Conservative cosmologist's cry for help: inhomogeneities as an alternative to dark energy

Teppo Mattsson Helsinki Institute of Physics & University of Helsinki

First Annual School of EU Network "UniverseNet": The Origin of the Universe, $M \upsilon \tau \iota \lambda \eta \nu \eta$, Greece

25.9.2007

Outline

- Accelerating expansion?
- Dark energy?
- Basics of cosmological inhomogeneities
- 1. Small scale lumpiness backreaction driven acceleration
- 2. Selection effects in the light propagation
- \bullet 3. Large voids inhomogeneities at intermediate scales
- Conclusions

- \bullet The usual conception: acceleration of the expansion has been detected by $N\sigma$
- We only observe light, not the expansion of the universe nor its acceleration
- Observations + Assumptions \longrightarrow Conclusions

Examples:

Supernovae light + Homogeneous universe \longrightarrow Accelerated expansion

Sunlight + Geocentric universe \longrightarrow Sun revolves around the Earth

 \bullet To make a FRW universe accelerate, negative pressure $p < -\rho/3$ is needed:

$$3\frac{\ddot{a}}{a} = -4\pi G(\rho - 3p)$$

 \implies observations usually taken as an evidence for dark energy

- The main reasons to seek alternatives to dark energy
 - 1. Fine-tuning $\Lambda \sim 10^{-120}~G^{-1}$
 - 2. Violates the cosmological principle $-\Omega_{\Lambda}(\text{now}) \sim \Omega_{M}(\text{now})$
 - 3. No detections in the lab no connection to the established field theories

- A dust universe cannot accelerate locally, no matter what kind of inhomogeneities
- The basic idea: inhomogeneities can have the same effect on the *observable* light as accelerating expansion in the homogeneous models (Célérier)
- We see a lumpy universe, so inhomogeneities certainly exist!
- The main question: do the *existing* inhomogeneities have observational significance not taken into account by FRW + linear perturbations?
- At least three mechanisms could potentially mimic dark energy:
 - 1. Average acceleration via backreaction of gravitational collapse
 - 2. Selection effects in the light propagation
 - 3. The observed large voids

1. Small scale lumpiness – backreaction driven acceleration ⁵

- \bullet The number of degrees of freedom in the universe $>10^{80}$
 - \implies exact treatment beyond computation
- Question: how to encapsulate relevant physics of the 10^{80} d.o.f. in ~ 10 parameters?
- An answer: $\langle \ \dots \ \rangle$
- \bullet The conventional approach: $\langle \mathbf{g} \rangle \Longrightarrow \mathsf{FRW}$ models
- $\mathbf{g} \doteq \mathbf{g}$ gravitational potentials, so $\mathbf{G}(\mathbf{g}, \partial_{\mu}\mathbf{g}, \partial_{\mu}\partial_{\nu}\mathbf{g})$ more directly related to physics \implies Use $\langle \mathbf{G}(\mathbf{g}) \rangle$ instead of $\mathbf{G}(\langle \mathbf{g} \rangle)$ (G.F.R. Ellis)
- $\langle G(g) \rangle G(\langle g \rangle) = backreaction \neq 0$ due to nonlinearity of GR
- Averaged acceleration equation gets modified by the backreaction (Buchert)

$$3\frac{\ddot{a}}{a} = -4\pi G \langle \rho \rangle + \mathcal{Q} \qquad , \qquad \mathcal{Q} \equiv \frac{2}{3} (\langle \theta^2 \rangle - \langle \theta \rangle^2) - \langle \sigma^{\mu\nu} \sigma_{\mu\nu} \rangle$$

- Q large when collapsing ($\theta < 0$) and expanding ($\theta > 0$) regions coexist
- A problem: the connection of averaged quantities to observations?

$$3\frac{\dot{a}^{2}(t)}{a^{2}(t)} = 8\pi G \langle \rho_{M} \rangle - \frac{1}{2} \langle R^{(3)} \rangle - \frac{1}{2} Q$$

2. Selection effects in the light propagation

- You cannot see a galaxy, if there is another one in the foreground (Dyer & Roeder)
 The light we see is special
- A reminder: the gravitational field can be decomposed into local and nonlocal parts:
 - the Einstein field ${\bf G}$
 - the Weyl field ${\bf C}$
- We only observe light that has mostly traveled in vacuum where $\mathbf{G} = 0$, but $\mathbf{C} \neq 0$
- In e.g. FRW models, the situation is just the opposite: $\mathbf{G} \neq 0$, but $\mathbf{C} = 0$ \implies An averaged metric cannot capture this effect!
- The more structure has formed, the emptier regions light travels through
- Empty regions expand faster, so the expansion "accelerates" along the path of light
- A problem: the effect difficult to quantify

3. Large voids – inhomogeneities at intermediate scales

- The universe has large voids, such as the recently observed one of size 300 Mpc, also seen as a cold spot in the CMB (Rudnick et. al.)
- We could live inside a void expanding faster than the global average (Tomita)
- Observations are made along our past light cone, so the variation of the expansion rate along the light cone is what matters, not just the time variation
- Along the past light cone: $\frac{d}{dz} = \frac{dr}{dz}\frac{\partial}{\partial r} + \frac{dt}{dz}\frac{\partial}{\partial t} \approx \frac{\partial}{\partial r} \frac{\partial}{\partial t}$ \implies negative $\partial/\partial r$ mimics positive $\partial/\partial t$

Standard
$$\Lambda$$
CDM: $d_L(z) = H_0^{-1}(0) \left[z + \left(\frac{1}{4} + \frac{3}{4} \Omega_\Lambda \right) z^2 + \mathcal{O}(z^3) \right]$
Local void model: $d_L(z) = H_0^{-1}(0) \left[z + \left(\frac{1}{4} - \frac{H_0'(0)}{H_0^2(0)} \right) z^2 + \mathcal{O}(z^3) \right]$

- To mimic acceleration, the expansion must *decrease* as distance grows: $H'_0(r) < 0$
- This is exactly what an observer inside a void would see!
- A problem: living inside a void violates the cosmological principle?

Conclusions

- Inhomogeneities can have the same effect on the *observable* light as dark energy
- Inhomogeneities offer a natural alternative to dark energy:
 - Inhomogeneities certainly exist!
 - No factors of $10^{-120}\,$
 - Connects the start of the acceleration era with the growth of structure
- Three candidates to explain dark energy as an inhomogeneity induced illusion:
 - Backreaction of collapsing structures at small scales
 - Selection effects in the light propagation
 - $-\ensuremath{\,{\rm The}}$ observed voids at intermediate scales
- Inhomogeneities have all the qualitative ingredients to mimic dark energy
- No quantitative model *yet* exists that would account for all the observations
 ⇒ Lots of rewarding research to be done in this subject!