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Causal Sets: Definition

• Fundamentally Discrete Approach to Quan-

tum Gravity.

An individual causal set, corresponds to a

discrete version of a spacetime.

• Mathematically it is:

(a) Partially Ordered Set

(b) The order relation is the causal relation.

(c) Locally finite

• Partially Ordered Set: a set P with relation

≺, such that ∀ x, y, z ∈ P :

(a) x ≺ y and y ≺ z ⇒ x ≺ z: Transitivity
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(b) x ≺ y and y ≺ x ⇒ x = y: Acyclicity

• Locally Finite: {z|x ≺ z ≺ y} is a finite set

for all x, y ∈ P.

• The metric of a globally hyperbolic space-

time can be reconstructed uniquely from

its causal relations up to a conformal fac-

tor (Malament).

• Locally finite → the remaining degree of

freedom corresponding to the scale factor

can be recovered by counting the number

of elements.



Causal Sets: Kinematics

• Links: x ≺ y are linked if @ z| x ≺ z ≺ y.

• Chain C: ∀ x, y ∈ C x ≺ y or y ≺ x.

• Proper time: Given x ≺ y, we define the
‘proper’-time dt(x, y) := max |Ci ∩ J+(x) ∩
J−(y)|, and |A| is set cardinality. Is the
maximum steps needed to go from x to y.

• Maximal (minimal) Elements: x ∈ C, such
that @ y ∈ C where x ≺ y.

• Alexandrov Neighborhood: Given x ≺ y, we
define A(x, y) := {J+(x) ∩ J−(y)}

• ‘Spacelike Distance’: Given unrelated x, y

we define ds(x, y) := min dt(u, v), where u ∈
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J−(x) ∩ J−(y) and v ∈ J+(x) ∩ J+(y). It
is the minimum distance of their common
past to their common future (some sub-
tlety).

• Faithful Embedding: Preserves causal rela-
tions. The number of elements n mapped
into any Alexandrov neighborhood, is equal
to its spacetime volume V up to poisson
fluctuations. Leads to continuum approxi-
mation.

• Dimension in Causets.

• Lorentz Invariance → Poisson Distribution

P (n) =
(ρV )ne−ρV

n!
(1)

Note: lattice is NOT Lorentz invariant.

• Sprinkling in a Lorentzian manifold with
some density ρ ∝ α~ where α ∼ O(1)



Causal Sets: Dynamics

• Classical (stochastic) Dynamics: Sequen-

tial Growth

(a) General Covariance

(b) ‘Bell’s Causality’

• Quantum Dynamics:

(a) Sum Over Causal Sets

(b) Quantum Measure Theory

• ‘Phenomenology’: (heuristic) but natural

prediction of the Cosmological Constant

(Sorkin 1991).
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Entropy Bounds

• Hawking Radiation: T = κ~
2π

• Entropy of Black Hole: S = A
4~G

• Generalized Second Law of Thermodynam-

ics (GSL): δSBH + δSmat ≥ 0

• General Validity of GSL → Entropy Bounds

Geroch process, Susskind process and BH

evaporation.

• Bekenstein Entropy Bound

Smatter ≤ 2πER (2)
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E, is the mass-energy of the matter, R is

the radius of the smallest sphere that fits

around the matter.

Physical assumptions are:

(a)Weakly gravitating matter and

(b) Asymptotically flat space.

Controversy (Unruh, Wald), for saturation

of bound and the effect of Unruh radiation.

• Spherical (Susskind) Bound

Smatter ≤ A/4 (3)

where A is the area of the smallest sphere

enclosing the matter.

Physical assumptions:

(a) Spherical Symmetry or

(b) Weak Gravity



Bekenstein is stronger for gravitational sta-

ble systems (2M≤ R) in 4 dim but for D > 4

Bekenstein gives only S ≤ D−2
8 A.

• Covariant (Bousso) Bound

S[L(B)] ≤ A(B)/4 (4)

The entropy of any light-sheet L of a sur-

face (codimension 2) B does not exceed

the area of this surface.

Light-sheet is defined as the area spanned

by in-going light rays starting from B.

Implies spherical bound in its range of va-

lidity (and GSL holds for BH formation),

but needs further analysis for Geroch pro-

cess.



Entanglement Entropy

• Von Neumann Entropy: Sρ = Tr(ρ ln ρ) (zero

for pure states).

• Composite System: HA
⊗HB → effective

state ρA = TrB(ρAB)

It is mixed if the state is entangled.

• Important property: SρA = SρB

• If subsystem is a subspace of the config-

uration space (e.g. interior of a horizon),

the only thing the interior and the exterior

share, is their common boundary. Thus

heuristically we expect the entanglement

entropy to be proportional to (some power

of) the boundary.
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• Consider a lattice of coupled harmonic os-

cillators, as a discretization of the scalar

field.

H =
1

2


∑

i

p2
i +

∑

ij

xiVijxj


 (5)

Tracing-out a subregion of the lattice, re-

sults to Von Neumann entropy proportional

to the ‘area’ divided by the discreteness

cut-off (Sorkin).

• Entanglement entropy diverges in the con-

tinuum limit.



Where We Stand

• BH entropy as a (semi-)classical result.

• BH entropy as entanglement entropy.

• BH entropy as fundamental degrees of free-

dom of a full Quantum Gravity Theory.

• Indications for discreteness:

(a) Entanglement entropy diverges for con-

tinuum spacetimes.

(b) Counting fundamental degrees of free-

dom of BH gives finite answer→ (naively)

finite number of ‘atoms’ of spacetime.
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Entropy Bounds in Causets

• Bekenstein Bound: Assume we have mat-
ter with support on a (spacelike) subset
of the causal set V = {xi}. We define
R = min dt(u, v) where u ∈ ∩iJ

−(xi) and
v ∈ ∩iJ

+(xi). (smallest distance between
common future and common past).

In weak gravity limit, this corresponds to
the radius of the smaller sphere containing
the matter and we can use this quantity for
the bound Smatter ≤ 2πER.

May attempt generalization to strong grav-
ity regime.

• Spherical Bound:

(a) Entropy contained in Σ must ‘flow out-
side’ by crossing the boundary of its fu-
ture domain of dependence D+(Σ).
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(b) Proposal: Maximal entropy contained in

Σ is the number of maximal elements in

the future of dependence,

Smax =< n >=
∫

D+(Σ)
e−V (x)dx (6)

where V (x) := J+(x) ∩D+(Σ).

(c) The resulting number Smax = A/4 up

to a constant of O(1). This constant

depends only on the dimension, and not

on the shape of Σ or geometry of space-

time.

(d) The constant is fixed by the exact dis-

creteness scale (which in any case turns

out to be of plank order). As we con-

sider higher dimensions, it converges to

one giving the exact result (Rideout and

Zohren).



Black Hole Entropy in Causets

Count ‘atoms’ of the horizon.

• Initial suggestion: Count links between com-

mon past J−(H)∩ J−(Σ) and common fu-

ture J+(H) ∩ J+(Σ) of the horizon H and

the spacelike surface Σ. It corresponds

to information flowing in the horizon from

outside. A further condition of maximality

was imposed in order to avoid counting ir-

relevant non-local links (Dou and Sorkin).

Got same proportionality constant for dif-

ferent spacetimes (static and far of equi-

librium as well).

Unfortunately the kind of ‘non-local’ links

where not counted out in non-spherical sym-

metric cases.
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• Alternative definition of ‘atoms’: Consider

‘diamonds’. Points x, y, u, v where x, y ∈
J−(H) ∩ J−(Σ) and u, v ∈ J+(H) ∩ J+(Σ),

i.e. x, y are outside the BH and to the past

of Σ while u, v are inside and to the future

of Σ. Furthermore we require all relations

u ≺ x, u ≺ y, x ≺ v and y ≺ v to be links.

It is clear that it does not suffer from the

previous ‘non-local’ problems. However,

details have not yet been worked out.

• Entanglement entropy → need QFT on a

causal set (work in progress).



Summary and Conclusions

• Introduction to Causal Sets.

• Review of existing Entropy Bounds.

• Entanglement Entropy.

• Bekenstein Bound as causal sets property

(‘proper time’ between common past and

common future).

• Spherical Bound as number of maximal ele-

ments in the future domain of dependence.

• Black Hole entropy as number of ‘atoms’

of the horizon.
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