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The Bottom Line, JCAP09(2007)008

We use CMB and LSS data only.

3-year WMAP, CBI and Boomerang for CMB
SDSS for LSS

Adiabatic and isocurvature perturbations can be correlated.

10 parameters ⇒ we need long MCMC chains

For the first time, the CMB data disfavours the pure
adiabatic model with more than 95% confidence level.

the best-fit model has a 4% non-adiabatic contribution
the best χ2 is better by 9.7 than in the pure adiabatic model
in practice, all the improvement comes from the 2nd and 3rd

acoustic peak regions in the CMB data (the peaks are too
narrow to be fitted well by pure adiabatic ΛCDM model)
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Definitions
Adiabatic and isocurvature
Angular power spectra and our model

We have our friend, the gauge-invariant quantity (super-Hubble scales)

R = −ζ = H
δρ

ρ̇
+ ψ= −1

3

1

1 + w

δρ

ρ
+ ψ,

where ψ is the metric perturbation.
the continuity eq: ρ̇ = −3H(1 + w)ρ, where w ≡ p/ρ

On the uniform density hypersurface δρ ≡ 0 and we get

R = ψ, hence the name, ”curvature perturbation”.

On the flat hypersurface ψ ≡ 0, which gives

R = −1

3

1

1 + w

δρ

ρ
.

In the case of multiple species of particles i

R =
∑

i

ρ̇i

ρ̇
Ri , where Ri = H

δρi

ρ̇i
+ ψ.
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Definitions
Adiabatic and isocurvature
Angular power spectra and our model

Adiabatic, or curvature, perturbations:

When all the particles are decay products of a single field

Ri = Rj = R for all i and j .

From the definition we then have

1

1 + wi

δρi

ρi
− 1

1 + wj

δρj

ρj
= 0 for all i and j .

Isocurvature, or entropy, perturbations:

If the species decay from different fields, it’s possible that

S ≡ 3(Ri −Rj) 6= 0 for i 6= j .

Thus we have

1

1 + wi

δρi

ρi
− 1

1 + wj

δρj

ρj
= Sij .
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Angular power spectra and our model

We have studied the cold dark matter (CDM) isocurvature,
thus from now on: S ≡ Scγ = Rc −Rγ = δc − 3

4δγ .

Adiabatic perturbation is conserved on super-Hubble scales
R(t) = R(tinit)

The entropy perturbation is not a conserved quantity in itself
S(t) = TSSS(tinit) (e.g., thermalisation → TSS = 0)

The entropy perturbation can seed curvature perturbation
R(t) = R(tinit) + TRSS(tinit)

All of this can be written nicely into a matrix form:[
R(tpri, k)
S(tpri, k)

]
=

[
1 TRS(k)
0 TSS(k)

] [
R(t∗, k)
S(t∗, k)

]
,

where t∗ denotes the time when the mode was generated
(horizon crossing during inflation) and tpri some time deep in
the radiation dominated era after the nucleosynthesis.
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Angular power spectra and our model

The primordial correlators
〈
x(k)y∗(k′)

〉
= 2π2

k3 Cxy (k)δ(3)(k− k′):

PR(k) ≡ CRR(k) = A2
r k̂

nad1−1 + A2
s k̂

nad2−1,

PS(k) ≡ CSS(k) = B2k̂niso−1,

CRS(k) = CSR(k) = AsBk̂ncor−1, ncor = (nad2 + niso)/2

where k̂ = k/kpivot and kpivot = 0.01Mpc−1 (CMB multipole ` ∼ 140) is
the pivot scale at which the amplitudes are defined.

[
R(tpri, k)
S(tpri, k)

]
=

[
1 TRS(k)
0 TSS(k)

] [
R(t∗, k)
S(t∗, k)

]
,

〈
R(t∗, k)S∗(t∗, k)

〉
= 0
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The total C` is now a sum of 4 components: the uncorrelated and
correlated adiabatic parts, the isocurvature part, and the correlation
between the last two:

C` ≡ C ad1
` + C ad2

` + C iso
` + C cor

`

= A2
[
(1− α)(1− |γ|)Ĉ ad1

`

+ (1− α)|γ|Ĉ ad2
` + αĈ iso

` + sign(γ)
√
α(1− α)|γ|Ĉ cor

`

]
,

where we have defined (at the pivot scale)

A2 ≡ A2
r + A2

s + B2, α ≡ B2

A2 ∈ [0, 1], γ ≡ sign(AsB)
A2

s

A2
r +A2

s
∈ [−1, 1]

total amplitude isocurvature fraction correlation

Ĉ` denote spectra obtained with unit amplitudes (Ar = 1, As = 1, B = 1)
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Our model has 10 parameters (the adiabatic ΛCDM has 6).
We assign uniform, or flat, prior probabilites to them.

The 4 background parameters:

physical baryon density (ωb = h2Ωb), the physical CDM
density (ωc = h2Ωc), the sound horizon angle (θ) and the
optical depth to reionization (τ).

Vesa Muhonen (HIP), UniverseNET, Lesvos, 24.9.2007 Hints of Isocurvature in the CMB?



Perturbations
Results

Conclusions

Definitions
Adiabatic and isocurvature
Angular power spectra and our model

Our model has 10 parameters (the adiabatic ΛCDM has 6).
We assign uniform, or flat, prior probabilites to them.

The 4 background parameters:

physical baryon density (ωb = h2Ωb), the physical CDM
density (ωc = h2Ωc), the sound horizon angle (θ) and the
optical depth to reionization (τ).

The 6 perturbation parameters:

The amplitudes and spectral indices: (at scale k/h = 0.01)

ln(A), α, γ, nad1, nad2, niso.

Vesa Muhonen (HIP), UniverseNET, Lesvos, 24.9.2007 Hints of Isocurvature in the CMB?



Perturbations
Results

Conclusions

Definitions
Adiabatic and isocurvature
Angular power spectra and our model

Our model has 10 parameters (the adiabatic ΛCDM has 6).
We assign uniform, or flat, prior probabilites to them.

The 4 background parameters:

physical baryon density (ωb = h2Ωb), the physical CDM
density (ωc = h2Ωc), the sound horizon angle (θ) and the
optical depth to reionization (τ).

The 6 perturbation parameters:

The amplitudes and spectral indices: (at scale k/h = 0.01)

ln(A), α, γ, nad1, nad2, niso.

C` = A2
[
(1− α)(1− |γ|)Ĉ ad1
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physical baryon density (ωb = h2Ωb), the physical CDM
density (ωc = h2Ωc), the sound horizon angle (θ) and the
optical depth to reionization (τ).

The 6 perturbation parameters: (in two different parametrisations)

The spectral index parametrisation (at scale k/h = 0.01)

ln(A), α, γ, nad1, nad2, niso.

The amplitude parametrisation (at k/h = 0.002 and k/h = 0.05)

ln(A0.002), α0.002, γ0.002, ln(A0.05), α0.05, γ0.05.
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optical depth to reionization (τ).

The 6 perturbation parameters: (in two different parametrisations)

The spectral index parametrisation (at scale k/h = 0.01)

ln(A), α, γ, nad1, nad2, niso.

The amplitude parametrisation (at k/h = 0.002 and k/h = 0.05)

ln(A0.002), α0.002, γ0.002, ln(A0.05), α0.05, γ0.05.

The MCMC chains with amplitude parametrisation converge
significantly faster and thus we use that in our analysis.
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Main results

We define:

αT ≡
∑

(2`+ 1)(C iso
` + C cor

` )∑
(2`+ 1)C`

,

which gives the total non-adiabatic contribution to the CMB
temperature variance.〈 (

δT

T

)2 〉
=

∑
`

2`+ 1

4π
C` .

We find αT = 0.043± 0.015.

This is positive at 95% C.L. (0.017 < αT < 0.073).

Thus the CMB data favors a ∼ 4% non-adiabatic contribution.

∆χ2 ≡ χ2(best correlated model)−χ2(best adiabatic model)
= −9.7.
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which gives the total non-adiabatic contribution to the CMB
temperature variance.〈 (

δT

T

)2 〉
=

∑
`

2`+ 1

4π
C` .

We find αT = 0.043± 0.015.

This is positive at 95% C.L. (0.017 < αT < 0.073).

Thus the CMB data favors a ∼ 4% non-adiabatic contribution.

∆χ2 ≡ χ2(best correlated model)−χ2(best adiabatic model)
= −9.7.
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Marginalised 1d likelihoods

Keskitalo, Kurki-Suonio, Muhonen & Väliviita, astro-ph/0611917 (JCAP).
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Additional data

Only minor changes in the 1d likelihoods if we apply:

HST prior H0 = 72± 8 km/s/Mpc.

SNIa from Astier et al. (2006), Ωm ≈ 0.263± 0.074.

More ”adiabatic-like” 1d likelihoods if we apply:

SNIa from Riess et al. (2004), Ωm ≈ 0.30± 0.04.

Lyman-α data as in Beltran, Garcia-Bellido, Lesgourgues, and
Viel (2005) ⇒ αT > 0 only at 68% C.L., ∆χ2 ≈ −5.

Ly-α extends the data to “much” larger k (smaller scales).
is our approximation of power law spectra resonable over this
extended k-range?
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Conclusions (of a more technical nature)

The amplitude parametrisation in the MCMC study is
significantly (about an order of magnitude) faster than the
spectral index parametrisation.

The amplitude parametrisation favours a bit larger
isocurvature and correlation fractions, since it does not give
artificially large weight for the adiabatic model upon
marginalisation.
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Conclusions (the physics part)

The CMB peak structure is marginally (∼ 3σ) inconsistent
with the pure adiabatic model.

No conclusive evidence for the CDM isocurvature. This
“feature” could be:

just a statistical fluke
some yet unaccounted for systematic effect both in the
Boomerang and WMAP data
some other non-standard cosmological feature
e.g., isocurvature from cosmic strings as by Bevis et al., astro-ph/0702223

Some other data complementary to CMB may (dis)favour
isocurvature. Ly-α, BAO, ISW-LSS correlation?

In any case, the future data (hopefully already by Planck) will
show whether or not the feature in C` remains.

worth keeping an eye on, since if confirmed, it would
automatically rule out single-field inflation
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