CP violation in leptogenesis and at low energy

Federica Palorini

in collaboration with Sacha Davidson, Julia Garayoa, Nuria Rius

Institut de Physique Nucléaire de Lyon

First annual School of EU Network "The Origin of the Universe" -Lesvos, September 2007 The problem :

Relation between low energy CP violation and CP violation in flavoured leptogenesis

Summary :

- Leptogenesis and flavours
- CP-odd observables at low and high energy
- Sensitivity of flavoured leptogenesis from low energy CP-odd observables
- Conclusions

Thermal leptogenesis

$$\mathscr{L}_{\text{seesaw}} = (\overline{\ell}_{L}^{i} H_{d}^{*}) \mathbf{Y}_{\text{e}\, i j}^{*} \mathbf{e}_{R}^{j} + (\overline{\ell}_{L}^{i} H_{u}^{*}) \lambda^{*}{}_{i J} N^{J} + \overline{N^{c}}^{J} \frac{\mathbf{M}^{*}{}_{J K}}{2} N^{K} + h.c.$$

- Hierarchical N masses : $M_1 \sim 10^9 \text{ GeV} \ll M_2$, M_3
- Thermal production of the N₁ (and negligible production of N₂)

The process :

- N_1 produced by scattering processes at $T \sim M_1$
- CP violation in $N_1 \rightarrow \phi \ell \neq N_1 \rightarrow \overline{\phi} \ \overline{\ell} \Rightarrow$ lepton asymmetry ϵ
- If inverse decays are out of equilibrium the asymmetries may survive
- The lepton asymmetry is *converted* into baryon asymmetry by sphalerons, for Γ > H :

$$Y_B \sim rac{1}{3} Y_L \sim rac{H}{3g_*} rac{\epsilon}{\Gamma_{decay}}$$

Flavour in leptogenesis

Rates for interactions involving charged lepton yukawas :

 $\Gamma_{lpha} \sim 5 imes 10^{-3} h_{lpha}^2 T$

If these rates are in equilibrium \Rightarrow flavours become distinguishable¹²³

- $\Gamma_{\tau} > H$ at $T < 10^{12}$ GeV and $\Gamma_{\mu} > H$ at $T < 10^9$ GeV
- ⇒ Between 10⁹ GeV and 10¹² GeV we can distinguish the τ flavour (which is in equilibrium) from the others
 - The lepton asymmetries ϵ_{τ} and ϵ_{0} evolve separately :

$$Y_{B} \sim \frac{1}{3} \sum_{\alpha} \frac{n_{l} - n_{\overline{l}}}{n_{N}} \frac{n_{N}}{n_{\gamma}} \sim \frac{H}{3g_{*}} \sum_{\alpha} \frac{\epsilon_{\alpha\alpha}}{\Gamma_{\alpha\alpha}} \neq \frac{H}{3g_{*}} \frac{\sum_{\alpha} \epsilon_{\alpha\alpha}}{\sum_{\beta} \Gamma_{\beta\beta}}$$

¹R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, hep-ph/9911315

²A. Abada, S. Davidson, F. X. Josse-Michaux, M. Losada and A. Riotto, hep-ph/0601083

³E. Nardi, Y. Nir, E. Roulet and J. Racker, hep-ph/0601084

CP violating phases at low energy

$$\mathscr{L}_{\text{seesaw}} = (\overline{\ell}_{L}^{i} H_{d}^{*}) \mathbf{Y}_{\text{e}\, i j}^{*} \boldsymbol{e}_{R}^{j} + (\overline{\ell}_{L}^{i} H_{u}^{*}) \lambda^{*}{}_{i J} N^{J} + \overline{N^{c}}^{J} \frac{\mathbf{M}^{*}{}_{JK}}{2} N^{K} + h.c.$$

At low energy ($\ll M \sim 10^{14} \text{GeV}$) :

- Heavy degrees of freedom are integrated out
- Effective light neutrino mass matrix :

$$[m_{\nu}] \simeq \lambda M^{-1} \lambda^{T} v_{u}^{2} = U_{MNS} D_{\nu} U_{MNS}^{T} \sim \text{eV}$$

CP violation from "low energy" U_{MNS} phases :

• δ Dirac phase (measurable in ν oscillations)

$$P(\nu_{a} \rightarrow \nu_{b}) - P(\overline{\nu}_{a} \rightarrow \overline{\nu}_{b}) = 4 \sum_{i>j} \Im(U_{ai}^{*}U_{bi}U_{aj}U_{bj}^{*}) \sin(\Delta m_{ij}^{2}\frac{L}{2E})$$

• α and β Majorana phases (not easily evaluated)

CP violating phases at high energy

$$\mathscr{L}_{\text{seesaw}} = (\overline{\ell}_{L}^{i} H_{d}^{*}) \mathbf{Y}_{\text{e}ij}^{*} \boldsymbol{e}_{R}^{j} + (\overline{\ell}_{L}^{i} H_{u}^{*}) \lambda^{*}{}_{iJ} N^{J} + \overline{N^{c}}^{J} \frac{\mathbf{M}^{*}{}_{JK}}{2} N^{K} + h.c.$$

Bottom-up parametrisation :

• U_{MNS} : Dirac phase δ , Majorana phases α and β

•
$$\lambda \lambda^{\dagger} = V_L^{\dagger} D_{\lambda}^2 V_L$$
, ($\lambda = V_L^{\dagger} D_{\lambda} V_R$):

- V_L unitary matrix \Rightarrow 3 phases
- \Rightarrow 6 phases have a role in the high-energy theory

Unflavoured lepton asymmetry :

$$\epsilon = \frac{\Gamma(N_1 \to \phi\ell) - \Gamma(N_1 \to \overline{\phi} \ \overline{\ell})}{\Gamma(N_1 \to \phi\ell) + \Gamma(N_1 \to \overline{\phi} \ \overline{\ell})} = \frac{1}{8\pi [\lambda^{\dagger} \lambda]_{11}} \sum_{J \neq 1} \Im[\lambda^{\dagger} \lambda]_{1J}^2 f\left(\frac{M_J^2}{M_1^2}\right)$$

CP violating phases at high energy

$$\mathscr{L}_{\text{seesaw}} = (\overline{\ell}_{L}^{i} H_{d}^{*}) \mathbf{Y}_{\text{e}ij}^{*} \boldsymbol{e}_{R}^{j} + (\overline{\ell}_{L}^{i} H_{u}^{*}) \lambda^{*}{}_{iJ} N^{J} + \overline{N^{c}}^{J} \frac{\mathbf{M}^{*}{}_{JK}}{2} N^{K} + h.c.$$

Bottom-up parametrisation :

• U_{MNS} : Dirac phase δ , Majorana phases α and β

•
$$\lambda \lambda^{\dagger} = V_L^{\dagger} D_{\lambda}^2 V_L$$
, ($\lambda = V_L^{\dagger} D_{\lambda} V_R$):

- V_L unitary matrix \Rightarrow 3 phases
- \Rightarrow 6 phases have a role in the high-energy theory

Flavoured lepton asymmetry :

$$\epsilon_{\alpha\alpha} = \frac{\Gamma(N_1 \to \phi \ell_{\alpha}) - \Gamma(N_1 \to \overline{\phi} \ \overline{\ell}_{\alpha})}{\Gamma(N_1 \to \phi \ell_{\alpha}) + \Gamma(N_1 \to \overline{\phi} \ \overline{\ell}_{\alpha})} = \frac{1}{8\pi [\lambda^{\dagger} \lambda]_{11}} \sum_J \Im[\lambda_{\alpha 1} (\lambda^{\dagger} \lambda)_{J1} \lambda_{\alpha J}^*] f\left(\frac{M_J^2}{M_1^2}\right)$$

- The relation between :
 - CP violation at low energy (measurable in neutrino oscillations)
 - and CP violation at high energy \Rightarrow baryon asymmetry

Given the measured value of the baryon asymmetry, can an allowed range for the U_{MNS} phases be predicted?

Negative answer in Branco et al.⁴ in leptogenesis without flavour

⁴C. Branco, T. Morozumi, B. M. Nobre and M. N. Rebelo, Nucl. Phys. B **617** (2001) 475 [arXiv :hep-ph/0107164].

Simple parametrisation

• Unflavoured lepton asymmetry :

$$\epsilon = \frac{1}{8\pi [\lambda^{\dagger}\lambda]_{11}} \sum_{J\neq 1} \Im [\lambda^{\dagger}\lambda]_{1J}^2 f\left(\frac{M_J^2}{M_1^2}\right)$$

In Casas-Ibarra parametrisation and hierarchical RH neutrinos :

$$\lambda = U D_k^{1/2} R D_M^{1/2} \qquad \Rightarrow \qquad \epsilon = -\frac{3M_1}{16\pi v^2} \frac{\Im(\sum_{\rho} m_{\rho}^2 R_{\rho_1}^2)}{\sum_{\beta} m_{\beta} |R_{1\beta}|^2}$$

- $\Rightarrow \epsilon$ is independent of U_{MNS} phases
 - We want to address the same problem in flavoured leptogenesis, where :

$$\epsilon_{\alpha\alpha} = -\frac{3M_1}{16\pi\nu^2} \frac{\Im(\sum_{\beta\rho} m_{\beta}^{1/2} m_{\rho}^{3/2} U_{\alpha\beta}^* U_{\alpha\rho} R_{\beta1} R_{\rho1})}{\sum_{\beta} m_{\beta} |R_{1\beta}|^2}$$

Analytical proof in flavoured leptogenesis

We look for an area of the parameter space where :

- We have enough baryon asymmetry
- Y_B is independent from low energy phases

⁵S. Davidson, J. Garayoa, F. Palorini and N. Rius, arXiv :0705.1503 [hep-ph]

Analytical proof in flavoured leptogenesis

We look for an area of the parameter space where :

- We have enough baryon asymmetry
- Y_B is independent from low energy phases

It is found :

- In strong wash-out regime
- Using a simple form for R :

$$R = \left[\begin{array}{ccc} \cos\phi & 0 & -\sin\phi \\ 0 & 1 & 0 \\ \sin\phi & 0 & \cos\phi \end{array} \right]$$

We can write Y_B independentely from the low energy phases (with $\phi = \rho + i\omega$)⁵:

$$Y_B \simeq 10^{-10} \left(\frac{M_1}{10^{11} {\rm GeV}}\right) \frac{\sin \rho \cos \rho \sinh \omega \cosh \omega}{\sin^2 \rho \cosh^2 \omega + \cos^2 \rho \sinh^2 \omega}$$

⁵S. Davidson, J. Garayoa, F. Palorini and N. Rius, arXiv :0705.1503 [hep-ph]

Numerical proof

A large enough baryon asymmetry can be obtained

for any values of the U_{MNS} phases

Leptogenesis in minimal supergravity

Supersymmetric leptogenesis with universality conditions :

- Enhanced flavour violating processes due to RGE equations of the sneutrino mass matrix
- \Rightarrow "Measurable" observables : $\lambda \lambda^{\dagger} = V_L^{\dagger} D_{\lambda}^2 V_L$
 - Effects on electric dipole moments
 - Parameter scan with Markov Chain Monte Carlo

Work in progress

Conclusions

• The relevant question in discussing "relation" between CP violation in the *U*_{MNS} matrix :

Is the baryon asymmetry sensitive to the U_{MNS} phases?

- The answer was NO for unflavoured leptogenesis in the SM seesaw (Branco et al.)
- We argue that the answer does not change also with the inclusion of flavour effects in leptogenesis :

For any value of the U_{MNS} phases it is possible to find a point in the space of unmeasurable seesaw parameters such that leptogenesis works

Soon results in Minimal Supergravity