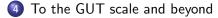
Dark Matter at the LHC: A Window on the GUT Scale

Jonathan Roberts

IFT, Warsaw

27/9/07, "UniverseNet": The Origin of the Universe

Jonathan Roberts


Dark Matter at the LHC: A Window on the GUT Scale

1 Introduction: Tuning Dark Matter Densities

2 The Constrained MSSM (CMSSM)

Jonathan Roberts

Dark Matter at the LHC: A Window on the GUT Scale

A B > A B >

The lightest MSSM neutralino is a mixture of the bino, wino and higgsinos.

Dark Matter at the LHC: A Window on the GUT Scale

イロト 不得 とくほ とくほ とうほう

The lightest MSSM neutralino is a mixture of the bino, wino and higgsinos. Unfortunately:

Dark Matter at the LHC: A Window on the GUT Scale

The lightest MSSM neutralino is a mixture of the bino, wino and higgsinos. Unfortunately:

• Bino(\tilde{B}) Dark Matter: Generally gives $\Omega_{CDM}h^2 \gg \Omega_{CDM}^{WMAP}h^2$

The lightest MSSM neutralino is a mixture of the bino, wino and higgsinos. Unfortunately:

- Bino(\tilde{B}) Dark Matter: Generally gives $\Omega_{CDM}h^2 \gg \Omega_{CDM}^{WMAP}h^2$
- Wino or Higgsino (\tilde{W}, \tilde{h}) Dark Matter: Generally gives $\Omega_{CDM} h^2 \ll \Omega_{CDM}^{WMAP} h^2$

The lightest MSSM neutralino is a mixture of the bino, wino and higgsinos. Unfortunately:

- Bino(\tilde{B}) Dark Matter: Generally gives $\Omega_{CDM}h^2 \gg \Omega_{CDM}^{WMAP}h^2$
- Wino or Higgsino (\tilde{W}, \tilde{h}) Dark Matter: Generally gives $\Omega_{CDM} h^2 \ll \Omega_{CDM}^{WMAP} h^2$

Therefore the MSSM "naturally" gives the wrong dark matter density...

The lightest MSSM neutralino is a mixture of the bino, wino and higgsinos. Unfortunately:

- Bino(\tilde{B}) Dark Matter: Generally gives $\Omega_{CDM}h^2 \gg \Omega_{CDM}^{WMAP}h^2$
- Wino or Higgsino (\tilde{W}, \tilde{h}) Dark Matter: Generally gives $\Omega_{CDM} h^2 \ll \Omega_{CDM}^{WMAP} h^2$

Therefore the MSSM "naturally" gives the wrong dark matter density...

There are 2 solutions within the MSSM:

The lightest MSSM neutralino is a mixture of the bino, wino and higgsinos. Unfortunately:

- Bino(\tilde{B}) Dark Matter: Generally gives $\Omega_{CDM}h^2 \gg \Omega_{CDM}^{WMAP}h^2$
- Wino or Higgsino (\tilde{W}, \tilde{h}) Dark Matter: Generally gives $\Omega_{CDM} h^2 \ll \Omega_{CDM}^{WMAP} h^2$

Therefore the MSSM "naturally" gives the wrong dark matter density...

There are 2 solutions within the MSSM:

1 Add **just enough** Wino or Higgsino into Bino dark matter.

The lightest MSSM neutralino is a mixture of the bino, wino and higgsinos. Unfortunately:

- Bino(\tilde{B}) Dark Matter: Generally gives $\Omega_{CDM}h^2 \gg \Omega_{CDM}^{WMAP}h^2$
- Wino or Higgsino (\tilde{W}, \tilde{h}) Dark Matter: Generally gives $\Omega_{CDM} h^2 \ll \Omega_{CDM}^{WMAP} h^2$

Therefore the MSSM "naturally" gives the wrong dark matter density...

There are 2 solutions within the MSSM:

- **1** Add **just enough** Wino or Higgsino into Bino dark matter.
- Enhance an annihilation channel just enough for Bino dark matter to account for the observed relic density.

(ロ) (同) (三) (三) (三) (○) (○)

The lightest MSSM neutralino is a mixture of the bino, wino and higgsinos. Unfortunately:

- Bino(\tilde{B}) Dark Matter: Generally gives $\Omega_{CDM}h^2 \gg \Omega_{CDM}^{WMAP}h^2$
- Wino or Higgsino (\tilde{W}, \tilde{h}) Dark Matter: Generally gives $\Omega_{CDM} h^2 \ll \Omega_{CDM}^{WMAP} h^2$

Therefore the MSSM "naturally" gives the wrong dark matter density...

There are 2 solutions within the MSSM:

- Add just enough Wino or Higgsino into Bino dark matter.
- Enhance an annihilation channel just enough for Bino dark matter to account for the observed relic density.

This sounds like fine-tuning.

SUSY is directly motivated by considerations of naturalness

Dark Matter at the LHC: A Window on the GUT Scale

• SUSY is directly motivated by considerations of naturalness as it solves the hierarchy problem of the standard model.

Dark Matter at the LHC: A Window on the GUT Scale

・ 同 ト ・ ヨ ト ・ ヨ ト

- SUSY is directly motivated by considerations of naturalness as it solves the hierarchy problem of the standard model.
- Lots of people have claimed that SUSY naturally accounts for dark matter.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

- SUSY is directly motivated by considerations of naturalness as it solves the hierarchy problem of the standard model.
- Lots of people have claimed that SUSY naturally accounts for dark matter.
- So what options do we have?

- SUSY is directly motivated by considerations of naturalness as it solves the hierarchy problem of the standard model.
- Lots of people have claimed that SUSY naturally accounts for dark matter.
- So what options do we have?
 - Give up on naturalness as a criteria.

- SUSY is directly motivated by considerations of naturalness as it solves the hierarchy problem of the standard model.
- Lots of people have claimed that SUSY naturally accounts for dark matter.
- So what options do we have?
 - Give up on naturalness as a criteria.
 - Throw away our map and compass and lose ourselves in the (anthropic) landscape...

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

- SUSY is directly motivated by considerations of naturalness as it solves the hierarchy problem of the standard model.
- Lots of people have claimed that SUSY naturally accounts for dark matter.
- So what options do we have?
 - Give up on naturalness as a criteria.
 - Throw away our map and compass and lose ourselves in the (anthropic) landscape...
 - or quantify the degree of fine-tuning involved.

- SUSY is directly motivated by considerations of naturalness as it solves the hierarchy problem of the standard model.
- Lots of people have claimed that SUSY naturally accounts for dark matter.
- So what options do we have?
 - Give up on naturalness as a criteria.
 - Throw away our map and compass and lose ourselves in the (anthropic) landscape...
 - or quantify the degree of fine-tuning involved.

... and remember that the MSSM is an effective theory.

Quantifying fine-tuning

We need a quantitative measure of fine-tuning.

Jonathan Roberts

Dark Matter at the LHC: A Window on the GUT Scale

▲圖 → ▲ 臣 → ▲ 臣 →

Quantifying fine-tuning

We need a quantitative measure of fine-tuning.

Ellis and Olive introduced an analagous measure to the one used to measure the fine-tuning required for electroweak symmetry breaking:

$$\Delta_{a}^{\Omega} = \left| \frac{\partial \ln \left(\Omega_{CDM} h^{2} \right)}{\partial \ln \left(a \right)} \right|$$

Jonathan Roberts

Dark Matter at the LHC: A Window on the GUT Scale

Quantifying fine-tuning

We need a quantitative measure of fine-tuning.

Ellis and Olive introduced an analagous measure to the one used to measure the fine-tuning required for electroweak symmetry breaking:

$$\Delta_{a}^{\Omega} = \left| \frac{\partial \ln \left(\Omega_{CDM} h^{2} \right)}{\partial \ln \left(a \right)} \right|$$

If $\Delta_a^{\Omega} = 100$, a 1% change in *a* gives a 100% change in $\Omega_{CDM} h^2$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Constrained Minimal Supersymmetric Standard Model (CMSSM)

The CMSSM is one of the simplest SUSY models.

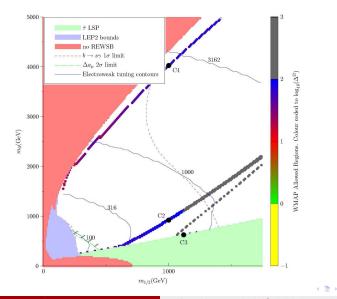
Dark Matter at the LHC: A Window on the GUT Scale

- 4 回 > - 4 回 > - 4 回 >

The Constrained Minimal Supersymmetric Standard Model (CMSSM)

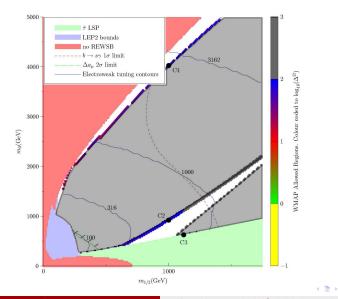
The CMSSM is one of the simplest SUSY models.

Instead of the many (> 100) parameters of the MSSM, we have: $a_{CMSSM} \in \{m_0, m_{1/2}, \tan \beta, A_0, \operatorname{sign}(\mu)\}$


The Constrained Minimal Supersymmetric Standard Model (CMSSM)

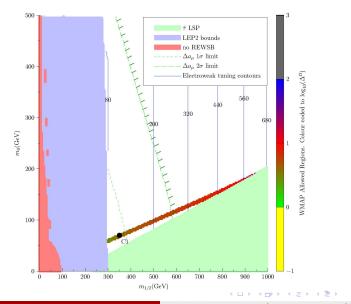
The CMSSM is one of the simplest SUSY models.

Instead of the many (> 100) parameters of the MSSM, we have: $a_{CMSSM} \in \{m_0, m_{1/2}, \tan\beta, A_0, \operatorname{sign}(\mu)\}$


The masses are set at m_{GUT} and run (using SoftSusy) to m_{EW} .

The CMSSM with $A_0 = 0$, tan $\beta = 50$; S.F.King, J.P.R.: hep-ph/0609147,

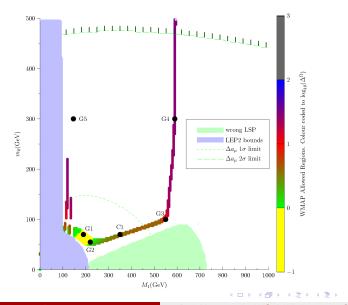
Dark Matter at the LHC: A Window on the GUT Scale


The CMSSM with $A_0 = 0$, $\tan \beta = 50$

Dark Matter at the LHC: A Window on the GUT Scale

э

The CMSSM with $A_0 = 0$, $\tan \beta = 10$

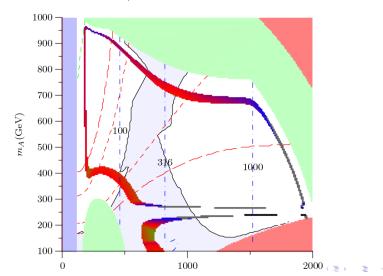


Jonathan Roberts

Dark Matter at the LHC: A Window on the GUT Scale

The MSSM

Relaxing the CMSSM: non-universal gauginos



Jonathan Roberts

Dark Matter at the LHC: A Window on the GUT Scale

The MSSM

Non-Universal Higgs Masses; J. Ellis, S. F. King, JPR, in preparation

 $m_0 = 100, m_{1/2} = 300, A_0 = 0, \tan \beta = 20, \operatorname{sign}(\mu) = 1.$

Jonathan Roberts

Dark Matter at the LHC: A Window on the GUT Scale

Naturalness in the full MSSM

By relaxing our constraints we can find typical tuning scales across different dark matter annihilation channels.

Dark Matter at the LHC: A Window on the GUT Scale

・ 同 ト ・ ヨ ト ・ ヨ ト

Naturalness in the full MSSM

By relaxing our constraints we can find typical tuning scales across different dark matter annihilation channels.

Region	Typical Δ^{Ω}
Mixed bino/wino	~ 30
Mixed bino/higgsino	30 - 60
Mixed bino/wino/higgsino	4 - 60
Bulk region (t-channel \tilde{f} exchange)	< 1
slepton coannihilation (low M_1 , m_0)	3 - 15
slepton coannihilation (large M_1 , m_0 , tan eta)	~ 50
sneutrino coannihilation	~ 100
Z-resonant annihilation	~ 10
h ⁰ -resonant annihilation	10 - 1000
A^0 -resonant annihilation	80 - 300

Dark Matter at the LHC: A Window on the GUT Scale

回 と く ヨ と く ヨ と

Naturalness in the full MSSM

By relaxing our constraints we can find typical tuning scales across different dark matter annihilation channels.

Region	Typical Δ^{Ω}
Mixed bino/wino	~ 30
Mixed bino/higgsino	30 - 60
Mixed bino/wino/higgsino	4 - 60
Bulk region (t-channel \tilde{f} exchange)	< 1
slepton coannihilation (low M_1 , m_0)	3 - 15
slepton coannihilation (large M_1 , m_0 , tan eta)	~ 50
sneutrino coannihilation	~ 100
Z-resonant annihilation	~ 10
h ⁰ -resonant annihilation	10 - 1000
A^0 -resonant annihilation	80 - 300

Therefore the MSSM allows for natural dark matter.

Dark Matter at the LHC: A Window on the GUT Scale

When dealing with the MSSM we have the inputs:

 $a_{MSSM} \in \{m_i, M_i, A_i, \tan\beta\}$

Dark Matter at the LHC: A Window on the GUT Scale

- (同) (目) (目) (目)

When dealing with the MSSM we have the inputs:

 $a_{MSSM} \in \{m_i, M_i, A_i, \tan\beta\}$

In some explicit model of SUSY breaking we will have a smaller set of parameters that determine the SUSY breaking masses e.g.:

a_{GUT}

Jonathan Roberts

Dark Matter at the LHC: A Window on the GUT Scale

・ロト ・同ト ・ヨト ・ヨト - ヨ

When dealing with the MSSM we have the inputs:

 $a_{MSSM} \in \{m_i, M_i, A_i, \tan\beta\}$

In some explicit model of SUSY breaking we will have a smaller set of parameters that determine the SUSY breaking masses e.g.:

a_{GUT}

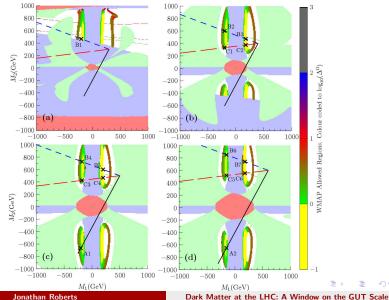
The dark matter tuning with respect to a_{GUT} , $\Delta^{\Omega}_{a_{GUT}}$ is directly related to $\Delta^{\Omega}_{a_{MSSM}}$ via the relation:

$$\Delta^{\Omega}_{a_{GUT}} = \sum_{a_{MSSM}} \frac{a_{GUT}}{a_{MSSM}} \frac{\partial a_{MSSM}}{\partial a_{GUT}} \Delta^{\Omega}_{a_{MSSM}}$$

When dealing with the MSSM we have the inputs:

 $a_{MSSM} \in \{m_i, M_i, A_i, \tan\beta\}$

In some explicit model of SUSY breaking we will have a smaller set of parameters that determine the SUSY breaking masses e.g.:


a_{GUT}

The dark matter tuning with respect to a_{GUT} , $\Delta^{\Omega}_{a_{GUT}}$ is directly related to $\Delta^{\Omega}_{a_{MSSM}}$ via the relation:

$$\Delta^{\Omega}_{a_{GUT}} = \sum_{a_{MSSM}} \frac{a_{GUT}}{a_{MSSM}} \frac{\partial a_{MSSM}}{\partial a_{GUT}} \Delta^{\Omega}_{a_{MSSM}}$$

If we minimise the coefficients, we minimise the dark matter tuning.

An SU(5) GUT model; S.F.King, JPR, D.P.Roy: arXiv:0705.4219

SUSY is directly motivated by naturalness considerations.

Dark Matter at the LHC: A Window on the GUT Scale

・ 同 ト ・ ヨ ト ・ ヨ ト

-

SUSY is directly motivated by naturalness considerations.

• The hierarchy problem is an extreme case of fine-tuning.

O SUSY is directly motivated by naturalness considerations.

- The hierarchy problem is an extreme case of fine-tuning.
- There are many claims for and against natural SUSY dark matter.

1 SUSY is directly motivated by naturalness considerations.

- The hierarchy problem is an extreme case of fine-tuning.
- There are many claims for and against natural SUSY dark matter.
- Theorists need to know the fine-tuning price of their pet model.

SUSY is directly motivated by naturalness considerations.

- The hierarchy problem is an extreme case of fine-tuning.
- There are many claims for and against natural SUSY dark matter.
- Theorists need to know the fine-tuning price of their pet model.
- If the LHC lands us in a tuned region of the parameter space we can look for GUT models that mitigate this tuning.

(日) (同) (王) (王) (日)

SUSY is directly motivated by naturalness considerations.

- The hierarchy problem is an extreme case of fine-tuning.
- There are many claims for and against natural SUSY dark matter.
- Theorists need to know the fine-tuning price of their pet model.
- If the LHC lands us in a tuned region of the parameter space we can look for GUT models that mitigate this tuning.
 - So (in a sense) fine-tuned regions are "better".

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト - - ヨ

SUSY is directly motivated by naturalness considerations.

- The hierarchy problem is an extreme case of fine-tuning.
- There are many claims for and against natural SUSY dark matter.
- Theorists need to know the fine-tuning price of their pet model.
- If the LHC lands us in a tuned region of the parameter space we can look for GUT models that mitigate this tuning.
 - So (in a sense) fine-tuned regions are "better".
- The same measures of sensitivity can be used to relate LHC data directly to $\Omega_{CDM}h^2$.

・ロット (語) (語) (語) (語)

SUSY is directly motivated by naturalness considerations.

- The hierarchy problem is an extreme case of fine-tuning.
- There are many claims for and against natural SUSY dark matter.
- Theorists need to know the fine-tuning price of their pet model.
- If the LHC lands us in a tuned region of the parameter space we can look for GUT models that mitigate this tuning.
 - So (in a sense) fine-tuned regions are "better".
- The same measures of sensitivity can be used to relate LHC data directly to $\Omega_{CDM}h^2$.
 - By studying sensitivity to EW SUSY parameters we can find the sensitivity needed at the LHC to **disprove the MSSM** (with certain priors).

・ロット (語) (語) (語) (語)