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Introduction

Introduction

Black holes in the textbooks

MTW, Gravitation (1972)

“...To calculate the external fields of a black hole, one cdreenize the ‘action integral’ [...]
for interacting gravitational and electromagnetic fielsise( Chapter 21) subject to the
anchored-down imprints dfl, Q, andSat radial infinity, and subject to the existence of a
physically nonsingular horizon (no infinite curvature atibon!). Extremizing the action is
equivalent to solving the coupled Einstein-Maxwell fieldiations subject to the constraints
[...] and the existence of the horizon. The derivation ofgbkition and the proof of its
uniqueness are much too complex to be given here ...”"

Hawking & Ellis, The large scale structure of space-time)9

“... The [Kerr] solutions can be given in Boyer and Lindquisbrdinatesr, 0, ¢, t) in which
the metric takes the form ...”

d’Inverno, Introducing Einstein’s Relativity (1992)

.It turns out to be a rather long process to solve Ein&ejacuum equations directly for the
Kerr solution. We shall, instead, describe a trlck of Nearmand Janis for obtaining the Kerr
solution from the Schwarzschild solution ...
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Introduction

Comment:

@ There is no “physical” derivation of black hole solutionste
textbooks (to the best of my knowledge). For the term “pral8ic
compare textbooks on electrodynamics (“Jackson”) with
chapters on initial/boundary problems.

@ There exists an extensive literature about black hole @mgss
proofs (see M. Heusler 1996).

@ Physicists need constructive methods (analytical or nicaigr
— black hole binaries etc. Heréinverse scattering”for
stationary black holes. Starting point must be the chariatite
property of black holeghe event horizan
— boundary problems for horizons
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Introduction

ar=loM .

External observer at

Figure: Oppenheimer-Snyder collapse in modified Eddington.
Finkelstein coordinates (adapted from MTW). The diagrampice a
series of photons emitted radially from the surface of tHpsing star
and received by an observerrat= rop = 10M. Any photon emitted
radially at the Schwarzschild radius= 2M stays atr = 2M forever.
This externalevent horizonis the continuation of the internavent

horizon(full curve in the shaded interior region of the star).

Consequences
o For an external observer (at- 2M, here at
r = 10M), the space-time domain beyond the
event horizon is dblack hole” (no information
[carried by photons and massive patrticles] can
leave this domain to attain the observer)
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Introduction

@ The“event horizon”is a global concept
— difficult mathematics (see black hole binaries!)

@ There is dlocal” characterization of the external horizon
(r = 2M, stationary vacuum region with the Killing vector

g = dy)

r=2M: N=g§=gu=—(1-%)=0 NN'=0,|

the time-like Killing vectoré becomes a null vector on the event
horizon, which is a null hypersurface.
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Introduction

Hawking's strong rigidity theorenrelates the global concept to the
local notion of“Killing horizons.

Killing horizon (Def. M. Heusler 1998):

Consider a Killing fields and the set of points witN = £'¢ = 0. A
connected component of this set, which is a null hypersarfac
N;N' = 0, is called &illing horizon H(¢) = H.

Strong rigidity theorem (Hawking 1972, Hawking & Ellis 1973
The event horizon of atationaryblack hole space-time is a Killing
horizon.

Implication: Stationary black hole space-times are either non-rotating
or axisymmetric.

Israel (1967, 1968)Static (non-rotating) vacuum and electrovac
black hole space-times are spherically symmetric (ancfber
axisymmetric, t00).
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Metric and field equations

© Metric and field equations
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Metric and field equations

Physical problem of thistalk
@ Stationary black hole configurations (vacuum and electrova

space-times)
Mathematical task

@ Solve boundary value problems (BVPs)for Killing horizdksn
axisymmetric and stationary space-times

o Axisymmetry. azimuthal Killing vectom, n? > 0 (closed orbits)
@ Stationarity:time-like Killing vectoré, €2 < 0

— G (2-dimensional group of motiohs
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We start with vacuum space-times.

o Field equations:
Rc=0; 7n=0d,, &=04:
ds” = eV [e(dp? + d¢?) + W2dp?] — eV (it + adyp)?
(Weyl-Lewis-Papapetrou form)
U=U(p¢), a=alp,(), k=Kk(p,¢), W=W(p,()
o Invariant definition of the metric coefficients:
= £, a:= —e Vg,

W2 = (i€')? — (i )(&€"), k= Kk{U,a W}
» Note: A possible gauge W/ = p, p > 0 everywhere
@ Boundary values:
© Space-like infinityMinkowski spacea=0, k=0, U =0
@ Axis of symmetryW = 0,a = 0 (n = 0 on the axis!),
k = 0 (elementary flatness!)
© Horizons:specific data
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o Reformulation of the BVP in terms of thernst potentiaf:
f:=e¢® +ib, b=b{a}
a,= pe_4ub,<, a, = pe_4Ub,p;
Ky = [u,pz -Ul+ %e—“u(b,p2 = b,gz)] :
ke =2p <u,pu,< 4 %e“‘” b7pb,<>
@ Field equations (Ernst equation):

REAF = (VE)2, f=1(p,¢), A:Laplacianin cyl. coord}

@ Boundary values for the Ernst equation:
@ Space-like infinityf =1
@ Axis of symmetry:regularity off
© Horizons:specific data

Gernot Neugebauer Systematic Treatment of Black Holes -12-



Metric and field equations

@ Metric: Completely determined by the Ernst potential
line integral

f(p’C)<—> (U’a)
//}7@. (}(‘6\
/) {2
Wﬁ/ )M
k

o Note: The Ernst equation holds likewise for any linear
combination of the KVs, e.g" = ¢' + 27, 7" =n'
(£2 a constant)

RE'AF = (VE')2, f =—¢¢/ +ib
Interpretation off2 for £1¢/ < 0: ¢ = 8, t' =t, ¢’ = o — 2t
— {2: constant angular velocity,

{p, ¢, ', ©'}: coordinate system rotating with respect to the
asymptotic Minkowski space (“co-rotating system”)
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Bondary value problems and Inverse Method

© Bondary value problems and Inverse Method
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Bondary value problems and Inverse Method

Boundary value problem Field equationsand Linear Problem

(qv—
5 REAF = (V)P withf = e +ib |
; ~C: U—o0
iA*:a=0k=0" a—0
: \ k=0 1}
&
f B
Rotatin
source@' § e b, = {(B O)Jr)\(o B)}‘fﬁ
(BH, star etc.ff” 0 A A0
L e {3 D)
A :a-0 k=0 oos A\B 0
: A f,z_7 _ F,Z” _ K—?Z
f4+f f+f K+ iz
: z = p+i¢ K : Spectral parameter
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Bondary value problems and Inverse Method

Properties of the 2 x 2 matrix & (from the L P)

@ & solution of LP— @C(K) solution of LP,
C(K): 2 x 2 gauge matrix

@ gauge freedon€(K) can be used to obtain the following
standard form ofp

@2(-N=(; 22N (; o
_ ¢( 7<a /\) ¢( 7<a_)‘)

Q ¥(p,¢.1/X) = x(p, ¢, A)
9 K_’OOv)\_’_l: 'g[}(p,{,—l)zx(p,g,—l):l
© K —o00,A = +1: x(p.¢,+1) = P = f(p,C)

Y(p, ¢, +1) = 211 =f(p, ()

Note:Any solutionf to the Ernst equation can be read off frdrh
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Bondary value problems and Inverse Method

o Transition to a “co-rotating” system, i.¢,, n' — ¢" = &' + 21,
nt=n', -

< 1+ Na— Npe Y 0 >

P =
0 1+ Ra+ Npe?Y

Fi(K +iz) e < -1 > P =LP.

A 1

Henceforth a prime marks “co-rotating” quantities
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Bondary value problems and Inverse Method
Does the Inverse method apply?

ﬂl\i;} Rotating no! (surface values of the star do not complete
= (Neutron) star reflect its internal structure)

Rotating yes! — this talk
black hole  (horizon determines the solution completely)

&

2 aligned  yes!— this talk
rotating (2 separated horizons; can spin-spin repulsion
black holes compensate gravitational attraction?)

Gernot Neugebauer Systematic Treatment of Black Holes -18-



Bondary value problems and Inverse Method
Does the Inverse Method apply?

¢
7o Rotating yes!(golbal solution of a rotating
“ »  disk of dust body problem— ‘galaxy’ model,
(galaxies) “testbed” for numerical calculations)
Black hole
surrounded  should be possible
by a ring (AGN model: Galactic black hole)
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Bondary value problems and Inverse Method
Idea of the Inverse Method

Find® = &(p, ¢; A) by integrating the Linear Problem and get
f=1(p,¢) from® (f = Pa(p, ;A = 1)).

The point made here is thdk is a holomorphic function ok. Thus
we can make use of the powerful theorems of the theory of
holomorphic functions (concerning poles, zeros, Riemamfases
etc.). In this way, we obtain the dependenceppiin @ as a
“byproduct”. X resp.K is a spectral parameter.
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Bondary value problems and Inverse Method

Spacetime representation
(t = constant ¢ = constant)

Gernot Neugebauer

. —iZ (\ = oo; branch point)

B £ ]

' source, q

\

\, Pirregular ;
% _*iZ (x = 0; branch point)

Spectral representation
(two-sheeted Riemann surface)
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Bondary value problems and Inverse Method

o Note: We apply the Inverse Method to elliptic PDES!

@ Programmeintegrate the Linear Problem alony"C. A~ 3
(dashed line) picking up the available informatid$t boundary
values A*: regularity C : f = 1, Minkowski space)direct
problem

@ Result:

@ A*: &(¢,K) as a holomorphic function iK (— zeros, poles,
jumps etc.)

@ Holomorphic structure allows continuation®{¢, K) to obtain
D(p,C;K)respP(p,¢;A) (A= /(K —i2)/(K +iz)): inverse
problem

© B(p,¢:K) — f(p, ) = Pas(p, ¢; 00) — dS°

o Strategy

@ (A" —C— A ): General solution

@ &(B): Particular solution corresponding to the physical sibrat
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Bondary value problems and Inverse Method

1.#(A" — C — A"): General solution (holds for all [rigidly] rotating sousje
(a) Integration of the LP alond™ — C — A~ to getd

¢ : there:(-K separation
AT _ () 1 F(K) ©
T N\ At B = ( @) ) ( o 2 (¢ € AT)
' C & =Pp(K)
! o (O 1 1 G(K) 3
_ ﬁ*“<f(<) 1)(0 F(K)) ce4)
" (b) Uniqueness of in the branch point& = ¢
T (K=iz, K=—iz z=1i(, ¢ € A"):
A
2 HOEIG)
; At D F(() = —————, G(¢) = =>2—==
| & f(Q) + (<) 9 f(Q) + (<)

Analytic continuation
F(K) = F(¢ — K), G(K) = G(¢ — K)

Axis values of$ are completely determined by the axis values of the
Ernst potentiaf (¢), ¢ € A%, and vice versa.
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Construction of the stationary vacuum black hole solution

Con

© Construction of the stationary vacuum black hole solution
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Construction of the stationary vacuum black hole solution Boundary values on the Killing

t

© Construction of the stationary vacuum black hole solution
@ Boundary values on the Killing horizcH
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Construction of the stationary vacuum black hole solution Boundary values on the Killing horizoh

Construction of the stationary vacuum black hole solutic

Boundary values on the Killing horizol

e Co-rotating KV:¢' =& + o', ' =0 (& =6}, 7' =4),
N=¢g, N=-eV'=_¢
@ Definition of the Killing horizorH (&) = H:
H: N=¢1¢ =0, NN' =0 (null hypersurface)-
H: W=W=p=0, a=-3
Note: In Weyl-Lewis-Papapetrou coordinates horizomp at O
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Construction of the stationary vacuum black hole solution Boundary values on the Killing horizoh(

Proof (Carter 1973):
OW=W=p=0:H:¢N;j=0, #’'Nj=0 (Ny=N_,=0)
—Nj = —2x¢" (two orthogonal null vectors are proportional),
— 7§ = 0. | |
¢ =08& &M = 0— W2 = (i) — min' e
= (m&")? — mn €%
=p?=0 g.e.d.
Q@a=-3%: V' =&=—(¢d+ )&+ )
= eV[(1+ na)? — p?%e V]
H:eV =0&p=0—-1+Na=0 q.e.d.

Bondary values for the Ernst equation on the hori!

H: p=0, &' =—¢"d=—|¢+2mP=0
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Construction of the stationary vacuum black hole solution Boundary values on the Killing horizah

Comment om:

© “surface gravity”, using the field equations one can show tha
x = constant or{ (Bardeen e al. 1973)

@ Extension ofx (everywhere outside the horizon):
Def.: k%= —3¢ &K, = constant
H: Kk = constant
A g2 =le [(e?l{g)2 — (b—20¢)%
next transparency illustrates the horizon analysis anskmts the
results of the integration of the LP alofig

”‘H
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Construction of the stationary vacuum black hole solution Integration along the horizon

Contents

© Construction of the stationary vacuum black hole solution

@ Integration along the horizon
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Construction of the stationary vacuum black hole solution Integration along the horizon

Integration along the horizon

¢
At 3 \\\\ @

T K (a) Result of the integration of LP alori:
e N _
c © 3 _ _( f©) 1 U(K) V(K)
= X p & = L$ — P, (co-rotating frame!)
- (b) Field equations hold iK1, K5, too:

D1 (K1) = D4+ (K1), D'1(Ke) = B/ 4+ (Kp);
I Ky /0
| P (K2) = P4+ (K2), P'1(Ka) = D 4+ (Kz)
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Construction of the stationary vacuum black hole solution Construction of the black hole solution

Contents

© Construction of the stationary vacuum black hole solution

@ Construction of the black hole solution
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Construction of the stationary vacuum black hole solution Construction of the black hole solution

Result of the AT-C-A~-H integration:
thefundamental axis relation

V= (& @ eyr) = (+ sty (4~ s)

)
Fi = <_fi2 1::||-> , FP=0 fi=f(C=K)

@ (2 is the constant angular velocity
of the BH
o fy = —f; = ib; (€Y vanishes at the
. A Ki Ko gK
horizon/axis points— “ergospherey
(2 simple poles!)
@ The axis matrix\ summarizes the results of the integration along
AT-C-A~-H and yields
@ the constraintd/s; = — N2
@ the axis values of the Ernst potential (e.g..4h)

At f(¢) = 1;&()0 (branch points!)
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Construction of the stationary vacuum black hole solution Axis potential and BH ther

Con

© Construction of the stationary vacuum black hole solution

@ Axis potential and BH thermodynamics
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Construction of the stationary vacuum black hole solution Axis potential and BH thermodynamics

Axis potentialf (¢) and BH thermodynamics

© Constraints(w.l.g. symmetric position of{, K1y = —K5):
0— ify (14F2)

T 2Kq(1-12)
@ Axis potential(lusing the constraints):

. _ (¢HKD)(14+2)—2(1—f1)
AT((>Ke) o F(QO) = (C+K13(1+f121)—2f1(1—?1)

fi = —f,

© Asymptotics:

=1+ ., b)=-F=..
M: mass, J: ((-component of the) angular momentum
identification:

fi —fp =2f1 = —4i02M, K;—Ky;=2K; =2M —402J

MR =2 oW, Q:Q(M,J)J

angulgr velocity as a function of mass and angular momentum
0< 'V'T <1,0<2M2 < 1; (202M =1, M2 = J: extrem case)
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Construction of the stationary vacuum black hole solution Axis potential and BH thermodynamics

© Regularity of the metric on the axis:

a=0: (automatically satisfied, constraints!)

k=0: kviaaline intergral fronf, one needs off the axis
Is there an equivalent criterion in termsfgt)?
Yes— “surface gravity”

Constraints: b =20 —

,C‘K:Kl,Kz
(straightforward verification)- k2 = 1e~ (e?V ,4)2 |K:K1 K,
k-criterion: k=0 0nA* e (Ky) = eV ((Ky)

Calculation of & .

e (K1) = ule)z) = - (Ka=—Kyp): ok

T 2Ky (1-f2
Surface gravity of the BH: . _ M*—J2
2M(M2 + /M4 — J2)
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Construction of the stationary vacuum black hole solution Axis potential and BH thermodynamics

© Black hole thermodynamics

1 1 . . .
5'5J — _3%& — there exists a “thermodynamic” potential

“first law of thermodynamics”
&dA = 1(dM - 2dJ), A:area of the horizo

(Hawking'’s area theoremA.A > 0 suggests thatl x positive
constant is the BH entropg[“second law of BH th] and

K = constant or¥{ is proportional to the BH temperature
[“zeroth law of BH thermodynamic}’Bardeen et al. 1973)

Summary:
The integration of the LP along the closed cu&-C-A~-H (direct
problem) yields

@ the Ernst potential(¢) on the axis of symmetry

o the first law of BH physics
The inverse problem consists in the constructiof(pf ¢) outside the
horizon from the axis valueg().
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Construction of the stationary vacuum black hole solution Ernst potentiaf every:

t

© Construction of the stationary vacuum black hole solution

o Ernst potentiaf everywhere
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Construction of the stationary vacuum black hole solution Ernst potentiaf everywhere

Ernst potentiaf everywhere

At _ . f(p, ¢) everywhere
= AZJ/M} (incl. A-, C) J
| T

2= YERS ) | 7 10 f(qgf(}j)g’,le)J

“inverse problem”

Gernot Neugebauer Systematic Treatment of Black Holes -38-



Construction of the stationary vacuum black hole solution Ernst potentiaf everywhere

Def: M =@ <2 (1)> $~-1.  “monodromy matrix”
o 11 1 -1
p— 0, — oo: M—Mo—<1 _1>N<1 1)

CompareM and its limit Mg = %, P2 matrix polynomial

in K, and make use of the identity
(W=D =X (K+iz)? [Ki—iz.
(K=Kp)(K=Kz) = (11_>\§)(13)\5) y A= EH—:;

© & must be proportional to a matrix polynomial of second degree
in A

Q detd = s(p, (, \)(\2 — \2)(\2 — )\3), sascalar—

© & =KHZ(Yo+ YA+ Y202
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Construction of the stationary vacuum black hole solution Ernst potentiaf everywhere

Calculation of theYs

(1) detd()) = 0 < H(p, (, A)(Z:j)_o

LP: aj = constantpjay = 1

(2) Normalization (see Chapter 2)@(p,(, A = —1) = G _11>

The linear algebraic system (1), (2) determines¥keandf uniquely:
f(p,¢) = 2magzt, = /(K — DK + 12)|

f(p, ¢) satisfies the Ernst equation (elegant proof via discussion o
& ,&~1 as a function of\!)

a1—on)¢—Ki(ar+ar—2)
f(¢) = ai 02K (a1 tasT2)

Axis value of the Ernst potential: A™: f
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Construction of the stationary vacuum black hole solution Ernst potentiaf everywhere

This axis potentiaf (¢) must be identified with the result of the
AT-C-A~-H integration to determine the constanis
Mag = VM2 — A2 LiA Map; = VM2 - A2 +iA (A=J/M)

Result:
The stationary black hole solution in Weyl-Lewis-Papametr
coordinates,

f( C) . \/MZ—AZ(I’l-I—I’g—ZM)—l—iA(I’l—l’g)
P&) = VM2 A2(rq+rp+2M)+iA(r1—r5)

= ‘\/(Ki DK+ iz)‘, Ki= —Kp = VMZ _ A2
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Construction of the stationary vacuum black hole solution Ernst potentiaf everywhere

Comment:
@ This Kerr solution (Roy Kerr 1963) was found in the context of
algebraically special gravitational fields (Type D solaio
Interpretation as a rotating BH later on

@ For the extensive discussion of uniqueness proofs for tids a
other black hole solutions see M. Heusler's monopgarph3)L99

@ 2 parameter solutiorM, J) — “no hairs”,
@ Our construction is based on necessary conclusions angsnpl
uniqueness
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Construction of the stationary vacuum black hole solution Ernst potentiaf everywhere

Combining the calculation of the metric coefficieaik with the

coordinate transformatiop = v/r2 — 2Mr + AZsin?,
¢ = (r — M) cosv one obtains th&err solution in Boyer-Lindquist

coordinates, 4,

08 = e [(12 — 2Mr + APcosd) (002 + o fie ) + P

—e?Y(alt + adyp)?
Uu_1_ 2Mr _ 2MAr sirfy
V=1 r24+A2 cog?’ a= r2—2Mr+AZ2 cog 9

@ the stationary BH solution is analytic outside and on thézoor

@ interior:
* maximal analytic extension via the Kruskal procedure
e parametric collapse of a disk of dust

o “interior” Kerr?
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Two aligned black holes (‘balance problem’)
Contents

© Two aligned black holes (‘balance problem’)
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Two aligned black holes (‘balance problem’)

Problem: Can the spin-spin repulsion of two aligned black holes
compensate their gravitational attraction (see
post-Newtonian approximation)

Solution: by discussing the fundamental matrikand the surface
gravity inKy, Ko; K3, K4 (“ends” of horizonsH;, H>)

¢
wll e
J K1 4 ) F
PR (F 7,
Poets, w00=(5 0 ) =11 (1- i)
A ‘
) " (@) 1(0) = 58, 0 = Lo on At
”Hzi €+ (!2)) n=0 ,// (2) NlZ = _./\1’12
I Ky /// (3) K‘(C) - i§e2U7C,
Al k(K1) = k(K2), r(K3) = k(Ka)

(1) (2
2 =902=0, 23=9024=0
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Two aligned black holes (‘balance problem’)

Discussion 1) (2
9 BV parametersf(, f,, f3, f4; 2, 2; K1, K2, K3, K4 can be fixed)

Eq. (2),N12 = —N12: 4 equations
Eq. (3),x(K1) = k(K2), impliesx(Kz) = k(K4): 1 equation

(1)
— 5 equations for 9 parameters: 4 free parame(gps K1, Ko, K3),

. (2 " : "
say, determing?: positions of the 2 BHs and their angular velocities
cannot be prescribed idependently.

State of the art:

o !2) / ((22)> 0 (no counterrotation)

@ The only candiates to describe aligned balanced BHs are
polynomial solutions (“Bécklund generated”, N. and Kremze
1999)

© Two identical BHs cannot be balanced (Dietz and Hoenselaers
1985 for the Backlund class, N. and Krenzer 1999 by discgssin
Egs. (2) and (3))

© Backlund generated solutions with positikemar massedo not
exist (Manko and Ruiz 2001)
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Two aligned black holes (‘balance problem’)

Conclusion:

@ general problem not yet solved
@ expectation:

e Eg. (2),N21 = —N1, solvabel (cf. superposition of non-rotating
BHs, Papapetrou-Majumdar solution)
o k(K1) = k(Kz) (— & =1onA*, A% unsolvabel

Two identical black holes

STRUT
constant# 0

k
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Stationary electrovac black holes (some remarks)

© Stationary electrovac black holes (some remarks)
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Stationary electrovac black holes (some remarks)

Stationary axisymmetric

Einstein-Maxwell egs.
(Rf +9g) A f = VI(VF +29V0)
(Rf +399) A g= Vg(Vf +29Vg)

f(p, ¢): Ernst potential
9(p, ¢): em potential
(elstatic+ix magstatic)

eV = Rf +gg,
Weyl-Papapetrou
coordinates

G/H =

SU(2,1)/SU(1, 1) x U(1)
coset space

SU(2,1) symmetry group

Gernot Neugebauer

Linear Problem

B 0 E 0 B 0
& &,=|[0 A 0 ]|+rx(Aa 0o -E||®
-Cc o0 4B 0 —C o0
C 0
B
0

m o >
o Wo

—C
&, — 0 | +4
2 ALB 2
2

A= %e—ZU (f’z + Zggl)’
B=1e2(f,+290,),

E=ie g,

C S |e_2U g7z

Note: Notation!
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Stationary electrovac black holes (some remarks)

Remarks;

@ Charged stationary black hole solution (Kerr-Newman 1965)
SU(2,1) transformation of the stationary vacuum black hole
(Kerr 1963)

@ Solution of the electrovac boundary problem for chargedkbla
holes along the lines indicated in this talk

@ Conformastatic black holes in equilibrium (electromagnet
forces compensate gravitational forses—= M [big mass])

Gernot Neugebauer Systematic Treatment of Black Holes -50-



The collapse to a black hole

@ The collapse to a black hole
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The collapse to a black hole

Parametric collapse of rotating perfect fluid bodies in Blopiim

@ Do cosmic collapse processes (galaxies, stars) lead ahdyito
the formation of (stationary) black holes?

@ No dynamical (analytic) models

@ Some insight by the discussion of therametric collapsef
rotating perfect fluid bodies in equilibrium?

Vo — —oo, finite baryonic mass = M = 2(2J
black hole limit?

= J=4M?

" 2MM 1 M2 (3/M)F
extreme Kerr black hole!

R. Meinel, grqc/0405074
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The collapse to a black hole
Parametric collapse of a rotating disk

204
> e i =
1.5 4
o - > —C T H— C)
1.0 4
extreme BH rapidly rotating slowly rotating
] (Einstein) (Newton)
054
00 ] ‘ ‘ SNV
0.0 4.0 8.0 12.0

Gernot Neugebauer Systematic Treatment of Black Holes -53-



The collapse to a black hole
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The collapse to a black hole

Example

The geometry of the phase transition disk/black hole:
separation of the ‘interior world’ from the ‘exterior wotlextreme Kerr)

QC/m
i . Geometry in the disk plane.
] y Depicted is the circumferenti-
5 2 al diameter Gm of a circle
] around the centre of the disk
] pt vs the real distances s from the
24 e center for increasing values of
] p o= 2022p3e?~V0, po: coordi-
¥ nate radius of the disk. (Here
] Q2C/7 and 2s are dimension-
less quantities, e 1).
A T &
1 2 5| 4 ]
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The collapse to a black hole

oy 20s
5 10 15

For ultrarelativistic values ofu (here . = 4.5), the ‘interior region’
around the disk (around the local maximum on the left hand)silfar
from the ‘exterior region’ (right ascending branch of thereel), which
becomes more and more Kerr-like.
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The collapse to a black hole

QC/m

In the limit u = pp = 4.63..., the ‘disk world’ (left branch) and the
‘world of the extreme Kerr black hole’ (right branch) are septed from
each other. The point labelegb on the abscissa corresponds to a coor-
dinate radius r= 1/2(2. Points to the ‘Kerr world’ (right branch) are
at infinite spatial distance from the disk (in the left brapch
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