ACDM Background and Noether Symmetry

Savvas Nesseris
Department of Physics
University of loannina

arXiv:0705.3586v4 [astro-ph]

in collaboration with
L. Perivolaropoulos and S. Capozziello



Main points of the talk

e Derive the Dynamical System for Scalar-Tensor theories

e Input a cosmic history (ACDM) and get the non-minimal
coupling F(®) and the potential U(D)

e Derive the Critical Points 1n radiation, matter and de-
Sitter eras

e Compare the analytic forms of F and U with numeric
results

e Show that the forms for F, U are also motivated by
imposing a Noether symmetry



Dynamics of Scalar-Tensor cosmologies

* Sc-Ten theories are given by the Lagrangian

— @ R — l € g“”ﬂnﬁﬁﬁy@ —U(®) + Em[ﬁf’m;gﬁu]
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\ " Potential
Kinetic term
Non-minimal coupling

e =1 forstandard scalar and phantom fields respectively

L

« Assuming a FRW backround

ds® = —dt* + a*(t) dx?



Dynamics of Scalar-Tensor cosmologies

« Get the EOM by varying the action with respect to the
metric

1 . )
3FH? = pu+pr+ EE@E _3HF+U (D

—9FH = pu + %pr +ed’ + F—HF (2)
€(@+3HD)=3F(®)o(H+2H) —U(®) s (3
« The matter and radiation densities obey the usual egs:

Pm +3Hpy =0,
b+ A4Hp, = 0.



Dynamics of Scalar-Tensor cosmologies

« Rewrite (1) in the form:

1 . .
3FH? = pm+pr+§Ei’I§*2—EHF+U >
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Dynamics of Scalar-Tensor cosmologies

 Define the dimensionless variables

F."
ry = _F?
o _
$ 7~ 3FH?
H'2
E —_— —
Pr
= 3F H?2

« Set .=3z55= and rewrite the previous eq.

ﬂm=1—ﬂ:1—Ig—EI§—Iq



Dynamics of Scalar-Tensor cosmologies

* Then the dynamical system takes the following form:

H' H'
mi = 3—21‘1—3$g+rq+3frg+mf+2§_xlﬁ
!
H' H'
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where \

m = /U has am explicit dependance on N

Fg/F




Dynamics of Scalar-Tensor cosmologies

* The total effective equation of state is:

w 2H(N) 02
eff = —+ 773 - ol
3 H(N) 0l
Z -02
« and it has a value: 3 ‘g:
]_ o -0.8]
Wefp = 3 Radiation Era L | | | )
-30 =20 -10 0 10
Wefp = 0 Matter Era N
Wepr = —1 deSitter Era

 |nput a cosmic history:

H(N)?* = H§ [Qome N + Qore N + Q4]

where N = lna

and ﬂﬁ == l—ﬂgm—ﬂgr.



Dynamics of Scalar-Tensor cosmologies

H'(N
( )=—2 N < Ny, E_lﬂﬂ_ﬂr

H(N) : :

T 3 ml\ Transition poins from

HI(N) B 5

A = N}Nmﬁ\ radiation to matter
matter to deSitter

+ Now we can study the ___— Notautonomous at all times!
dynamics of the system by

flndmg t_he Crltllpal_pomts-\ The “attractor” critical points will serve as
and their Stabl|lty in each a prediction for the numerical evolution of

one of the three eras. our dynamical system.



The Critical Points
A brief introduction

astro-ph/0603057

Consider a system of ODEs = /"""

y=g(z,y,t)

A point (xe, ye) i called a critical point when (- 9)l (e = O

Check the stability of a trajectory close T =g+ 0z
to the CP by perturbing the system Y= ye+ 0y —

d é 1‘5 ﬁf ﬁ'f
T _ ‘.Ta M = dr Oy
dN ( 3y ) M ( 5y ) where ( 01 0 )Em o

€T

dr = CyrettN + Chet2N

The Solution to the system can befound to e 5, — oo o oo

where p1,d2 are the eigenvalues of M and will characterize our point



The Critical Points

If u1<0 and p2<0 then the CP is an attractor
If uy1>0 and p2>0 then the CP is a source

If uy1<0 and p2>0 then the CP is a saddle

If IM|<0 and Re(p1) ,Re (u2)<0 then the CP is a stable
spiral



The Critical Points
e “"Attractors"

" 2 0 a1 0 0 1 (2,3.1,6:2m)
Ry 1 0 0 0 0 1 1.2-1,5m
. e R3 for m<-3
Radiation f; -1 0 0 0 2 -1 (-1,-2,-3,3+m)
- 2 Fm—5 4 +
R I R R4 for -3<m<1
Ry 0 0 0 1 0 0 (1-1-2.4)
M, 2 0 1 0 0 1 (1.2.1/2,5 —2m)
M2 3/2 0 -1/2 0 0 1 (1/2,3/2,-1/2,—3/2(m — 3))
Matter M; 0 0 0 0 0 0 (-1,-3/2,-2,3) M 4 f 1
var=0 M gl S im0 0 1 (e or m<
My 1 0 /4 1/4 0 3/4 (1-1/2-1,4 — m)
A 2 0 I 0 0 1 (2112 —2m)
A2 3 0 2 0 0 1 (-1,0,1,3 — 3m)
deSitter A;¢ 3 0 2 0 0 1 (-1,0,1,3 — 3m) A1 fOr m>1
werr=—1 Ay 0 1 0 0 0 1 4,3, VHmEES JumElss A4 fOI' “1<1
Ay 4 0 -4 1 0 0 (1,124 — 4m)
s a__ 2 2] _ 3 3 _ ]
2 the other two eigenvalues are: — 2™ y/&m ;:?:1_[_']-118?“ 1, Sm v/sm 2?.2T2+1[Sm+]+11
L AR 1 T1an _ = T T1an 1
b the other two eigenvalues are: — o/ A5m ,izif:Tl;EdSmH lg.- Tt/ 48m 42::1”: -

£ Notice that As and Az are degenerate

The System should Tollow the “attractors” throwgh each era, hut what do the numeries say?



Numeric Results

* The evolution of the system:
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Numeric Results

* The phase space trajectories:
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The system indeed passes through the “attractors™ in each era!l
But, can we do anything analytically?

Yes! As we can reconstruct F and U analytically in each era.



Analytic Results

Consider a critical point of the form (21, 22, %3, Z4) =const

F' _
1= ~F —> F = Fye =N

2 @’ H(N) = 2v6 22 g2 (1 - e—fim) +®
3 = % —> W) = Z; © ’
or | F(®) =
U =cF™
Doing the same for the potential
: Rad. Era
U(‘Il') = A(iﬁ — C}Em 0 —r T Mat. Era

322£(1 — Qo — Qom). dS Era



Another way o get these results Is to use a Nogther symmetry approach..

If £(q',4") is a point-like Lagrangian in the space of ¢

then the Noether theorem states that L is invariant under a

transformation X generated by x-— &(q)_+(di ‘(q )) )
dq*

If LxL =10

 In scalar-tensor gravity the point-like Lagrangian is

L = —3ad’F-3F 3 ®a’a+a® (%iﬂ — U(q,))_ Da 301

the generator of the Noether symmetry is



Noether symmetry approach
and we can calculate the Lie derivative of L

Lxf=0 => mMesSs...

« Separating the linearly independent terms gives
rise to a coupled system of ODEs

Oev 2@3F¢ _Fq;
a+ aaa—l—a 90 T —I—ﬂp’F

Oex a3 Ha a2 00
dot+a— 1 a2l VFot+aFgef+2F o 2 2 =0
( atag, +”’a¢>) etaleel T 5r =55,

v a3
Ja — GF@% + 2&% =0

Uq_-. _3&

U aB



Noether symmetry approach

* |t can be solved for a, 3 by separation of variables
and as by-products we get U and F

3s(s+ 1)(s +2)F"? (s+1)(8s*+ 165+ 3) F" L 5(2s+3)

F'= —F@ 25 7 225 1 I)F 3

U =cF™

A particular solution is | F = &(® — ®)?

(2543)° _ 1
where £ =~z a7 T 6 = %

B(a+1)

For the potential we get | U(®) = Up(® — &) =73

These solutions are the same as the ones that followed from the reconstruction,
I this a coincidlence? Work in progress...



More numeric results...
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FIG. 4: The form of log(F (%)) in the numerical reconstruction (red continuous line), its analytical approximation (blue dotted
line) and a fit of the numerical reconstruction using Eq.(3.56) (green long-dashed line). The agreement between the three
approaches is very good. The reason for the existence of the small plateau, see the zoomed region, is that as the system evolves
towards the deSitter era the potential F (@) “freezes” much faster than the field &.



Conc usions

 We derived the Dynamical System for Scalar-Tensor
theories

 For a particular cosmic history (ACDM) we found analytic
forms of F(®) and U(D)

 We compared the analytic forms of F and U with numeric
results

 We showed that the forms for F, U may also be motivated
by a Noether Symmetry Approach



