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Supernovae and Dark Energy

• JDEM selected Beyond Einstein’s programme 

by NASA/DOE

• Three missions: SNAP, DESTINY, ADEPT

Measure the equation of state of dark energy

Reduce systematic and statistical errors



Supernovae and Dark Energy

• The analysis w(z)

• Beyond two parameter analysis of w(z)

• The SN database: joint databases

Wood-Vasey et al. 2007 (ESSENCE)

Kowalski et al. 2008 (SCP) 

307 SNe Ia



Evidence of 

acceleration of the

expansion of the

Universe in 1998

Cosmological

constant or

modified gravity?

Evidence ΩM-Ω
Λ
, 

using 42 SNeIa

Perlmutter et al.: 

ApJ 517, 565  

(1999)

Riess et al.: AJ 

116, 1009 (1998)



Confidence regions in the

parameter space of w0–w’ of the 

equation of state of dark energy  

w(z) = w0 + w’z.

Gold sample results using the

prior ΩM = 0.27 ± 0.04 (Riess

et al.: ApJ 607, 665, 2004)

First constraints on w´



Riess et al.: ApJ, 607, 
665 (2004)

Riess(04)

gives w0 =-1.31
+0.22   

-0.28
w'= 1.48 ± 0.81

0.90



w(z)

Chevallier & Polarski: Int. 
J. Mod. Phys. D 10, 213 
(2001)

Linder: Phys. Rev. Lett. 
90, 091301 (2003)



Ruiz-Lapuente: Class. 
Quantum Grav. 24, R91 
(2007)



The Higher-Z Team

Targeting  SNeIa at  
z > 1 with the HST 

Riess et al.: ApJ 

607, 665 (2004).



Empirical progress in dL(z) from supernovae

Ruiz-Lapuente: Class. Quantum 
Grav. R91 (2007)



Gold Riess 2007 sample

Riess et al.: ApJ 659, 
98 (2007)



Composite spectrum

Riess et al.: ApJ 659, 98 (2007)



``Weak’’ prior, ``Strong´´ prior

• ``Weak prior´´: No behavior in 
the range 1.8 < z< 1089

• ``Strong prior´´:  w = -1 at z > 1.8



Riess et al.: ApJ 659, 98 (2007)



w(z)

Median in 4 z intervals

Principal Components Analysis

Riess et al.: ApJ 659, 98 (2007)

Riess et al.: ApJ 659, 98 
(2007)



Riess et al.: ApJ 659, 98 
2007



Supernova samples

Samples unified by 

Riess et al.: ApJ 659, 98, 2007

Wood-Vasey et al.: ApJ 294 2007

Kowalski et al. 2008



Posible Tests of Dark Energy Models

With this enlarged that set it is possible to test several dark energy ideas



Extra dimensions

The expansión law departs from the usual Friedmann law (Deffayet, Dvali & 

Gavadadze: Phys. Rev. D 65, 044023, 2002). The 5-dimensional term in the

Einstein-Hilbert action dominates over the 4-dimensional terms at large

distances and gravity becomes weaker.  The Hubble law is of the type:

with

For a flat Universe,  Ωrc < 1



Effective action at low energy in a model with an extra spatial

dimension

There are accelerated solutions obtained for the 4-dimensional  

matter source Tµν

MPl
2 = 1/8πG;  gAB

(5) is the 5D metric

The induced metric in the brane is:

y the addtional space coordinate

The modified

Friedmann equation

rc crossover radius. Gravity behaves 5D beyond this crossover radius

(ds FRW-like)

DGP model



Confidence regions 68, 90 , 99%, 

in the plane ΩM – Ωrc. BAO+ 

SNLS. Bold line is the flat

Universe in this diagram. Is the

DGP model incompatible with a  

flat Universe?

Fairbairn & Goobar: Phys. Lett. B 
642, 432 (2005)



Davis et al.: ApJ
666, 716 (2007)



Other extra dimensional models

The Hubble law arising from gravity with extra dimensions can be 

expressed by adding Hα terms to the standard Friedmann equation:

where rc is the crossover radius, i.e. the transition radius from a regime to

another in the gravity law, and α is the parameter to be empirically

determined. From redshift z = 0 to z = 2, this Friedmann equation gives

an effective index of the equation of state: 

such effective equation of state evolves too fast to be compatible with

current SNeIa data, unless α is small. Present data favor  α close to 0.

Dvali & Turner: astro-ph/0301510 
(2003)

Durrer: hep-th/0507066 (2005)



Dvali and Turner

approach

Dvali & Turner: astro-ph/0301510 
(2003)



Scalar-tensor theories

Barrow & Cotsakis: Phys. Lett. B 214, 515 (1988)
Barrow & Maeda: Nucl. Phys. B 341, 290 (1990) 
Amendola: MNRAS 312. 521 (2000)
Esposito-Farese & Polarski: Phys. Rev. D 63, 

063504 (2001)
Esposito-Farese: gr-qc/0409081 (2004)

We aim at retrieving the self-interaction potential of the scalar V(Φ) and the

coupling function to matter and gravity A(Φ)  in the matter term of the

action:

We expand A(Φ) in its derivatives α0, β0 and higher orders:

Solar system tests + binary pulsar tests give precise bounds to the first and

second derivatives, while SNeIa should, in principle, allow to reconstruct the

full shape of A(Φ). Knowledge of the luminosity distance and the density

fluctuations δρ/ρ as functions of z are sufficient to reconstruct the potential

V(Φ) and the coupling function A(Φ)



Identify the scalar

The scalar field responsible for dark energy can be identified by recovering

its potential or, equivalently, its effective equation of state.The presence of a 

scalar field Φ would induce an action:

The field contributes to the stress-energy momentum tensor with effective

mass density and pressure:

The effective value of the equation of state parameter depends on the form

of the potential and it can evolve with time

Weiler & Albrecht: Phys. Rev. D 86, 
1939 (2001)



Dark energy scalar field

Then the effective value of the equation of state parameter weff depends on te 

form of the potential V(Φ) and it can evolve with time

A search for general properties of this potential leads, in analogy with the

inflation potential, to suggest potentials with tracking behaviour. Different

forms of the potential have been proposed from the original  

Ratra & Peebles: : Phys. Rev D 37, 3406 
(1988)

Wetterich: Nucl. Phys. B 302, 668 (1988)

Steinhardt et al.: Phys. Rev. D 59, 123504 
(1999)

Peebles & Ratra: Rev. Mod. Phys. 75, 559 
(2003)

Copeland et al.: Int. J. Mod. Phys. B 15, 1753 
(2006) 



Reconstruction of the dark energy scalar-field potential

Techniques for reconstructing the scalar-field potential from SN distances.

The comoving radial distance (Cooray et al. 2007)

Can be expanded as a simple power-law:

Given the problems encountered when estimating the derivatives of r(z), a 

Padé form can also be considered: 

such that as  z → 0,  r(z) → z.  In this form, using  r(z → ∞), one can 

additionally constrain the parameters with:



Reconstruction of the dark energy scalar-field potential

Huterer & Turner: Phys. Rev. D 71, 
123527 (2001)

w(z) parameterized by constant
values in redshift bins

Confidence regions based on Monte Carlo
simulations of 2000 SNeIa with individual 
uncertainties of 0.15 mag



Reconstruction of the dark energy scalar-field potential

In addition to the two fitting forms for r(z), it can be also determined through

model parameterizations of w(z), that including

and

In each of the two parametric descriptions of r(z) there are three free 

parameters. As for w(z), there are two parameters plus ΩM (assuming a flat

universe). A prior on ΩM is taken. In each case, to obtain the joint likelihood

distribution of the parameters, given the data, a likelihood analysis is performed: 



Reconstruction of the dark energy scalar-field potential

For each of the distance curves  ri(z), the scalar-field potential is obtained, in 

dimensionless units such that

through

where The mapping between z and Φ is given by:

where For models with the r(z) parameterization:



Reconstruction of the dark energy scalar-field potential

Li, Holz & Cooray:  Phys. Rev. D 75, 
103503 (2007)

Potential

reconstruction by all

four different

methods



Reconstruction of the dark energy scalar-field potential

Li, Holz & Cooray:  Phys. Rev. D 75, 
103503 (2007)

Reconstruction of

the dark energy

EOS



Reconstruction of the dark energy scalar-field potential

Model-free estimates:  binning w(z) in redshift

Potential as a function of the field, with constant gradients over binned

intervals:

Earlier approach by Huterer & Turner: Phys Rev. D 71, 123527 (2001)

Other approaches: España-Bonet & Ruiz-Lapuente: hep-ph/0503210 (2005)



Extended curvature gravity

Actions with inverse functions of R :

where

and

Chiba: Phys. Lett. B 575, 1 
(2003)

Starobinsky: JETP Lett. 86, 
157 (2007)



Action including a Gauss-Bonnet term RGB

The Gauss-Bonnet term can be found in the effective low-energy string

Lagrangian and in brane theories. The case of the simplest action containing

the Gauss-Bonnet term can be written as:

This Lagrangian includes the Gauss-Bonnet term coupled to a field Φ ≡ σ, for

instance the modulus field in Antoniadis et al. (1994), where W(σ) is the coupling

of the modulus field to the Gauss-Bonnet term RGB:

For an action which includes the GB term, one can have an equation of state

with weff < -1 for a canonical scalar field (positive kinetic energy), avoiding the

Big Rip
Langlois: Int. J. Mod Phys. A 1, 2701 (2004)

Antoniadis et al.: Nucl. Phys. B 415, 497 (1994)

Nojiri et al.: Phys. Rev. D 71, 123509 (2005)



Light Curve Fitting Methods
The distance moduli obtained by the various collaborations are calculated in slightly

different ways. The SCP used

µB  =  mB - M  + α(s – 1)

The method

meff =  mB +  α(s – 1)  - AB

The SNLS decided to introduce a color correction to the distance moduli

µB =  mB - M  + α(s – 1) - βc

The β parameter enters as a variable.

We take AB  = RBE(B – V)  with RB = 4.1  and  E(B – V) measured from the excess in 

the Phillips-Lira way compared with the standard excess for a given SN with stretch s





StretchCalibrated candles

through the relation

magnitude- rate of 

decline

Pskvoskii-Branch

effect (known in the

80’s)

Phillips: ApJ 413, 

L105 (1993)

∆m15

Riess, Press and

Kirshner:  ApJ 438, 

L17 (1995)

MLCS

Perlmutter et al.: ApJ

483, 565  (1997): 

stretch s

σ≈0.15 mag

With color information

σ≈0.11 mag



Relation stretch and other methods

Most recent

exploration

by Jha et al. 

(2006)

Jha et al.: AJ 531, 527 
(2006)



The K-corrections

Comparing objects with significant redshifts with nearby counterparts, it is necessary to

account for the effect of wavelength shift of light on the luminosity distances. That is

known as the K-correction. The K-correction Ki is defined such that an object of 

magnitude mi in filter i as a function of redshift z is

An object with spectrum F(λ) observed with a filter with sensitivity function Si(λ) has

where is the zero point of the filter.  It has been demonstrated that

where Ki accounts for the (1 + z) shift of the photons in wavelength and the (1 + z) increase

in the unit dλ they occupy



K-correction

The K-correction, which is necessary to calculate the apparent magnitude in a y filter band

of a source observed in a x filter band at redshift z is given by

where F(λ) is the source spectral energy distribution, and Sx(λ) is the transmission of the

filter x.  The Zi – Zx term accounts for the difference in zero points of the filters.

Kg’g’, Kr’r’, Kii’ and Kg’B have been computed for each SN, at the corresponding redshift, by 

means of Nugent’s spectral templates. For a more accurate correction we recalibrated

Nugent’s templates, warping them in order to reproduce Hamuy’s light curve template with

∆m15(B) = 0.87, 0.94, 1.11, 1.47 and we computed the K-correction adopting the templates

corresponding to the ∆m15(B) closest to the value measured in a preliminary fit of the data.

Since Hamuy’s light curve templates are normalized to zero, they have previously been 

rescaled using the relation given by Phillips et al.: AJ 118, 1766 (1999): 

Bmax - Vmax =   -0.07(±0.012) + 0.114(±0.037)[∆m15(B) – 1.1]

Vmax - Imax = -0.323(±0.017) + 0.250(±0.056)[∆m15(B) – 1.1]



Extinction correction uncertainty

• The magnitude correction for extinction by dust in the host galaxies of the

SNe is the single  dominant source of both statistical and systematic error 

for SNe distances and the derived cosmological parameters

• Dramatically so at z > 1 even with HST

• Typical color uncertainties:   

0.08 – 0.1 in B – V   → σ > 0.4 mag in EC

• Dispersion grows to σ ≈ 0.5 when uncertainty on  RB ≡ AB/E(B – V) is 

taken into account  (RB = 4.1 ± 0.5)

• That results in poor constraints on the dark energy equation of state

parameter w and its time variation given by w0 and w’

• The dispersion problem has been dealt with by applying a strong Bayesian

prior to the distribution. Assumes knowledge of the dust and SN distribution

in the z > 1 host galaxies. Being one-sided (no negative reddening), they

introduce systematic biases when the error bars increase with z. Also, the

mean value of RB may drift from low to high z



SNeIa: reducing systematics

Sullivan et al.: MNRAS 

340, 10578 (2002) SCP

Dependencies of SN Ia

properties on local 

environment disappear

after stretch correction



Colors



Use of SNeIa in elliptical galaxies

• The dispersion about the Hubble diagram of for SNeIa in ellipticals is only

σ ≈ 0.16 mag (including ground-based measurement error). That is three 

times smaller than just the measurement uncertainty for extinction-corrected 

SNeIa at  z > 1 

• Due to the absence of dust

• Statistically each SNeIa is nine times worthier than a SNeIa in a spiral

galaxy, and free of the systematics associated with extinction correction

• A sample of  ~ 10 SNeIa at  z ≥ 1  in cluster elliptical host galaxies would 

yield the stronger constraints on   w0 vs w’ without extinction prior 

systematics

• The z = 0.9 – 1.6  range provides key leverage on the cosmological model 

and especially on  w’.  Also, cluster potentials first begin responding to the 

acceleration due to dark energy



Dust in cluster ellipticals

• How is it known that dust is not an issue in  z ≥ 1 cluster ellipticals?

• Although some dust is found in about half of nearby ellipticals, the quantity

is generally very small and confined to a central disk with a very small

cross-section

• Clearest evidence from the tightness of the color-magnitude relation, 

recently shown (Hogg et al.: ApJ 624, 54, 2005) to be universal for early

type galaxies, both in clusters and in lower-density environments, based on

huge sample from SDSS 

• Recent results from ACS on HST show the same small dispersion in color 

extending to z ≥ 1.  Imaging at z = 1.24 finds intrinsic dispersion of               

σ = 0.024 ± 0.008 mag for 30 ellipticals in rest-frame  U – B.  Since some 

intrinsic color variation due to that in the age and metallicity of stellar 

populations is likely, the dispersion due to dust should be smaller still

• Thus, the observed smaller scatter of SNeIa hosted in ellipticals at  z ~ 0.5 

to continue in  z ≥ 1 cluster ellipticals



Intermediate z SNe Ia ITP 2002  
PI: Ruiz-Lapuente

Supernovae a  0.07 ≤ z ≤ 0.327

TESTING EVOLUTION



SN 2002lk.SN 2002lk.
New image                ref. image              difference

ITP 2002



Ligt curve and color 

evolution of a  SNeIa

at intermediate z, 

obtained by the

European Supernova 

Cosmology

Consortium with

International

Telescope Time at

ENO (2002)

ITP 2002



SN 2002lj.

Comparison of the 

spectrum of SN 

2002lj with SN 

1994D 7 days after 

maximum

(ITP 2002)

SN 2002lj.

Comparison of the 

spectrum of SN 

2002lj with SN 

1994D 7 days after 

maximum

(ITP 2002)

Patat et al. 1996

ITP 2002
(Altavilla, Ruiz-Lapuente, Balastegui, Mendez et al. 2006)



R(Si II) a key to the brightness and explosion mechanism

SNe Ia from ITP 2002 La Palma



The intermediate z sample

Expansion velocities are the

same



An idea to test intrinsic color versus reddening

astro-ph/0610143 (2006)

R(SiII)max





SN 2002lj.

Comparison of SN 

2002lj smoothed

spectrum with that 

of SN 1994D 7 

days past 

maximum.

SN 2002lj.

Comparison of SN 

2002lj smoothed

spectrum with that 

of SN 1994D 7 

days past 

maximum.

Patat et al. 1996





Reconstruction methods

Is there evolution in  w(z)?

Parameters, Taylor series,  Padé aproximants, polinomical fits, non 

parametric reconstruction of w(z)

Two parameter:



The relation mag-z in a flat Universe:

mth(z,ΩM,w(z)) = M + 5 log[DL(z,ΩM,w(z))]                          

where

M  ≡ M  - 5 log H 0 + 25                                     

and DL  



Reconstruction methods

Is there evolution w(z)?

Parameters, Taylor’s series, Padé’s approximants, polynomial fits, 

nonparametric reconstruction of  w(z)

Incorporates badly the information at z ~ 1 and diverges at high z, giving 

nonphysical results at   zCMB



Testing the FRW metric

Large samples of SN will soon allow to test dL(z) in different directions and z

bins.  The direction-averaged dL is:

The directional dependence dL(z, n) can test the isotropy assumption

The dispersion at each z interval and in every direction satisfies:

The scaling solutions of the regionally averaged cosmologies can simulate a 

negative pressure component, but that would show in the dispersion of the

Hubble diagram. From future experiments like SNAP, the total error in each z bin

of width ∆z = 0.1 is dominated by the systematics

with expected systematic error

Buchert et al.: Class. Quant. Grav. 
23, 6379 (2006)

Bonvin et al.: Phys. Rev. Lett. 96, 
191302 (2006)

Buchert:: gr-qc/0612166 (2006)





Complementarity

The SNeIa test on w(z) benefits from independent information on ΩM. Also, 

baryon acoustic oscillations measure distance along z, in this case angular 

distances dA(z).  Generally, for any geometry one has:

A measurement of dA has been obtained

where z1 = 0.35 is the redshift at whch the acoustic scale has been

measured

Eisenstein et al.: ApJ 633, 560 (2005)



Summary

■ Various methods give the same results

■ Extinction correction issues

■ Very high-z Sne Ia and new low z
The SN union (largest union sample

is about 300)

No evidence of significant departure
from Lambda at low z

No information on dark energy at z > 1


