The High-Energy Universe: Cosmic Rays, Gamma Rays, Neutrinos

Johannes Knapp School of Physics and Astronomy University of Leeds, UK

Contents 2:

- Gamma Rays: New Results, Instruments
- Neutrínos: Potentíal Sources, Telescopes

Cosmic Rays, Gamma Rays and Neutrinos are linked

γ and v travel in straight lines, i.e. point back at source. ... very successful in other branches of astronomy

... another probe for the extreme universe

thanks to jim Hinton for slides

Extreme Energies Extreme Environments:

Power sources ?

Accretion of matter onto compact objects

e.g. Neutron stars, black holes, supermassíve black holes

Explosions: Supernova (SN), compact binary mergers

Rotation: rotating neutron star with strong magnetic field generate relativistic electron-positron wind

How? (all on charged particles)

Díffusive shock (Fermí) acceleration e.g. SN blast wave hits ISM Magnetic reconnection ? Plasma waves ?

Creation of gamma rays?

π^o decay synchrotron emíssíon ín magnetic fields Inverse Compton effect hadroníc prímaríes relatívístíc e+, e-

Non-Thermal Radiation

Non-Thermal Radiation

Non-Thermal Radiation

"air showers"

Cherenkov Technique

Cherenkov angle $\approx 1^{\circ}$ at 10 km altítude

Shower particles absorbed

Cherenkov photons arrive at ground within 10 ns in light pool of $r \approx 100$ m

primary gamma ray R Z Z el.mag shower 10-20 ~ 100 m

Put telescope in light pool to get shower image eff. area ≈ size of light pool ≈ 10⁵ m² image analysis gives: energy, shower direction and background rejection (10²-10³x more CRs than γ-rays)

but: Ch. telescopes have small field of view (< 5°)

more structure, fluctuations in CR showers

Proton

Stereo view: much improved resolution g background rejection

10 m Whipple Telescope Mt Hopkins, Arizona 1968: Construction - multí PMT camera - ímage analysís 1989: Discovery of Crab Nebula at E > 1 TeV

VERITAS, Arizona

2007

MAGIC, La Palma

HESS: Khomas Highland, Namíbía four 13-m telescopes, 960-píxel cameras, 5° FOV

Science with VHE Gamma Rays

SNRs

Space-time

Pulsars and PWN

AGNs

GRBs

Cosmology

Origin of cosmic rays

Dark matter

Whipple: Crab Nebula, first Tev source

Whipple, Mark V: AGNS (Blazars)

HESS: galactic plane survey many new classes of objects

e.g. RX J1713.7 -3946

Purely non-thermal X-ray source ≈1000 years old, distance ≈ 1 kpc, dense environment? First TeV gamma-ray SNR (and first resolved image) Closely correlated keV/TeV morphology

Hadronic Origin?

RX J1713.7 -3946

pro: spectral shape

IC interpretation implies too low B field

con:

close correlation with X-rays no correlation with molecular material

Conclusion:

not clear yet; need data at lower energies

Mícro Quasars

Hígh-mass X-ray bínary system (BH/NS with massive stellar companion) with radio jets. Galactic analogue of a quasar (Supermassive black hole with jets) Two objects of this class emit TeV gamma-rays: LS 5039 (HESS) and LSI +61 303 (MAGIC)

Mícro Quasar LS 5039

Close binary system:

Períod: 3.9 days, O-star: $25 M_{\odot}$, Compact Object: 1.5-5 M_{\odot} ,

Separation: 2-5 R*

Exhibits radio jet

jet with $v \sim 0.2$ c aligned close to line of sight (microblazar?) Associated with EGRET source?

Galactic Centre

HESS, Nature 2006

Spectrum of Sagíttaríus A

Power law spectrum:

accelerated particles not DM annihilation

Which is the accelerator?

Díffuse Emíssion

after subtraction of discreet sources

CS Line Emission (dense clouds) smoothed to match HESS PSF

Molecular clouds glow in TeV gamma-rays, being bombarded by cosmic ray protons and nuclei!

Pulsar Wind Nebulae

Sources wíthout Counterpart

AGN: Blazars + M87

Outburst ín 2006, íntensíty doubling ín < 5 mín !!!

20 x bríghter than the Crab Nebula. The burst contaíned over 60000 gamma rays!

Allow límíts on Quantum Gravíty effects from tíme lag between hígh and low energy gammas

Extragalactic TeV astronomy

 Physics of AGN jets
Density of cosmological extragalactic background light (EBL)

... and much more ...

Truly, a new window has been opened.

solar power plants: low threshold, but poor imaging ξ limited resolution

arrays: all-sky capabílíty but hígh threshold

Mílagro: Sky survey @ 20 Tev

ICRC 2007

Mílagro: 6.5 years of data: Crab: 15 sígma HESS: 10 h: 0.1 Crab: 15 sígma

Future of Gamma Ray Astronomy

- GLAST: launch ín 2008 many sources at <100 Gev
- MAGIC 2: second 17-m telescope for stereo observations HESS 2: 25 m diameter mirror for improved sensitivity at lower energies
- Cherenkov Telescope Array CTA (Euro 150M) 2 sítes (N+S), arrays of dífferent-sízed telescopes detect >1000 sources!

CTA Sensitivity: see 1000 sources

The TeV gamma ray window is wide open !

... with great views on the most energetic objects in the universe.

The Neutríno Sky so far: (energies: Mev)

The Sun

SN 1987 A

few (<20) neutrinos seen by 3 experiments during 10 seconds

Super- K (Japan) image of the sun using neutrinos Potentíal neutríno sources (galactíc and extra galactíc)

... wherever energetic particles interact

e.g.:

Same sources as for gamma rays ...

but predicted neutrino fluxes are very uncertain.

Cosmic Rays, Gamma Rays and Neutrinos are linked

can't travel far at high energies

v travel in straight lines and are not absorbed. at source: ve:vmu:vtau = 1:2:10⁻⁵ at Earth: ve:vmu:vtau = 1:1:1 but: probability of interacting in detector is small !!!

The Universal Neutrino Spectrum

neutrino energy

large detection volumes: e.g. water or ice; Cherenkov effect to detect fast, charged particles; deep underground to shield cosmic rays

Super Kamíokande

AMANDA (south Pole)

KM3-Net (Medíterranean)

díst. of modules: 0.5 m threshold: 5 MeV

50 GeV

20 m

200 Gev

100 m

IceCube / Amanda in Antarctic Ice Shield and the set

ínstrument 1 km³ íce

IceTop: 80 pairs of ice Cherenkov tanks

22/80 stríngs deployed 60 modules each

Amanda: 19 strings/677 modules

Completion: 2011

optical module

Rates of Muons / atmospheric Neutrinos

Antares (prel.)

Are there sources strong enough to be unambigously detected? ... to do neutrino spectroscopy? ... to do astrophysics with the sources? Current (optimistic?) estimates for AGN: 2-4 neutrinos per source in IceCube

unexpected super-strong sources?

Is 1 km³ bíg enough ? Is current techníque usable for 100-1000 km³ ?

Detection of τ neutrinos

Double bang events: uníque sígnature for T neutrínos

> at 10^{18} eV $\gamma \text{ct} \approx 6 \times 10^9 \times 0.1 \text{ mm}$ $\approx 60 \text{ km}$

NEUTRINO EVENTS IN ATMOSPHERE

Ratío earth-skímming / quasi-horizontal neutrinos (i.e. V_{τ} / V_{all}) relates to v-N cross-sections and allows test of standard model neutrino production.

Radío emíssion of showers in Ice: Antarctic Impulsive Transient Antenna ANITA

1st flíght (2007) successful, 2 more to come, analysís ongoing
Auger: no neutríno candídate

- Astroparticle Physics is an exciting field.

Híghest energy partícles are rare & dífficult to detect
... but new experiments (with increased sensitivity)
can detect these partícle and identify their sources.

- The most-energetic CRs, gamma rays & neutrinos come likely from the same, most violent environments in the universe.

(Multí-messenger approach for improved understanding)

- Three new windows in Astronomy: Tev gamma rays, инескя, Neutrinos - Bright future with many challenges for bright young theorists and experimentalists.