Chaplygin DPG cosmologies

Mariam Bouhmadi-López

CENTRA-IST (Lisbon, Portugal)

Mytilene, 28th September 2007

Work in collaboration with Ruth Lazkoz (EHU, Spain) Based on 0706.3896 (PLB)

Introduction Brane-World Models with Induced Gravity Chaplygin DGP Cosmologies

Outline

Introduction

2 Brane-World Models with Induced Gravity

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

2 Brane-World Models with Induced Gravity

3 Chaplygin DGP Cosmologies

4 Summary and Conclusions

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction

- The expansion of the universe seems accelerating
- Room for w₀ < −1 ?</p>
- In phantom energy model
 - Null energy condition is not satisfied
 - Energy density is a growing function of the scale factor
 - May be big rip singularity
- May be phantom divide crossing

Phantom energy with w = constant

- Equation of state $p = w\rho$, w = const. and w < -1
- Energy density $ho \propto a^{-3(w+1)}$
- Big rip singularity in the future:
 - At a finite cosmic time *t*_{max}
 - $a \to \infty, \rho \to \infty$ and $p \to \infty$

Outline

・ロト ・ 同ト ・ ヨト ・ ヨト

Induced Gravity on the brane

- Brane embedded in a 5D bulk
- Brane action contains 4D scalar curvature
- Two ways of embedding the brane
 - One way generalises RS geometry
 - One way generalises DGP geometry

≣⇒ < ≣⇒

< D > < P >

Dvali, Gabadadze and Porrati Model

- One brane embedded in a 5D Minkowski space-time
- Brane has no tension
- Brane action contains 4D scalar curvature
- Extra dimension is infinite

Dvali, Gabadadze and Porrati '00 Deffayet '00

Late-time acceleration on a DGP Brane

The bulk is flat. Then the expansion of the brane

$$H^2=rac{8\pi G}{3}
ho\pmrac{1}{r_c}H, \qquad r_c=rac{\kappa_5^2}{2\kappa_4^2}$$

• (+) solution: The self-accelerating solution (Deffayet '00)

- (-) solution: The non self-accelerating solution
 - ADGP: Effective phantom-like behaviour. $\rho = \Lambda + \rho_m$ Sahni, Shtanov '02, Lue, Starkman '04
 - QDGP: Phantom divide crossing is possible. $\rho = \rho_q + \rho_m$. The effective 4D phantom description breaks down at some point.

Chimento, Lazkoz, Maartens, Quiros '06

Outline

3 Chaplygin DGP Cosmologies

4 Summary and Conclusions

< ロ > < 回 > < 回 > < 回 > < 回 >

CDGP model

- Brane: the non self-accelerating DGP branch
- Matter on the brane

• Dark energy component is a GCG $P = -A/\rho^{\alpha}$ 0 < A_s < 1, $A_s = A/\rho_{ch_o}^{1+\alpha}$

Kamenshchik et al '01, Bilić et al '01, Bento et al '02

- CDM component
- The modified Friedmann equation

$$H/H_{0} = \sqrt{\Omega_{r_{c}} + \Omega_{m}(1+z)^{3} + \Omega_{ch} \left[A_{s} + (1-A_{s})(1+z)^{3(\alpha+1)}\right]^{\frac{1}{1+\alpha}}} - \sqrt{\Omega_{r_{c}}}$$

ヘロト ヘ戸ト ヘヨト ヘヨ

Acceleration on the brane-1-

- There is a mimicry of a closed FLRW universe in the (Ω_m, Ω_{ch}) plane $\Omega_m + \Omega_{ch} = 1 + 2\sqrt{\Omega_{fc}}$
- The brane never super-accelerates $\dot{H} < 0$
- The brane transits between CDM (past) and de Sitter (future) limits ⇒

 \exists a certain redshift below which the brane accelerates.

No future singularity

Acceleration on the brane-2-

- For a fixed amount of matter, the late-time acceleration starts sooner the larger is A_s
- A_s = 0.991, 0.981, 0.971
- Ω_m = 0.2
- (Ω_{r_c}, α)=(0.01, 0.9)

Acceleration on the brane-3-

- For a fixed A_s, the larger is Ω_m, the latter is the beginning of the cosmic speed up
- Ω_m = 0.3, 0.25, 0.21
- $A_{\rm s} = 0.991$
- (Ω_{rc}, α)=(0.01, 0.9)

Crossing the phantom divide: Effective description-1-

• Effective Friedmann Eq.

$$3H^2 = \rho_m + \rho_{\rm eff}$$

• Effective energy density

$$ho_{\mathrm{eff}} =
ho_{\mathrm{ch}} - \mathbf{3} \frac{H}{r_{\mathrm{c}}}$$

$$1 + w_{\rm eff} = -rac{\dot{
ho}_{
m eff}}{3H
ho_{
m eff}}$$

• $\rho_{\rm eff}$ is always positive if

$$4A_s(1 - A_s) > \left(rac{4\Omega_{r_c}\Omega_m}{\Omega_{ch}^2}
ight)^{1 + lpha}$$

< < >> < </>

 With this condition the effective picture is always well defined

→ E → < E →</p>

Crossing the phantom divide: Effective description-2-

• There is a phantom divide crossing if $1 + w_{eff}$ change sign; i.e. $\dot{\rho}_{eff}$ change sign (ρ_{eff} is positive)

$$\dot{
ho}_{\mathrm{eff}} = rac{9 H H_0^2 (1+z)^3}{(H+H_0 \sqrt{\Omega_{r_c}})} X$$

- At high redshift (z \gg 1) $\dot{
 ho}_{
 m eff}$ is negative \Longrightarrow 1 + w_{eff} > 0
- At $z \approx -1$ the quantity $\dot{\rho}_{\rm eff}$ is positive $\Longrightarrow 1 + w_{\rm eff} < 0$

$$X\sim \Omega_m H_0 \sqrt{\Omega_{r_c}}$$
 for $lpha>0$

• Therefore, there is a phantom divide crossing if $\alpha > 0$ and $\Omega_m \neq 0$

・ロト ・同ト ・ヨト ・ヨ

Crossing the phantom divide: Effective description-3-

- Why Ω_m ≠ 0 is a necessary condition for "crossing the phantom divide"?
 - In absence of CDM the Raychaudhuri equation reads

$$2\dot{H}=-(1+w_{\rm eff})\rho_{\rm eff}$$

- There is no super-acceleration on the brane (in all cases)
- Then the phantom divide crossing cannot occur if $\Omega_m = 0$

Crossing the phantom divide: Effective description-4-

Redshift values z_c at which the crossing takes place

- For a fixed value of Ω_{r_c} , z_c grows with increasing Ω_m
- $\Omega_{r_c} = 0.04$ and $\Omega_m = 0.20, 0.25, 0.30, 0.35$ (left to right)

< D > < P >

Crossing the phantom divide: Effective description-5-

Redshift values z_c at which the crossing takes place

- For a fixed value of Ω_m , z_c grows with increasing Ω_{r_c}
- $\Omega_m = 0.25$ and $\Omega_{r_c} = 0.01, 0.04, 0.07, 0.10$ (left to right)

< < >> < </>

Outline

・ロト ・ 同ト ・ ヨト ・ ヨト

Summary and Conclusions

- CDGP model: The non self-accelerating (normal) branch of the DGP model filled with dark energy modelled through a Chaplygin gas + CDM
 - can describe the late-time acceleration
 - mimics "crossing the phantom divide"
 - effective description remains valid at all redshift
 - no future singularity

ヘロト ヘ戸ト ヘヨト ヘヨ