First Annual School of EU Network
"Universenet" - The Origin of the Universe
Mytilene, Island of Lesvos,

Voids of dark energy

Irit Maor
Case Western Reserve University

With Sourish Dutta PRD 75, gr-qc/0612027

A very quick summary:

The universe is accelerating.
We do not know why.
[kinematics]
[dynamics]

Cosmological constant?
 120 orders of magnitude!

wmap3: $w=-1.062_{-0.079}^{+0.128}$
"wriap cloes not need quintessernce" (Page)

Motivation for the cosmological constant

TABLE III Summary of the Bayes Information Criteria Results. The flat cosmological constant (flat Λ CDM model depends on only one parameter and is preferred by BIC. The \triangle BIC values for all other models in the table are then measured with respect to this flat cosmological constant model. The goodness of fit (GoF) spproximates the probability of finding a worse fit to the data. The models are given in order of increasing \triangle BIC or complexity (derived from (Davis et al., 2007).

Model	$\chi^{2} / \operatorname{dof}$	$G 0 F(\%)$	$\Delta \mathrm{BIC}$	Parameters Fitted
Flat cosmo const	$194.5 / 192$	43.7	0	
Flat Gen. Chaplygin	$193.9 / 191$	42.7	5	$\Omega_{m 0}=0.27 \pm 0.04$
Cosmological const	$194.3 / 191$	42.0	5	$A=0.73 \pm 0.05, \alpha=0.06 \pm 0.10$
Flat constant $w_{D E}$	$194.5 / 191$	41.7	5	$\Omega_{m 0}, \Omega_{\Lambda}$
Flat variable $w_{D E}(z)$	$193.8 / 190$	41.0	10	$\Omega_{m 0}=0.27 \pm 0.04, w_{0}=-1.0 \pm 0.4, w_{a}=-0.4 \pm 1.8$
Constant $w_{D E}$	$193.9 / 190$	40.8	10	$\Omega_{m 0}, \Omega_{A}, w_{D E}$
Gen. Chaplygin	$193.9 / 190$	40.7	10	$A, \alpha, \Omega_{K 0}$
Cardassian	$194.1 / 190$	40.4	10	Three parameters $\Omega_{m 0}, q, n$ poorly constrained, not needed.
Flat DGP	$210.1 / 192$	17.6	16	$\Omega_{m 0}$
DGP	$207.4 / 191$	19.8	18	$\Omega_{m 0}, \beta . \operatorname{SN}+\mathrm{BAO}$ strongly disagree with CMB
Chaplygin	$220.4 / 191$	7.1	30	$A, \Omega_{m 0}$
Flat Chaplygin	$301.0 / 192$	0.0	30	$\mathrm{~A}, \Omega_{m 0}$

But: "CMIB needs something else"

Many degeneracies for $w(z)$. Maor et all, 0007297

Upadhye et al, 0411803
Which parameters?
Liddle, 0401198
Which priors?
Maor et al, 0112526
Which data sets?
Bridle et al, 0303180
yesterday, Paul Hunt
today, Ed Copeland

The background:

 BAOClusters
CMB
ISW SN
sZ
WL
$\rightarrow \# \%$ for w_{0}
maybe \#\% for $\frac{d w}{d z}$
Background measurements will have at very hard time differentiating between CC' arid DDE.

All focus on w(z).
Null experiments, how far?

Looking for the dark stuff

Perturbations

Does DDE cluster on scales less than ~100 Mpc? (yes)
A thorough understanding of the behaviour of perturbations is needed.

If it clusters, it is not the cosmological constant!!

Implications of inhomogeneitiess?

Large Scale, CMB

Figure 5. On the left the CMB anisotropies for the $w=-0.6$ model. The top solid line is with perturbations and the low dashed line for no perturbations. In between the speed of sound is decreasing from top to down with $c_{s}^{2}=0.2,0.05,0.01,0.0$. On the right the CMB anisotropies for the $w=-2.0$ model. The lower solid line is with perturbations and the top dashed line for no perturbations. In between the speed of sound is increasing from top to down with $c_{s}^{2}=0.0,0.01,0.05,0.2$. The thin dotted lines above (for $w=-0.6$) and below (for $w=-2$) correspond to sound speeds of $c_{s}^{2}=5.0$. Note that in both cases that $c_{s}^{2}=1.0$ corresponds to the solid line.

Smaller scale inhomogeneities

FIG. 3: A maximum dark energy sound speed with $\left.(S / N)\right|_{c} \geq 1$ against the fiducial value of w_{0}. The solid and dashed curves are the results for WFMOS (Gz1 plus Gz 3) and the full-sky $z \sim 1$ survey, respectively. As the underlying true cosmology approaches to the cosmological constant model, one can detect dark energy clustering from a galaxy survey only when the sound speed c_{e} is sufficiently small.

Takada, 0606533

Figure 3. $R_{v i r} / R_{t a}$ as a function of γ, for $w=-0.8$ and $q=0.2 . \gamma=0$ describes the case of a fully clustering Q field, and $\gamma=1$ is the case of a homogeneous Q, allowing only the matter component to cluster. For $\gamma=0$, taking the dark energy into the virialization is highly plausible, (see square on left). If one assumes that only the matter component virializes for $\gamma=1$ (see circle on right), it is unclear how to extrapolate in a smooth way between the two cases. This will produce a discontinuity in the transition from the "clustering" to the "non-clustering" behaviour.
 H

Fig- 2. Pedshift evolution of the modified Press-Schechter mass function at $M=10^{14} \hbar^{-1} M_{G}$ for homogeneous (top panel) and inhomogeneous (bottom panel) dark energy models. In the main panels models were normalized to reproduce the present-day abundance of dark mater halos of the A-model with og $=0.9$. In the embedded panels models were normalized to the same $\sigma_{\mathrm{B}}=0.9$. Lines are the same as for Fig. 1.

Nunes et al, 0506043

Calculate, instead of parameterize, the clustering properties of DDE.

$\mathcal{L}=\mathcal{L}_{G}+\mathcal{L}_{m}+\mathcal{L}_{\phi}$

\mathcal{L}_{G} Standard gravitational action \mathcal{L}_{m} Standard pressureless fluid

$$
\begin{aligned}
& \mathcal{L}_{\phi}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi) \\
& V(\phi)=\frac{1}{2} m^{2} \phi^{2} \\
& \frac{m}{H_{0}} \approx 1
\end{aligned}
$$

Linear perturbation

$$
\begin{aligned}
& \rho_{m}(t, r) \rightarrow \rho_{m}(t)+\delta \rho(t, r) \\
& \phi(t, r) \rightarrow \phi(t)+\delta \phi(t, r) \\
& V(\phi+\delta \phi)=V(\phi)+\delta V(\phi, \delta \phi) \\
& d s^{2}=d t^{2}-a^{2}(t)\left[(1+2 \zeta(t, r)) d r^{2}+\left((1+2 \psi(t, r)) r^{2} d \Omega^{2}\right]\right.
\end{aligned}
$$

(Synchronous gauge)

$$
\xi \equiv \dot{\zeta}+2 \dot{\psi}
$$

The equations

\lrcorner Zeroth order: standard FRW evolution of the background.
\lrcorner First order: equations for the perturbation variables, which after a Fourier transformation are ODE's.

Initial conditions

\lrcorner Meater: gaussian, with width well within the horizon.
\lrcorner S'calar field: homogeneous IC, with no kinetic energy ($\mathrm{w}=-1$).
\rightarrow Metric: by the constraints equations.

Results are insensitive to IC'

Results

Anti-correlation between matter and DE perturbations

Resulis

Amplitude grows fast!

Resulits

"cross-over"

Equation of State

$$
w_{0}=\frac{p_{0}}{\rho_{0}}=\frac{\frac{1}{2} \dot{\phi}^{2}-V}{\frac{1}{2} \dot{\phi}^{2}+V} \quad \text { Background EOS }
$$

$\delta w=\frac{1}{\rho_{0}}\left(\delta p-w_{0} \delta \rho\right) \underset{\text { Linear correction to }}{\text { EOS }}$
$w_{1}=w_{0}+\delta w$
First order corrected EOS

Equation of state

Spatial profile of the equation of state

Why a void?

Yoid formation

Energy density correction:

PE correction <0
KE correction >0

PE correction quickly dominates \rightarrow void

$\phi>0$
 $\dot{\phi}<0$ $\delta \phi<0$ $\delta \dot{\phi}<0$ \downarrow $E<0$ \downarrow $E>0$ Acceleration slows, but doesn't change sign: $\ddot{\phi}<0$

Conclusions

At the linear level, DDE develops voids [ripples].

Our results are generic for slow-roll DDE.

Possible interesting dynamics in the non-linear regime?
Model sensitivity vs. generality?

Observables?

