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Abstract

We take a null hypersurface (causal horizon) generated by a congru-
ence of null geodesics as the boundary of the Doran - Lobo - Crawford
spacetime to be the place where the Brown - York quasilocal energy is
located. The components of the outer and inner stress tensors are com-
puted and depend on time and the impact parameter b of the test particle
trajectory.

The surface energy density σ on the boundary is given by the same
expression as that obtained previously for the energy stored on the Rindler
horizon. For long time intervals with respect to b (when the stretched
horizon tends to the causal one), the components of the stress tensors
become constant.

Keywords : null geodesic congruence, boundary stress tensor, quasilo-
cal energy, stretched horizon, the Holographic Principle.

1 INTRODUCTION

Einstein’s equations of General Relativity, like Newton’s law for gravitation,
indicate that matter is the source for gravity. On the grounds of the Equiva-
lence Principle, Khoury and Parikh [1] ask the question : if gravity depends on
matter, can acceleration be atributed to matter? But the matter distribution is
encoded in the stress-energy tensor. Therefore, where the energy and stresses
are localized, as we could accelerate even in Minkowski space, which is empty,
at least according to the actual view?

There has been an increased interest in boundary matter in recent years.
Usually, the boundary conditions for the metric are in the form of an induced
metric and extrinsic curvature for some hypersurface. It appears, for example,
in the so called black hole’s fluid membrane model of the stretched horizon [2]
[3]. It is worth to note that the Gibbons - Hawking term in the Einstein -
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Hilbert action is a surface integral over the outer boundary of spacetime and
not over the stretched horizon.

As Khoury and Parikh have conjectured, ”matter refers to both bulk and
boundary stress tensors”. They uniquely specify the geometry of spacetime.
This may be recognized from the fact that the bulk stress tensor does not fully
determine the Riemann tensor.

Our purpose in this paper is to find the expressions for the stress tensors for
the boundary matter, i.e. the Brown - York gravitational energy for the inner
and outer regions of the boundary, as well as for the stress tensor constructed
from the intrinsic geometry on the boundary. We start with the black hole
interior geometry [4] and take a hypersurface orthogonal to a congruence of null
geodesics [5] [6] as the boundary of spacetime (it plays the same role as the
stretched horizon in the Parikh-Wilczek membrane paradigm of the horizon, for
long time intervals).

2 THE DORAN-LOBO-CRAWFORD SPACE-
TIME

It is a well-known fact that the geometry inside the horizon of a Schwarzschild
black hole is dynamic since the radial coordinate becomes timelike and the
metric is time dependent. It is given by

ds2 = −
(

2m

t
− 1

)−1

dt2 +
(

2m

t
− 1

)
dz2 + t2dΩ2 (2.1)

where m is the mass of the black hole, z plays the role of the radial coordinate,
with −∞ < z < +∞ and dΩ2 = dθ2 + sin2θdφ2. Throughout the paper the
velocity of light c = 1.

Doran et al. [7] have taken into consideration the case of a time-dependent
m(t), when the metric (2.1) is no longer a solution of the vacuum Einstein equa-
tions. They observed that the spacetime acquires an instantaneous Minkowski
form for m(t) = t, although the curvature is nonzero

ds2 = −dt2 + dz2 + t2dΩ2 (2.2)

A geodesic particle with constant angular coordinates moves exactly as in flat
space.

Our aim is to apply the Khoury - Parikh prescription to compute the bound-
ary stress tensor replacing the boundary conditions by boundary sources (the
knowledge of the bulk geometry from Einstein’s equations is not sufficient :
we need also to add matter on the boundary). The authors of [1] localize the
boundary stress energy on the horizon of the spacetime (be it de Sitter, Rindler
or anti de Sitter horizon).

The situation is different in Minkowski space : because of the lack of a
horizon, the location of the boundary was chosen to be a two-sphere at some
fixed large radius r0 [1], where the geometry is just the Einstein static universe.
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But what is the physical meaning of r0 or of its order of magnitude? Our choice
for the location of the boundary matter is a null hypersurface generated by a
congruence of null geodesics (the causal horizon). The null geodesics for the
metric (2.2) have been computed in [4]. From (2.2) we have

ṫ2 − ż2 − t2φ̇2 = 0, (θ = π/2) (2.3)

where an overdot denotes the derivative with respect to the affine parameter
λ along the null geodesic. Keeping in mind that ż = const. ≡ pz and φ̇ =
L/t2, where the conserved quantities pz and L are the momentum along the
z - direction per unit mass and, respectively, the angular momentum per unit
mass, one obtains

z(t) = ±
√

t2 + b2,
dφ

dt
= ± b

t
√

t2 + b2
(2.4)

where b ≡ L/pz plays the role of an impact parameter .
We observe that the projection of the null particle trajectory on the z - axis is a
hyperbola where a ≡ 1/b may be interpreted as the rest-system acceleration.
It is worth to note that dφ/dt decreases very fast with time while dz/dt tends
to unity. Therefore we neglect dφ/dt in the regime t >> b, a situation when the
null test particle moves approximately on the z - axis. That means to replace
the causal horizon with a ”stretched” horizon [1] and take t −→ ∞ in the final
result for the components of the boundary (which now becomes timelike) stress
tensor.

3 THE STRESS TENSOR OF THE BOUND-
ARY SOURCES

Let us compute now the components of the extrinsic curvature of the timelike
hypersurface S, given by

z −
√

t2 + b2 = 0. (3.1)

Using the Berezin- Kuzmin - Tkachev method [8], we obtain the components of
the normal vector

nα = (− t

b
,
z

b
, 0, 0) (3.2)

with z =
√

t2 + b2 and nαnα = 1. Using (3.2), the induced metric on S,
embedded in the spacetime (2.2), is

hαβ = gαβ − nαnβ (3.3)

Therefore, for the tt, θθ and φφ components of the extrinsic curvature tensor

Kαβ = −∇αnβ (3.4)

one obtains
Kt

t = Kθ
θ = Kφ

φ = −1
b

(3.5)
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Let us find now the Ricci tensor on the surface (3.1), namely the intrinsic
curvatures of S, using the Gauss - Codazzi equations [9] [10]

3R + KijK
ij − (Ki

i )
2 = −2Gαβnαnβ (3.6)

and
Gi

j =3 Gi
j −Kl

lK
i
j +

1
2
δi
j

[
(Kl

l )
2 + Ki

l K
l
j

]
(3.7)

where i, j correspond to (t, θ, φ), and 3R, 3Gi
j are the scalar curvature and

Einstein’s tensor on S, respectively. By means of (3.2), (3.5) and the fact that,
in the spacetime (2.2) [4],

Rtt = Rzz = Rzt = 0, Rθθ =
Rφφ

sin2θ
= 2, Rα

α =
4
t2

(3.8)

we reach at the following expressions

3R =
4
t2

+
6
b2

, 3Rt
t = 0, 3Rθ

θ =3 Rφ
φ =

2
t2

+
3
b2

(3.9)

and
3Gt

t = − 2
t2
− 3

b2
, 3Gθ

θ =3 Gφ
φ = 0. (3.10)

We are now in a position to find the expressions of the quasi-local stress
energy T in

αβ defined on the boundary of the inner spacetime region Min

8πG4 T in
αβ = Kν

ν hαβ −Kαβ (3.11)

and of the stress tensor T out
αβ for the boundary matter (the Brown - York holo-

graphic stress tensor for the outer spacetime Mout) [1]

3Gαβ = 8πG3 (T in
αβ + T out

αβ ) (3.12)

From the viewpoint of an observer in Min, S encodes the effects of Mout. In the
previous equations, G4 and G3 are the 4-dimensional Newton’s constant and
the 3-dimensional one, respectively, 3Gαβ is the intrinsic Einstein tensor on the
boundary surface, obtained from (3.10).

The equations (3.11) and (3.5) yield

8πG4 T t,in
t = 8πG4 T θ,in

θ = 8πG4 Tφ,in
φ = −2

b
(3.13)

Combining (3.10) and (3.13), one obtains

−2 G3

b G4
+ 8πG3 T t,out

t = − 2
t2
− 3

b2
(3.14)

and
−2 G3

b G4
+ 8πG3 T θ,out

θ = 0 (3.15)
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We make the conjecture that

G3

G4
=

1
b
, (3.16)

to be in accordance with the brane-world scenarios (see also [1]). Therefore, the
components of T out

αβ are given by

T t,out
t = − 1

8πG3
(
2
t2

+
1
b2

) (3.17)

and
T θ,out

θ = Tφ,out
φ =

1
8πG3

2
b2

(3.18)

Let us notice that, in our sign conventions, T t,in
t is minus the surface energy

density σ on S. Keeping in mind that b = 1/a, we have

a = 4πG4σ, (3.19)

a result already obtained in [11] for the energy stored on the Rindler horizon.
In addition, when t >> b, the surface S becomes null (the causal horizon) since
z(t) ≈ t and the term 2/t2 may be neglected from the expression of T out

αβ , T in
αβ

and all the components depend only on the impact parameter b. From (3.16)
one infers that a very large b leads to the cancellation of gravity (G3 tends to
zero) on the boundary S.

4 CONCLUSIONS

On the same line as Khoury and Parikh, we underlined in this paper the role
played by the boundary matter in determining the geometry of a spacetime,
besides the bulk matter.

The boundary where the Brown - York gravitational energy is localized was
chosen to be the causal horizon of the Doran - Lobo - Crawford geometry,
generated by a congruence of null geodesics.

Using the 3+1 ADM splitting of Einstein’s equations, we found the intrinsic
geometry on the ”stretched” horizon and the components of the interior and
exterior stress tensors corresponding to the Brown - York gravitational energy
of the two spacetime regions.
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