Primordial Gravitational Waves

João G. Rosa

Rudolph Peierls Centre for Theoretical Physics University of Oxford

First Annual School of the EU Network "Universe Net" The Origin of the Universe Mytilene, 24-29 September 2007

Motivation

- Gravitational waves can be a **powerful probe** of the early universe:
 - Produced during inflation
 - ➢ Weak interactions with matter and radiation
 - ➢ May enconde information about the history of the universe

Classical Tensor Perturbations

• Flat Friedmann-Robertson-Walker background:

$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$

- Metric perturbations (*conformal time coordinate*):
- Tensor perturbations are **transverse** and **traceless**;
- Linearised Einstein equations (*synchronous gauge*):

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} - \nabla^2 h_{ij} = 16\pi G a^2 \Theta_{ij} \qquad , \qquad \Theta_{ij} = T^i_j - p\delta^i_j$$

Evolution similar to scalar field case

 $g_{\mu\nu} = a^2(\eta_{\mu\nu} + h_{\mu\nu})$

Classical Tensor Perturbations

• Fourier expansion:

$$h_{ij}(x) = \sqrt{16\pi G} \sum_{r} \int \frac{d^3k}{(2\pi)^3} \epsilon^r_{ij}(\mathbf{k}) h^r_{\mathbf{k}}(\tau) e^{i\mathbf{k}\cdot\mathbf{x}}$$

where the symmetric polarisation tensor is transverse and traceless and is normalised as

$$\sum_{ij} \epsilon^r_{ij}(\mathbf{k}) \epsilon^s_{ij}(\mathbf{k})^* = 2\delta^{rs}$$

• Equation for the mode **k**:

$$\ddot{h}^r_{\mathbf{k}} + 2\frac{\dot{a}}{a}\dot{h}^r_{\mathbf{k}} + k^2h^r_{\mathbf{k}} = 0$$

- Power law expansion: $a(\tau) = \alpha \tau^n$ $n = \frac{2}{1+3\omega}$ $\omega = p/\rho$
- General solution expressed in terms of Bessel functions:

Quantisation and Power Spectrum

• In linear theory, one can use the analogy with the scalar field case to construct the quantum theory associated with the free tensor modes in a curved spacetime:

$$h_{ij}(\mathbf{x},\tau) = \sum_{r} \sqrt{16\pi G} \int \frac{d^3k}{(2\pi)^3} \left[\epsilon_{ij}^r(\mathbf{k}) h_k(\tau) a_{\mathbf{k}}^r e^{i\mathbf{k}\cdot\mathbf{x}} + \epsilon_{ij}^r(\mathbf{k})^* h_k(\tau)^* a_{\mathbf{k}}^{r\dagger} e^{-i\mathbf{k}\cdot\mathbf{x}} \right]$$

physical time-dependent operator

Wronskian Normalisation Condition:

$$h_k \dot{h}_k^* - h_k^* \dot{h}_k = \frac{i}{a^2}$$

Quantisation and Power Spectrum

• Power Spectrum:

$$\langle 0|h_{ij}(\mathbf{x},\tau)h_{ij}(\mathbf{y},\tau)|0\rangle \equiv \int \frac{d^3k}{(2\pi)^3} \frac{2\pi^2}{k^3} \Delta_T^2(k,\tau) e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{y})}$$

$$\Delta_T^2(k,\tau) = 64\pi G \frac{k^3}{2\pi^2} |h_k(\tau)|^2$$

• Energy density:

$$T_{GW}^{\mu\nu} = -\frac{2}{\sqrt{\bar{g}}} \frac{\delta S_{GW}}{\delta \bar{g}_{\mu\nu}} \qquad \qquad \rho_{GW} = T_{GW}^{0}{}_{0} = \bar{g}_{00} T_{GW}^{00}$$

$$\Omega_{GW}(k,\tau) \equiv \frac{1}{\rho_{c}(\tau)} \frac{d\langle 0|\rho_{GW}|0\rangle}{d(\ln k)} = \frac{8\pi G}{3H(\tau)^{2}} \frac{k^{3}}{2\pi^{2}a^{2}(\tau)} \left(|\dot{h}_{k}(\tau)|^{2} + k^{2}|h_{k}|^{2}\right)$$

Inflationary perturbations

- Slow-roll inflation: energy density of the universe dominated by potential energy of a scalar field φ;
- Scale factor: $a(\tau) = -1/H\tau$

• Slow-roll parameters:
$$\epsilon \equiv \frac{1}{2} M_p^2 \left(\frac{V'(\phi)}{V(\phi)} \right)^2$$
 $\eta \equiv M_p^2 \left(\frac{V''(\phi)}{V(\phi)} \right)$

• Equation for tensor modes: $\ddot{\chi}_k - \frac{2}{\tau^2}\chi_k + k^2\chi_k = 0$ $\chi_k(\tau) \equiv h_k(\tau)/a(\tau)$

> Solution:
$$h_k(\tau) = -\frac{H}{\sqrt{2k}}\tau \left(1 - \frac{i}{k\tau}\right)e^{-ik\tau} = H\sqrt{\frac{k}{2}}\tau^2 h_1^{(2)}(k\tau)$$

Inflationary perturbations

- The solution exhibits two distinct behaviours:
 - Subhorizon redshifted plane wave:

Inflationary perturbations

Assume that at the end of inflation (τ=0) all modes of interest are well outside the horizon:

► Power spectrum:
$$\Delta_T^2(k,0) = 8 \left(\frac{H}{2\pi M_p^2}\right)^2$$

> Energy density:
$$\Omega_{GW}(k,0) = \frac{H^2}{6\pi^2 M_p^2} = \frac{1}{12}\Delta_T^2(k,0)$$

Spectral index:
$$n_T = \frac{d \ln \Delta_T^2}{d \ln k} = -2\epsilon_*$$

Slow-roll inflation produces a cosmic background of gravitational waves from quantum fluctuations with an almost scale invariant power spectrum

• Simplified model: Radiation + Matter with instantaneous transition

$$a(\tau) = \begin{cases} H_0 \sqrt{\Omega_{r0}} \tau, & 0 \le \tau \le \tau_{eq} \\ a_{eq} \left(\frac{\tau}{\tau_{eq}}\right)^2, & \tau_{eq} < \tau \le \tau_0 \end{cases}$$

- General solutions:
 - > Radiation: $h_k(\tau) = Aj_0(k\tau) + By_0(k\tau) \longrightarrow A = h_k(0), B = 0$

> Matter:
$$h_k(\tau) = A_k \left(\frac{3j_1(k\tau)}{k\tau} \right) + B_k \left(\frac{3y_1(k\tau)}{k\tau} \right) ,$$

• Transfer function coefficients:

$$A_{k} = h_{k}(0) \frac{3k\tau_{eq} - k\tau_{eq}\cos(2k\tau_{eq}) + 2\sin(2k\tau_{eq})}{6k\tau_{eq}}$$
$$B_{k} = h_{k}(0) \frac{2 - 2k^{2}\tau_{eq}^{2} - 2\cos(2k\tau_{eq}) - k\tau_{eq}\sin(2k\tau_{eq})}{6k\tau_{eq}}$$

Modes reenter the Hubble horizon during the radiation era or the matter era

• Smooth radiation-matter transition:

$$a(\tau) = \frac{1}{4}\Omega_{m0}H_0^2\tau^2 + \sqrt{a_{eq}}\sqrt{\Omega_{m0}}H_o\tau$$

- ► Rescaled variables: $x \equiv (\sqrt{2} 1)\tau/\tau_{eq}$ $y \equiv k/(k_{eq}(\sqrt{2} 1))$
- Scale factor: $a(x) = a_{eq}x(x+2)$
- Tensor modes equation:

$$h_y'' + 4\frac{x+1}{x(x+2)}h_y' + y^2h_y = 0$$

Solve numerically with initial conditions (at the end of inflation):

$$h_y(0) = 1$$
 $h'_y(0) = 0$

\bigcirc

Post-inflationary behaviour

• Transfer function coefficients:

• If we neglect phase shift induced by radiation era:

$$h_k(\tau) = h_k(0) \underline{T(k)} \left(3 \frac{j_1(k\tau)}{k\tau} \right)$$

Transfer function

$$T(s) = (1 + 1.4s + 2.16s^2)^{1/2} \qquad s = k/k_{eq}$$

• Energy density (averaged over several periods) $|T(k/k_{eq})|^2(k)$ 8×10^9 6×10^9

$$\Omega_{GW0} = \frac{V_k}{16\pi^2 M_p^4} |T(k)|^2 (k\tau_0)^{-2}$$

- Effect of phase transition at $\tau = \tau_*$ (radiation era):
 - > Number of relativistic d.o.f. changes from g_*^i to $g_*^f < g_*^i$;
 - Energy density of radiation fluid:

$$\rho_r = \frac{\pi^2}{30} g_* T^4 = \frac{\pi^2}{30} \frac{s^{4/3} g_*^{-1/3}}{a^4} \qquad s = a^3 g_* T^3 \longrightarrow \text{Conservation} \text{of entropy}$$

$$\rho_r = \begin{cases} \frac{\rho_{r0} r}{a^4}, & a \le a_* \\ \frac{\rho_{r0}}{a^4}, & a > a_* \end{cases} \qquad \rho_{r0} = (\pi^2/30) s^{4/3} (g_*^f)^{-1/3} \\ r \equiv (g_*^i/g_*^f)^{-1/3} \end{cases}$$

Scale factor evolution (*instantaneous transitions*):

$$a(\tau) = \begin{cases} H_0 \sqrt{\Omega_{r0} r} \tau, & 0 < \tau \le \tau_* \\ H_0 \sqrt{\Omega_{r0}} (\tau + (\sqrt{r} - 1)\tau_*), & \tau_* < \tau \le \tau_{eq} \\ a_{eq} \left(\frac{\tau}{\tau_{eq}}\right)^2, & \tau > \tau_{eq} \end{cases}$$

- Transfer function coefficients for phase transition:
 - > New time variable: $\bar{\tau} \equiv \tau + (\sqrt{r} 1)\tau_*$
 - General solution for second radiation-domination period:

$$h_k(\tau) = A_k j_0(k\bar{\tau}) + B_k y_0(k\bar{\tau})$$

From continuity:

$$A_{k} = h_{k}(0)(k\tau_{*})^{2}r \left[\frac{\cos(k\tau_{*}(\sqrt{r}-1))}{(k\tau_{*})^{2}\sqrt{r}} - \frac{\sin(k\tau_{*})\cos(\sqrt{r}k\tau_{*})}{(k\tau_{*})^{3}} \left(\frac{\sqrt{r}-1}{r}\right) \right]$$
$$B_{k} = h_{k}(0)(k\tau_{*})^{2}r \left[\frac{\sin(k\tau_{*}(\sqrt{r}-1))}{(k\tau_{*})^{2}\sqrt{r}} - \frac{\sin(k\tau_{*})\sin(\sqrt{r}k\tau_{*})}{(k\tau_{*})^{3}} \left(\frac{\sqrt{r}-1}{r}\right) \right]$$

 \succ Compute coefficients C_k and D_k after matter-radiation transition

- Example: QCD Phase Transition (Laine, 2001)
 - * $\tau_* = 1.4 \text{ x } 10^{-8} \tau_{eq} \ (T = 170 \text{ MeV})$
 - * $g_*^{i} = 51.25$ (quark-gluon plasma)
 - * $g_*^{f} = 17.25$ (hadrons)
 - Relevant scales:
 - $k_* = 7.1 \text{ x } 10^7 \text{ k}_{eq}$

r = 0.6956

Conclusions

- Tensor perturbations are powerful tools for understanding the evolution of our universe;
- Studying the cosmic background of gravitational waves may provide important information about the mechanism behind inflation;
- The tensor transfer function may encode information about the radiation-matter transition and other possible phase transitions where relativistic d.o.f. are lost;