COSMIC MICROWAVE BACKGROUND ANISOTROPIES

Anthony Challinor

Institute of Astronomy

&

Department of Applied Mathematics and Theoretical Physics University of Cambridge, U.K.

a.d.challinor@ast.cam.ac.uk

25 September 2007

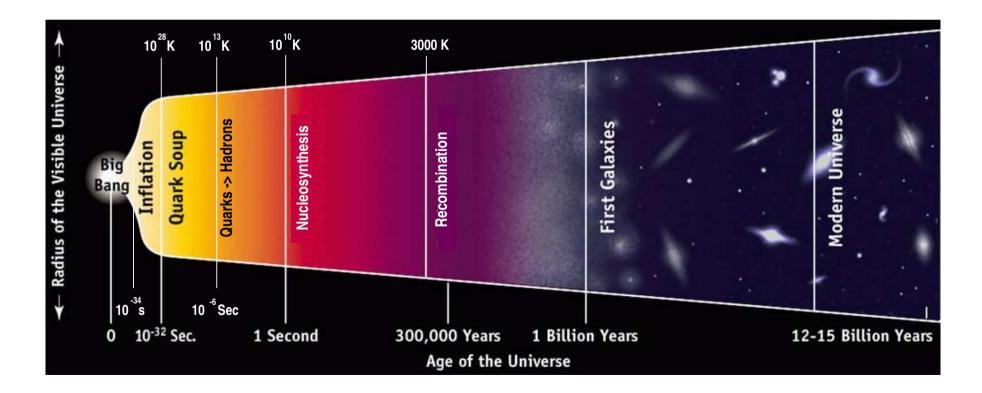
Fundamentals of CMB physics (today)

- Brief history
- Spectrum and statistics of anisotropies
- Anisotropy generation
- Acoustic physics
- Complications to simple picture:
 - Photon diffusion
 - ISW
 - Reionization
 - Gravitational waves
 - Isocurvature modes
- Polarization

What have we learned from the CMB? (tomorrow)

- Parameters from the CMB
- Current measurements
- Major milestones passed
- CMB constraints on inflation
- The future:
 - Planck
 - Secondary anisotropies
 - Gravitational waves

- CMB and matter plausibly produced during reheating at end of inflation
- CMB decouples around recombination, 300 kyr later
- Universe starts to reionize once first stars (?) form (somewhere in range z = 10-20) and 10% of CMB re-scatters

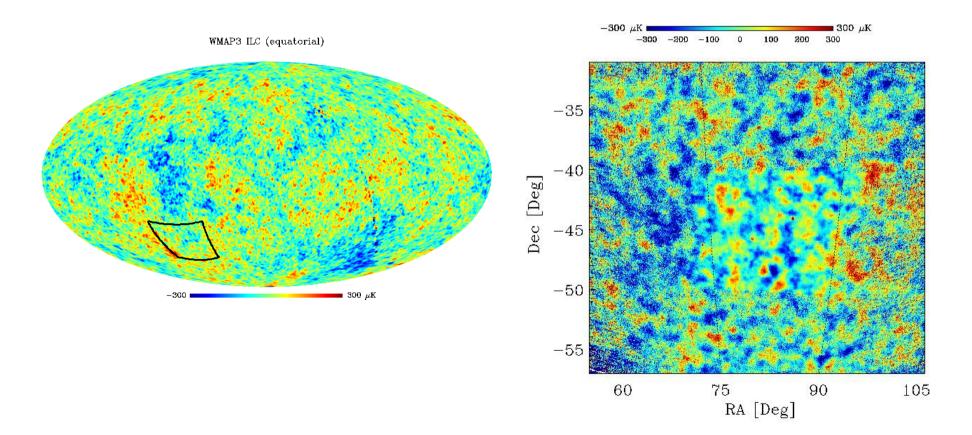


HISTORY OF CMB PHYSICS

- 1939: CMB detected indirectly through ~ 2.3 K temperature of interstellar Cyanogen (Adams & McKellar)
- 1948: CMB predicted following work on synthesis of light elements (Alpher & Herman)
- 1965: CMB discovered serendipitously discovered (Penzias & Wilson) and interpreted as relic radiation (Dicke et al)
- 1967: Sachs & Wolfe predict CMB anisotropies as clumpiness \Rightarrow redshift variations
- 1977: CMB dipole detected (Smoot et al)
- Early 1980s: Anisotropy predictions for CDM universe (Peebles; Bond & Efstathiou)
- 1990: Definitive measurement of CMB spectrum by COBE-FIRAS (Mather et al)
- 1992: COBE-DMR detects anisotropy at 10^{-5} level (Smoot et al)
- Late 1990s: First acoustic peak detected from ground (MAT/TOCO experiment)
- 2002: Polarization detected by DASI (Kovac et al)
- 2003, 2006: WMAP1 release and WMAP3 release

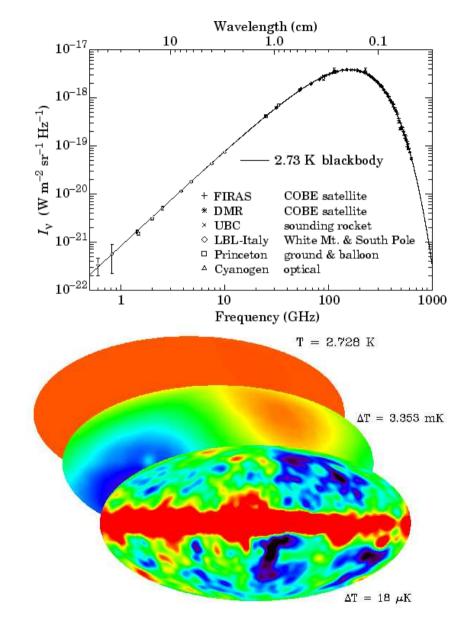
MAPPING THE CMB

- WMAP3 internal-linear combination map (left) and BOOMERanG03 (right)
- Aim to answer in these lectures:
 - What is the physics behind these images?
 - What have we learned about cosmology from them?



CMB SPECTRUM AND DIPOLE ANISOTROPY

- Microwave background almost perfect blackbody radiation
 - Temp. (COBE-FIRAS) 2.725 K
- Dipole anisotropy $\Delta T/T = \beta \cos \theta$ implies solar-system barycenter has velocity $v/c \equiv \beta = 0.00123$ relative to 'rest-frame' of CMB
- Variance of intrinsic fluctuations first detected by COBE-DMR: (ΔT/T)rms = 16μK smoothed on 7° scale



ANISOTROPIES AND THE POWER SPECTRUM

• Decompose temperature anisotropies in spherical harmonics

$$\Theta \equiv \Delta T(\hat{n})/T = \sum_{lm} a_{lm} Y_{lm}(\hat{n})$$

- Under a rotation (*R*) of sky $a_{lm} \rightarrow D^l_{mm'}(R)a_{lm'}$
- Demanding statistical isotropy requires, for 2-point function

$$\langle a_{lm}a^*_{l'm'}\rangle = D^l_{mM}D^{l'*}_{m'M'}\langle a_{lM}a^*_{l'M'}\rangle \quad \forall R$$

– Only possible (from unitarity $D_{Mm}^{l*}D_{Mm'}^{l} = \delta_{mm'}$) if

$$\langle a_{lm}a^*_{l'm'}\rangle = C_l\delta_{ll'}\delta_{mm'}$$

- Symmetry restricts higher-order correlations also, but for *Gaussian* fluctuations all information in *power spectrum* C_l
- Estimator for power spectrum $\hat{C}_l = \sum_m |a_{lm}|^2/(2l+1)$ has mean C_l and cosmic variance

$$\operatorname{var}(\widehat{C}_l) = \frac{2}{2l+1}C_l^2$$

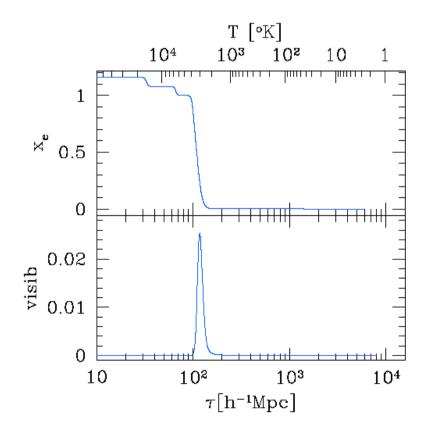
- Dominant element hydrogen recombines rapidly around $z \approx 1000$
 - Prior to recombination, Thomson scattering efficient and mean free path short cf. expansion time
 - Little chance of scattering after recombination \rightarrow photons free stream keeping imprint of conditions on last scattering surface

 Optical depth back to (conformal) time η₀ for Thomson scattering:

$$\tau(\eta) = \int_{\eta}^{\eta_0} a n_e \sigma_T \, d\eta'$$

 Visibility is probability of last scattering at η per dη:

visibility(
$$\eta$$
) = $-\dot{\tau}e^{-\tau}$



ANISOTROPY GENERATION: GRAVITY

• For (dominant) scalar perturbations, work in CNG (and assume K = 0)

$$ds^{2} = a^{2}(\eta)[-(1+2\psi)d\eta^{2} + (1-2\phi)dx^{2}]$$

- $-\phi = \psi$ in GR if no anisotropic stress (e.g. more exotic dark energy) but not so in modified gravity (f(R), DPG etc.)
- Comoving energy $\epsilon = aE$ constant in background but evolves due to gravitational perturbations:

$$d\epsilon/d\eta = -\epsilon d\psi/d\eta + \epsilon(\dot{\phi} + \dot{\psi})$$

- First term on left gives additional redshift, hence $\Delta T/T$, due to differences in potential ψ between last scattering point and reception
 - * Negative contribution to $\Delta T/T$ from potential wells (matter over-densities) at last scattering
- Second term gives integrated Sachs-Wolfe contribution

$$(\Delta T/T)_{\rm ISW} = \int (\dot{\phi} + \dot{\psi}) \, d\eta$$

Holds irrespective of metric theory of gravity assumed

ANISOTROPY GENERATION: SCATTERING

• Thomson scattering $(k_BT \ll m_ec^2)$ around recombination and reionization dominant scattering mechanism to affect CMB:

$$\frac{d\Theta}{d\eta} = \underbrace{-an_e\sigma_T\Theta}_{\text{out-scattering}} \underbrace{+\frac{3an_e\sigma_T}{16\pi}\int d\hat{m}\,\Theta(\epsilon,\hat{m})[1+(e\cdot\hat{m})^2]}_{\text{in-scattering}} \underbrace{+an_e\sigma_Te\cdot v_b}_{\text{Doppler}}$$

• Neglecting anisotropic nature of Thomson scattering,

$$\frac{d\Theta}{d\eta} \approx -an_e \sigma_T (\Theta - \Theta_0 - \boldsymbol{e} \cdot \boldsymbol{v}_b)$$

so scattering tends to isotropise in rest-frame of electrons: $\Theta \rightarrow \Theta_0 + e \cdot v_b$

- Doppler effect arises from electron bulk velocity v_b
 - Enhances $\Delta T/T$ for v_b towards observer
 - Linear effect only important from recombination; non-linear effects from reionization avoid peak-trough cancellation

TEMPERATURE ANISOTROPIES

- On degree scales, scattering time short c.f. wavelength of fluctuations and (local!) temperature is uniform plus dipole: $\Theta_0 + e \cdot v_b$
- Observed temperature anisotropy is snapshot of this at last scattering but modified by gravity:

$$[\Theta(\hat{n}) + \psi]_R = \underbrace{\Theta_0|_E}_{\text{temp.}} + \underbrace{\psi|_E}_{\text{gravity}} + \underbrace{e \cdot v_b|_E}_{\text{Doppler}} + \underbrace{\int_E^R (\dot{\psi} + \dot{\phi}) \, d\eta}_{\text{ISW}}$$

with line of sight $\hat{n} = -e$, and Θ_0 isotropic part of Θ

- Ignores anisotropic scattering, finite width of visibility function (i.e. last-scattering surface) and reionization
 - * Will fix these omissions shortly

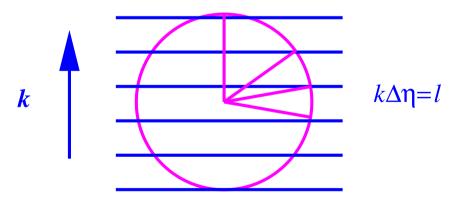
SPATIAL-TO-ANGULAR PROJECTION

• Consider angular projection at origin of potential $\psi(x, \eta_*)$ over last-scattering surface; for a single Fourier component

$$egin{aligned} \psi(\widehat{m{n}}) &= \psi(\widehat{m{n}} \Delta \eta, \eta_*) & \Delta \eta \equiv \eta_0 - \eta_* \ &= \psi(m{k}, \eta_*) \sum_{lm} 4\pi i^l j_l (k \Delta \eta) Y_{lm}(\widehat{m{n}}) Y_{lm}^*(\widehat{m{k}}) \ &\psi_{lm} \sim 4\pi \psi(m{k}, \eta_*) i^l j_l (k \Delta \eta) Y_{lm}^*(\widehat{m{k}}) \end{aligned}$$

• $j_l(k\Delta\eta)$ peaks when $k\Delta\eta \approx l$ but for given l considerable power from $k > l/\Delta\eta$ also (wavefronts perpendicular to line of sight)

 $k\Delta\eta > l$



- CMB anisotropies at multipole l mostly sourced from fluctuations with linear wavenumber $k \sim l/\Delta \eta$ where conformal distance to last scattering ≈ 14 Gpc

ACOUSTIC PHYSICS

- Photon isotropic temperature Θ_0 and electron velocity v_b at last scattering depend on acoustic physics of pre-recombination plasma
- Large-scale approximation: ignore diffusion and slip between CMB and baryon bulk velocities (requires scattering rate $\gg k$)
 - Photon-baryon plasma behaves like perfect fluid responding to gravity (drives infall to wells), Hubble drag of baryons, gravitational redshifting and baryon pressure (resists infall):

$$\ddot{\Theta}_{0} + \underbrace{\frac{\mathcal{H}R}{1+R}\dot{\Theta}_{0}}_{\text{Hubble drag}} + \underbrace{\frac{1}{3(1+R)}k^{2}\Theta_{0}}_{\text{pressure}} = \underbrace{\ddot{\phi}}_{\text{redshift}} + \frac{\mathcal{H}R}{1+R}\dot{\phi} - \underbrace{\frac{1}{3}k^{2}\psi}_{\text{infall}}$$
$$R = \frac{3\rho_{L}}{(4\rho_{N})} \propto a$$

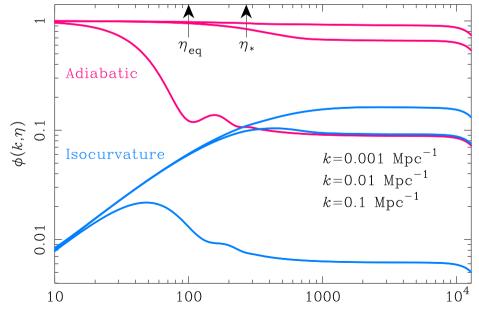
where $R\equiv 3
ho_b/(4
ho_\gamma)\propto a$

- WKB solutions of homogeneous equation:

 $(1+R)^{-1/4}\cos kr_s$, $(1+R)^{-1/4}\sin kr_s$ with sound horizon $r_s\equiv\int_0^\eta \frac{d\eta'}{\sqrt{3(1+R)}}$

GRAVITATIONAL POTENTIALS AND ACOUSTIC DRIVING

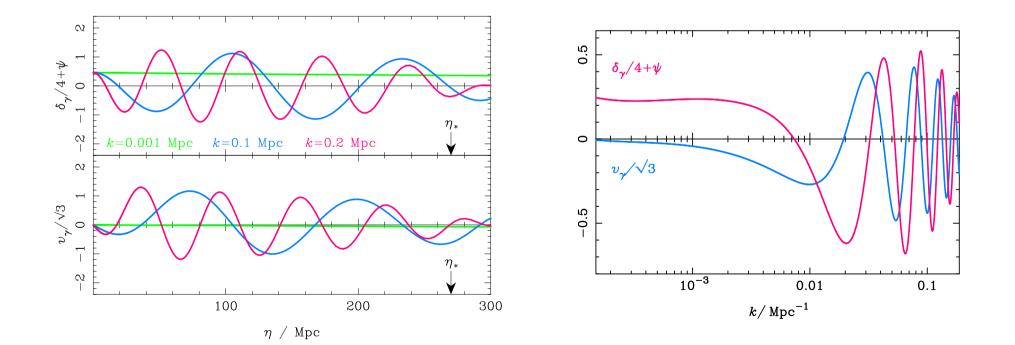
- For adiabatic initial conditions (e.g. simple inflation models), no relative perturbations between number densities of species
 - Density perturbations of all species vanish on same hypersurface its curvature equals comoving curvature \mathcal{R} on super-Hubble scales
- Adiabatic driving term mimics $\cos k\eta$
 - Oscillator is resonantly driven inside sound horizon whilst CDM sub-dominant
 - Potentials constant in matter domination then decay as DE dominates dominates



 $\eta \ / \ {
m Mpc}$

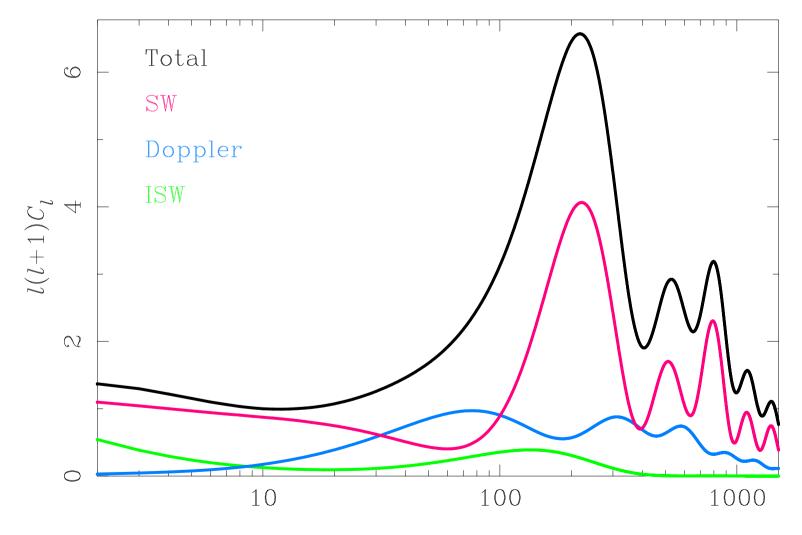
ACOUSTIC OSCILLATIONS: ADIABATIC MODELS

- $\delta_{\gamma}/4 \equiv \Theta_0$ starts out constant at $-\psi(0)/2 \Rightarrow$ cosine oscillation $\cos kr_s$ about equilibrium point $-(1+R)\psi$
 - Modes with $k \int_0^{\eta_*} c_s d\eta = n\pi$ are at extrema at last scattering \Rightarrow acoustic peaks in power spectrum
 - $v_b \approx v_\gamma$ follows from continuity equation ($\pi/2$ out of phase with Θ_0 so Doppler effect 'fills in' zeroes of $\Theta_0 + \psi$)



ADIABATIC ANISOTROPY POWER SPECTRUM

• Temperature power spectrum for scale-invariant curvature fluctuations



COMPLICATIONS: PHOTON DIFFUSION

- Photons diffuse out of dense regions damping inhomogeneities in ⊖₀ (and creating higher moments of ⊖)
 - In time $d\eta$, when mean-free path $\ell = (an_e\sigma_T)^{-1} = 1/|\dot{\tau}|$, photon random walks mean square distance $\ell d\eta$
 - Defines a diffusion length by last scattering:

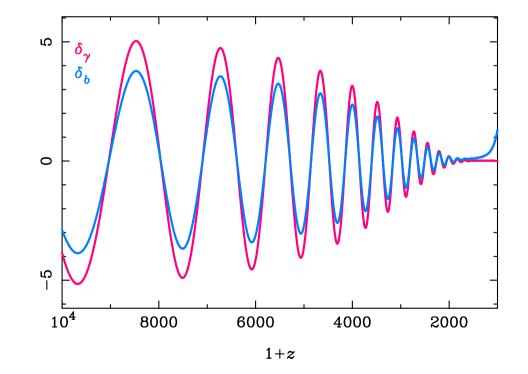
$$k_D^{-2} \sim \int_0^{\eta_*} |\dot{\tau}|^{-1} d\eta \approx 0.2 (\Omega_m h^2)^{-1/2} (\Omega_b h^2)^{-1} (a/a_*)^{5/2} \,\mathrm{Mpc}^2$$

 Get exponential suppression of photons (and baryons)

 $\Theta_0 \propto e^{-k^2/k_D^2}\cos kr_s$

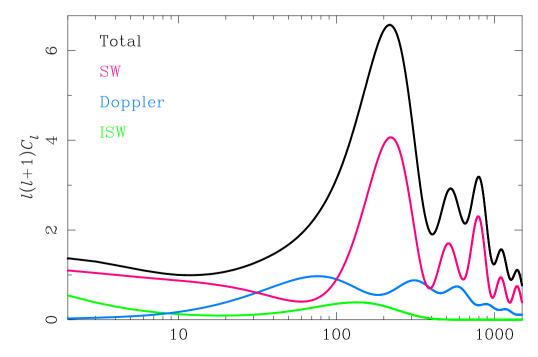
on scales below \sim 30 Mpc at last scattering

- Implies e^{-2l^2/l_D^2} damping tail in power spectrum



INTEGRATED SACHS-WOLFE EFFECT

- Linear $\Theta_{\text{ISW}} \equiv \int (\dot{\phi} + \dot{\psi}) \, d\eta$ from late-time dark-energy domination and residual radiation at η_* ; non-linear small-scale effect from collapsing structures
 - In adiabatic models early ISW adds coherently with SW at first peak since $\Theta_0 + \psi \sim -\psi/2$ same sign as $\dot{\psi}$
 - Late-time effect is large scale (integrated effect ⇒ peak–trough cancellation suppresses small scales)
 - Late-time effect in dark-energy models produces positive correlation between large-scale CMB and LSS tracers for z < 2

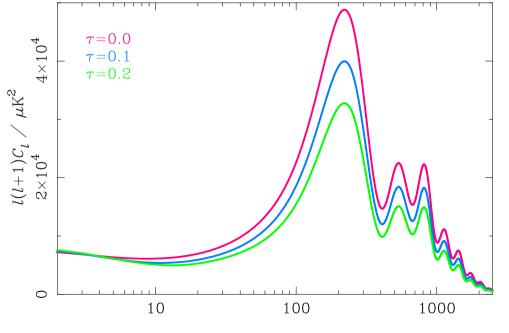


 CMB re-scatters off re-ionized gas; ignoring anisotropic (Doppler and quadrupole) scattering terms, locally at reionization have

 $\Theta(e) + \psi \to e^{-\tau} [\Theta(e) + \psi] + (1 - e^{-\tau})(\Theta_0 + \psi)$

- Outside horizon at reionization, $\Theta(e) \approx \Theta_0$ and scattering has no effect
- Well inside horizon, $\Theta_0 + \psi \approx 0$ and observed anisotropies

 $\Theta(\hat{n}) \to e^{-\tau} \Theta(\hat{n}) \quad \Rightarrow \quad C_l \to e^{-2\tau} C_l$

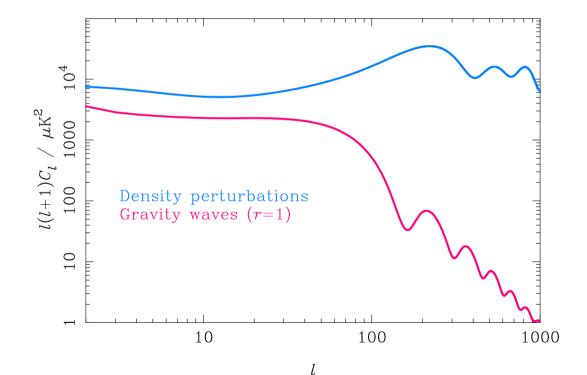


GRAVITATIONAL WAVES

- Tensor metric perturbations $ds^2 = a^2[d\eta^2 (\delta_{ij} + h_{ij})dx^i dx^j]$ with $\delta^{ij}h_{ij} = 0$
 - Shear $\propto \dot{h}_{ij}$ gives anisotropic redshifting \Rightarrow

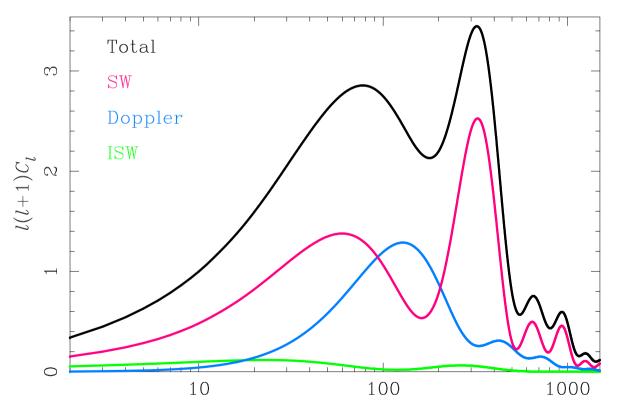
$$\Theta(\hat{n}) pprox -rac{1}{2} \int d\eta \, \dot{h}_{ij} \hat{n}^i \hat{n}^j$$

- Only contributes on large scales since h_{ij} decays like a^{-1} after entering horizon



ISOCURVATURE MODES

- CDM isocurvature most physically motivated (perturb CDM relative to everything else)
- Starts off with $\delta_{\gamma}(0) = \phi(0) = 0$ so matches onto $\sin kr_s$ modes
- Temperature power spectrum for $n_{iso} = 1$ entropy fluctuations (CDM isocurvature mode)



CMB POLARIZATION: STOKES PARAMETERS

 For plane wave along z, symmetric trace-free (STF) correlation tensor of electric field E defines (transverse) linear polarization tensor:

$$\mathcal{P}_{ab} \equiv \begin{pmatrix} \frac{1}{2} \langle E_x^2 - E_y^2 \rangle & \langle E_x E_y \rangle \\ \langle E_x E_y \rangle & -\frac{1}{2} \langle E_x^2 - E_y^2 \rangle \end{pmatrix} \equiv \frac{1}{2} \begin{pmatrix} Q & U \\ U & -Q \end{pmatrix}$$
$$Q > 0 \qquad Q < 0 \qquad \qquad U > 0 \qquad \qquad U < 0$$

• Under right-handed rotation of x and y through ψ about propagation direction (z)

 $Q \pm iU \rightarrow (Q \pm iU)e^{\mp 2i\psi} \Rightarrow Q + iU$ is spin -2

E and B modes

• Decomposition into E and B modes (use θ , $-\phi$ basis to define Q and U)

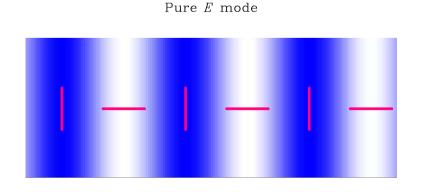
$$\mathcal{P}_{ab}(\hat{n}) = \nabla_{\langle a} \nabla_{b \rangle} P_E + \epsilon^c{}_{(a} \nabla_{b)} \nabla_c P_B$$

$$\Rightarrow \quad Q + iU = \overline{\eth}\overline{\eth}(P_E - iP_B)$$

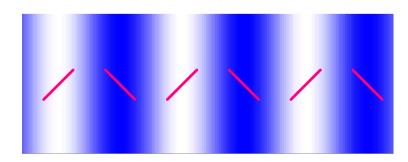
- Spin-lowering operator: $\bar{\eth}_s \eta = -\sin^{-s}\theta(\partial_{\theta} i\csc\partial_{\phi})(\sin^s\theta_s\eta)$
- Expand P_E and P_B in spherical harmonics, e.g.

$$P_E(\hat{\boldsymbol{n}}) = \sum_{lm} \sqrt{\frac{(l-2)!}{(l+2)!}} E_{lm} Y_{lm}(\hat{\boldsymbol{n}}) \quad \Rightarrow \quad (Q \pm iU)(\hat{\boldsymbol{n}}) = \sum_{lm} (E_{lm} \mp iB_{lm})_{\mp 2} Y_{lm}(\hat{\boldsymbol{n}})$$

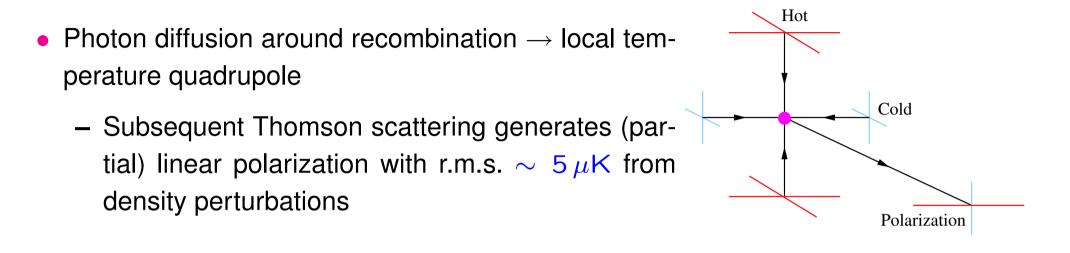
- Spin-weight harmonics ${}_{s}Y_{lm}$ provide orthonormal basis for spin-s functions
- Only three power spectra if parity respected in mean: C_l^E , C_l^B and C_l^{TE}



Pure *B* mode



CMB POLARIZATION: THOMSON SCATTERING



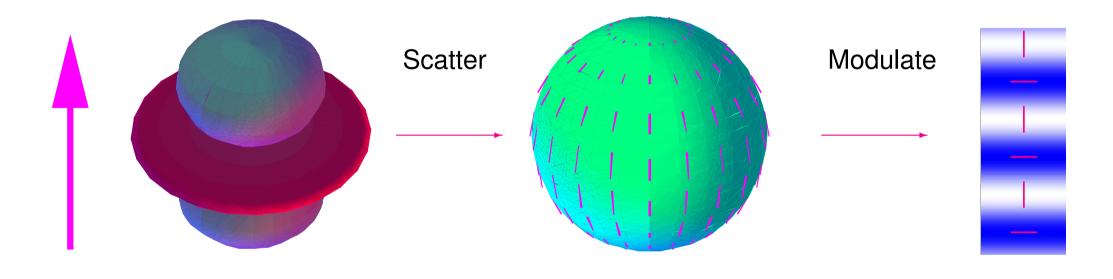
 Thomson scattering of radiation quadrupole produces linear polarization (dimensionless temperature units!)

$$d(Q \pm iU)(e) = \frac{3}{5}an_e\sigma_T d\eta \sum_{m} \pm 2Y_{2m}(e) \left(E_{2m} - \sqrt{\frac{1}{6}}\Theta_{2m}\right)$$

- Purely electric quadrupole (l = 2)
- In linear theory, generated Q + iU then conserved for free-streaming radiation
 - Suppressed by $e^{-\tau}$ if further scattering at reionization

PHYSICS OF CMB POLARIZATION: SCALAR PERTURBATIONS

• Single plane wave of scalar perturbation has $\Theta_{2m} \propto Y_{2m}^*(\hat{k}) \Rightarrow$ with \hat{k} along z, $dQ \propto \sin^2 \theta$ and dU = 0

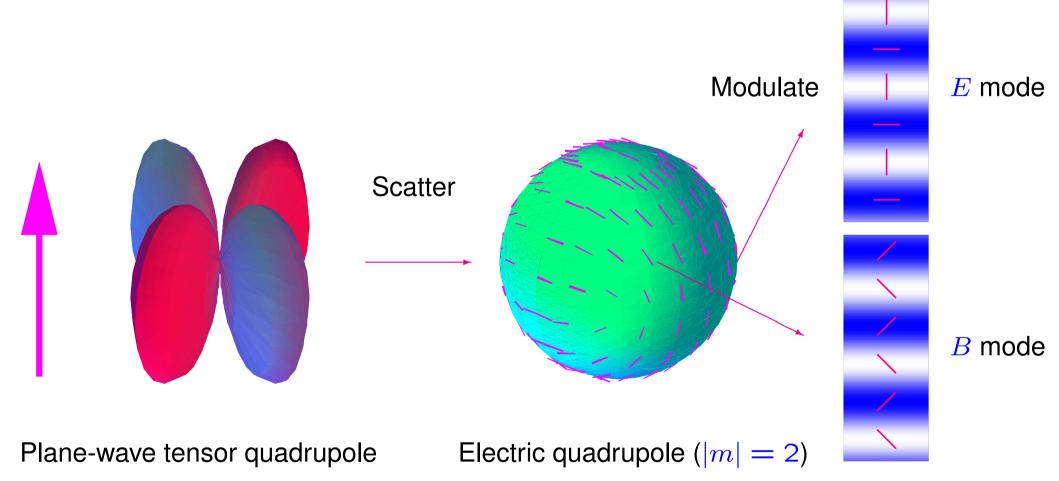


Plane-wave scalar quadrupole Electric quadrupole (m = 0) Pure *E* mode

- Linear scalar perturbations produce only E-mode polarization
- Mainly traces baryon velocity at recombination \Rightarrow peaks at troughs of ΔT

PHYSICS OF CMB POLARIZATION: GRAVITATIONAL WAVES

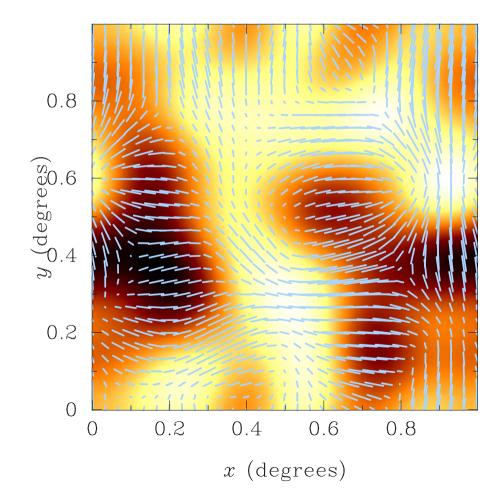
• For single +-polarized gravity wave with \hat{k} along z, $\Theta_{2m} \propto \delta_{m2} + \delta_{m-2}$ so $dQ \propto (1 + \cos^2 \theta) \cos 2\phi$ and $dU \propto -\cos \theta \sin 2\phi$



• Gravity waves produce both *E*- and *B*-mode polarization (with roughly equal power)

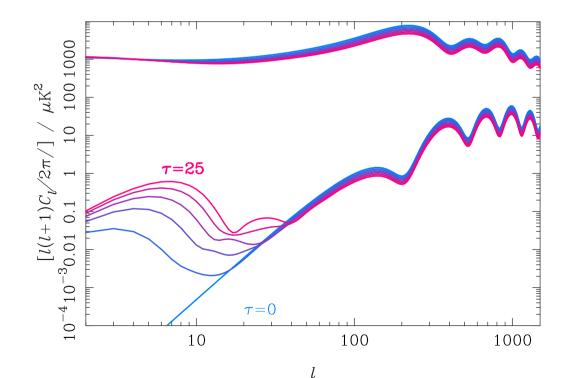
CORRELATED POLARIZATION IN REAL SPACE

- On largest scales, infall into potential wells at last scattering generates e.g. tangential polarization around large-scale hot spots
- Sign of correlation scale-dependent inside horizon



LARGE-ANGLE POLARIZATION FROM REIONIZATION

- Temperature quadrupole at reionization peaks around $k(\eta_{re} \eta_*) \sim 2$
 - Re-scattering generates polarization on this linear scale \rightarrow projects to $l \sim 2(\eta_0 \eta_{re})/(\eta_{re} \eta_*)$
 - Amplitude of polarization \propto optical depth through reionization \rightarrow best way to measure τ with CMB



Scalar and tensor power spectra (r = 0.28)

• For scalar perturbations (left), δ_{γ} oscillates $\pi/2$ out of phase with $v_{\gamma} \Rightarrow C_l^E$ peaks at minima of C_l^T

