Long-lived charged massive particle and the effect on cosmology

Kazunori Kohri (郡 和範)

Physics Department, Lancaster University

Kawasaki, Kohri, Moroi, PRD71 (2005) 083502

Kohri, Takayama, PRD (2007) in press, hep-ph/0605243

Kawasaki, Kohri, Moroi, PLB 649 (2007) 436

Jittoh, Kohri, Sato etal, arXiv:0704.2914 [hep-ph]

Cumberbatch etal, arXiv:0708.0095 [astro-ph]

Chun, Kim, Kohri and Lyth, in preparation

Introduction of SUSY Supersymmetry (SUSY)

Solving "Hierarchy Problem"

Realizing "Coupling constant unification in GUT"

Gravity mediated SUSY breaking model

Observable sector quark, squark, ... Only through gravity

Hidden sector _SUSY M_{SUSY}

Masses of squarks and sleptons

 $m_{\tilde{q}}, m_{\ell} = M_{SUSY}^2 / M_{p/} = 10^2 - 10^3 \text{ GeV}$ $(M_{SUSY} = 10^{10} - 10^{11} \text{ GeV})$

Gravitino mass

$$(m_{3/2}) = M_{SUSY}^2 / M_{p/} = 10^2 - 10^3 \text{ GeV}$$

Gravitino Decay and BBN

1. Gravitinos are unstable in Gravity Mediation SUSY

<u>Hadronic decay</u>

Reno, Seckel (1988) 5. Dimopoulos et al.(1989)

Two hadron jets with $E_{jet} = m_{\chi}/3$

One hadron jet with $E_{jet} = m_{\chi}/2$

Observational Light Element Abundances Fukugita, Kawasaki (2006) • He4 $Y_{\rm p} = 0.2516 \pm 0.004$ Peimbert, Lridiana, Peimbert (2007) Izotov, Thuan, Stasinska (2007) • D/H $D/H = (2.82 \pm 0.26) \times 10^{-5}$ O'Meara et al. (2006) • Li7/H $\log_{10}(^{7}\text{Li/H}) = -9.63 \pm 0.06 (\pm 0.3)_{\text{syst}}$ Melendez,Ramirez(2004) ● Li6/H $^{6}Li / ^{7}Li < 0.046 \pm 0.022 \pm 0.084$ Asplund et al(2006) \blacksquare He3/D ³He/D < 0.83 + 0.27 Geiss and Gloeckler (2003)

Constraints on massive particle X

Contours of light elements in $(m_x Y_x, \tau_x)$ plane in "hadrodissociation" scenario

Relation among variables

• <u>Yield variable and reheating temperature</u>

$$Y_{3/2} \equiv \frac{n_{3/2}}{n_{\gamma}} = 1.1 \times 10^{-11} \left(\frac{T_R}{10^{10} \, \text{GeV}} \right)$$

Lifetime and mass

$$\tau(\psi_{3/2} \rightarrow \gamma + \tilde{\gamma}) = 4 \times 10^8 \sec\left(\frac{m_{3/2}}{100 \text{ GeV}}\right)^{-3}$$

<u>Upper bound on reheating temperature</u>

Kawasaki, Kohri, Moroi (2004)

$$B_h(\psi_\mu o g + \tilde{g}) = 1$$

 $T_R = 10^9 \text{GeV}(Y_{3/2}/10^{-12})$
 $m_{3/2} = 500 \text{GeV}(\tau_{3/2}/4 \times 10^5 \text{sec})^{-1/3}$

Lithium Problems

SBBN

Lithium 7

•Observed metal poor halo stars in Pop II •Abundance does not depend on metalicity for $T_{\rm eff} > 5700^{\circ} {
m K} \ (\propto M), \ [Fe/H] < -2$ "Spite's plateau"

•Expected that there is little depletion in stars.

$$Li/H = 1.23^{+0.68}_{-0.32} \times 10^{-10}$$

Ryan et al.(2000)

Bonifacio et al.(2006)

Asplund et al.(2006)

Lithium 6

Asplund et al.(2006)

•Observed in metal poor halo stars in Pop II

●⁶Li plateau?

6
Li / 7 Li = 0.002 – 0.090

⁷Li/H \approx (1.1–1.5)×10⁻¹⁰ still disagrees with SBBN

Astrophysically, factor-of-two depletion of Li7 needs a factor of O(10) Li6 depletion (Pinsonneault et al '02) We need more primordial Li6?

Solving Li7 problem in Hadronic decay of neutral particles Jedamzik (04); Jedamzik etal (05)

Kohri, Moroi, Yotsuyanagi (2005) Cumberbatch etal (2007)

Neuron emission from hadronic shower

 $^{7}\text{Be} + n \rightarrow ... \rightarrow 2 ^{4}\text{He}$

Li7 can be reduced! (Jedamzik)

$$(^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + \gamma)$$

More Li6 can be also produced!

$$^{3}\text{He}^{4}\text{He} \rightarrow ^{6}\text{Li+p}$$

NLSP might be Slepton? (stau or sneutrino)

✓LSP would be gravitino, or neuralino with small massdifference

 Neutralino NLSP would be excluded by BBN because of high hadronic branching ratio

> Feng, Su, and Takayama (2003) Steffen (2006) Kanzaki, Kawasaki, Kohri, Moroi (2006)

CHAMP captured-nuclei change the nuclear reaction rates

CHAMP BBN (CBBN) may solve Lithium problem? Kohri and Takayama, hep-ph/0605243

Short lifetime (< 10³ sec)

- Only Be7 and Li7 captures CHAMP
- Be7 (n,a)He4 and Li7(p,a)He4 are enhanced

Long lifetime (> 10⁶ sec)

- Z=1 elements, proton, D, and T are captured
- He4(d, g)Li6 and Be7(d, p a)He4 are enhanced

(See also, recent work by Jedamzik, arXiv:0707.2070)

However, the Bohr radius might be too large to completely suppress the coulomb field? (Kohri and Takayama, hep-ph/0605243)

Pospelov's effect

Pospelov (2006), hep-ph/0605215

 CHAMP bound state with ⁴He can enhance the rate

 $D + (^{4}He, C^{-}) \rightarrow ^{6}Li + \gamma$

Enhancement of cross section

~ $(\lambda_{\gamma} / a_{Bohr})^5$ ~ $(30)^5$ ~ 10^8 Confirmed by Hamaguchi etal (07), hep-ph/0702274 BBN Catalysis!!!

BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Kawasaki, Kohri, Moroi PLB 649 (07) 436

See also, Jedamzik, arXiv:0707.2070

Difficulties in CBBN for long lifetime (> 1000 sec)

Stau NLSP and neutralino LSP Scenario in Gravity Mediation

Jittoh, Kohri, Sato etal, arXiv:0704.2914

 $\delta m = m_{\tilde{\tau}} - m_{\chi_0} < 0.1 \text{GeV}$

Effectively Be7, Li7 are destroyed!!! See also Bird, Koopman and Pospelov (07) No CBBN Catalysis

Stau NLSP and axino/flatino LSP in GUT axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth in preparation

Decaying flatons reheat universe and produce staus $T_{\rm R} \sim O(10) \ GeV$ Contrary to gravitino LSP models, lifetime of stau is very short $\tau_{\tilde{\tau}} \ll 10^{-2} \sec$ No CBBN Catalysis

<u>Or lower reheating temperatures</u> <u>no longer produce staus</u>

Conclusion

• The constraint on reheating temperature after primordial inflation is very stringent in Hadronic decay scenario in gravity mediated SUSY breaking models. $T_{P} \leq 3 \times 10^{5} \text{GeV} - 10^{7} \text{ GeV}$

(for $m_{3/2} = 100 \text{ GeV} - 10 \text{ TeV}$)

 CHAMP BBN is attractive in stau NLSP scenario. Then DM should be a stable gravitino in gaugemediated SUSY breaking models, or neutralino with small mass difference or axinos in gravity mediated SUSY breaking models.