Duality and Fluxes in String Compactifications

Andrei Micu

Physikalisches Institut der Universität Bonn

Based on hep-th/0608171 in collaboration with Jan Louis

Fourth Aegean Summer School - Mytilene 17–22 September 2007

Introduction

String theory – 10 dimensions vs 4 dimensional physics

Possible solution: compactify 6 dimensions on a manifold K.

General aspects of 4d physics determined by K

Example: unbroken 4d susy — need globaly defined spinor on K — simplest case \to manifold with SU(3) holonomy = Calabi—Yau manifold.

Topology – determines low energy field content

Given topology - CY manifolds come in families - parameterised by moduli

- small deformations of the CY metric
- massless scalar fields in 4d (flat directions)
- determine 4d couplings ⇒ need to be fixed

Moduli stabilisation ← Fluxes

Background value for field strengths F_p – harmonic on K (eom)

$$\int_{\gamma^{\alpha}} F_p = m^{\alpha} \quad \Leftrightarrow \quad F_p = m^{\alpha} \omega_{\alpha} \;,$$

 \Rightarrow generate potentials for moduli

Flux + Dualities

- Mirror symmetry/T-duality smoothly relates RR fluxes in type II theories.
- Type IIB S-duality maps NS-NS into RR fluxes
- \bullet Mirror symmetry/T-duality of H flux \to deformation of the geometry \to manifolds with $SU(3)\times SU(3)$ structure
- \bullet Heterotic/type IIA duality takes gauge field fluxes to manifolds with $SU(3)\times SU(3)$ structure

N=2 gauged supergravity

Multiplets

- ullet gravity graviton $g_{\mu
 u}$ and graviphoton A_{μ}^0
- ullet vector multiplets vector fields A^i_μ and complex scalar field X^i
- hypermultiplets 4 real scalar fields ξ^A

Very constrained

Potential allowed only together with scalar manifold isometries gauging (charged scalar fields)

Fluxes in type II compactifications

Hodge diamond of Calabi-Yau

left \leftrightarrow right and up \leftrightarrow down symmetric consequence of complex conjugation and Hodge duality.

Mirror symmetry exchanges $h^{(1,1)}$ and $h^{(2,1)}$.

Type IIA/CY₃: N=2 sugra coupled to $h^{(1,1)}$ (Abelian) vector multiplets and $h^{(2,1)}+1$ hypermultiplets.

Type IIB/CY₃: N=2 sugra coupled to $h^{(2,1)}$ (Abelian) vector multiplets and $h^{(1,1)}+1$ hypermultiplets.

Spectrum is invariant under mirror symmetry!

Flux	IIA	IIB
RR	$F_{2} = m^{i}\omega_{i}; F_{0} = m_{0}$ $F_{4} = e_{i}\tilde{\omega}^{i}; F_{6} = e_{0}\mathcal{V}$ $2(h^{(1,1)}+1)$	$F_{1} = F_{5} = 0$ $F_{3} = p^{A} \alpha_{A} + q_{A} \beta^{A}$ $2(h^{(2,1)} + 1)$
NS-NS	$\underbrace{H_3 = \mu^A \alpha_A + \epsilon_A \beta^A}_{2(h^{(2,1)}+1)}$	$\underbrace{H_3 = \mu^A \alpha_A + \epsilon_A \beta^A}_{2(h^{(2,1)}+1)}$

Mirror symmetry $m^I \leftrightarrow p^A$ and $e_I \leftrightarrow q_A$.

What about ϵ_A and μ^A ?

 \Rightarrow deformation of the geometry \to manifolds with $SU(3) \times SU(3)$ structure.

Half-flat manifolds

Mirror symmetry: NS 3-form flux $(\mu = 0) \leftrightarrow$ half-flat manifold with SU(3) structure $d\Omega \sim$ 4-form flux.

SU(3) structure in 6 dimensions – invariant tensors: almost complex structure J and (3,0) form Ω .

dJ and $d\Omega$ – intrinsic torsion

Half-flat (dual to NS flux):

$$d\omega_{i} = \epsilon_{i}\beta^{0}$$

$$d\alpha_{0} = \epsilon_{i}\tilde{\omega}^{i}, \quad d\alpha_{a} = d\beta^{A} = 0,$$

Special basis; breaks symplectic invariance!

Generalization

$$d\omega_{i} = p_{iA}\beta^{A} - q_{i}^{A}\alpha_{A}$$
$$d\alpha_{A} = p_{iA}\tilde{\omega}^{i}$$
$$d\beta^{A} = q_{i}^{A}\tilde{\omega}^{i}$$

Constraint (from $d^2\omega = 0$)

$$\langle (p_i, q_i); (p_j, q_j) \rangle = p_{iA} q_j^A - p_{jA} q_i^A = 0$$

Effect: p_{iA} and q_i^A charges for hyperscalars wrt all vector fields

Heterotic/ $K3 \times T^2$ + flux

N=2 sugra in 4d + SYM with gauge group G and $n_h \geq 20$ hypermultiplets

Crucial ingredient: Bianchi identity

$$dH = trR \wedge R - trF \wedge F$$

Take F_{inst} – solution \rightarrow breaks gauge group to G

Coulomb branch: $G \to U(1)^{n_v}$, $\to n_v$ (Abelian) vectormultiplets

$$\int_{\gamma^{\alpha}} F_{flux}^{I} = m^{\alpha I} \quad \Leftrightarrow \quad F_{flux}^{I} = m^{\alpha I} \omega_{\alpha} \;,$$

 $m^{\alpha I}$ charges for hypermultiplets wrt all vector fields \leftrightarrow mapped to q_I^A via heterotic/type IIA duality.

Conclusions

- RR fluxes respect mirror symmetry
- manifolds with $SU(3)(\times SU(3))$ structure crucial for string dualities with NS-NS H-flux.
- ullet Half-flat manifolds dual to half of the NS-fluxes $(\mu=0)$
- ullet Full duality of H-flux involves manifolds with $SU(3) \times SU(3)$ structure (non-geometric fluxes)
- ullet certain SU(3) imes SU(3) structures dual to heterotic gauge field fluxes