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2-color 1-flavor QCD

Why 2-color 1-flavor QCD?
▶ Gauge group is SU(2) → Simplest non-Abelian gauge theory.
▶ computationally less challenging.
▶ has many interesting features:

a) baryons (di-quarks and tetra-quarks) are bosonic states,
b) there are additional global symmetry (Pauli-Gürsey
symmetry):
Fundamental rep of SU(2) is pseudo-real ⇒ U(1)V extended to
SU(2)B.

▶ The fermionic determinant in the path integral has no sign
problem. Hence popular in lattice community.
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The 2-color 1-flavor Matrix Model

The 2c-1f matrix model is very easy to describe:
▶ Building blocks: 2 × 2 hermitian matrices Mi(t), i = 1,2,3.
▶ The space M2 ∋ Mi ≡ MiaTa is M3(R).
▶ Rotations: Mi → RijMj .
▶ Gauge transformations: Mi → gMig†, g ∈ SU(2).
▶ The configuration space C2 = M2/ad SU(2).
▶ Complicated topology: C2 ≃ R× (S5 − RP2).
▶ Curvature Fij = −ϵijk Mk − i[Mi ,Mj ]. (Narasimhan-Ramadas 1979)

▶ A natural reduction of SU(2) YM on S3 × R to a matrix model.
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Matrix Model Dynamics

▶ For dynamics, we need a gauge-invariant Lagrangian.
▶ The electric Ei ≡ DtMi and magnetic Bi ≡ 1

2ϵijk Fjk :

Ei = Ṁi − i[M0,Mi ], Bi = −Mi −
i
2
ϵijk [Mj ,Mk ].

▶ M0: parallel transporter in the temporal direction (set to zero
henceforth).

▶ The matrix model Lagrangian is

LYM =
1

2g2 Tr(EiEi − BiBi) =
1

2g2 Tr(DtMiDtMi)− V

▶ V (M) has upto quartic terms.
▶ The matrix model is just a multi-dimensional quartic oscillator.
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Adding a Quark
▶ Quarks are Grassmann valued matrices ψ(t) transforming as:

Fundamental rep. of color: ψ → u(h)ψ, h ∈ SU(2)

spin-
1
2

rep. of rotations: ψ → D1/2(R)ψ, R ∈ SO(3)rot

▶ Dirac quark, ψ =

(
bαA

d†
αA

)
, α,A = 1,2.

▶ b†
αA and d†

αA create quarks and anti-quarks respectively.

anti-commutation algebra: {bαA,b
†
βB} = δαβδAB = {dαA,d

†
βB}

▶ Quark Hamiltonian: Hf = gHint + mHm + c̃Hc , with

Hint = ψ̄γ iMiψ, Hm =
(
cos θψ̄ψ + i sin θψ̄γ5ψ

)
, Hc = ψ̄ γ0γ5ψ

▶ Baryon chemical potential term
µ̃Hµ = 1

2 µ̃ψ̄γ
0ψ = µ̃× Baryon number

▶ Total Hamiltonian, H = HYM + gHint + mHm + c̃Hc + µ̃Hµ
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Symmetries of The Hamiltonian I
▶ For m = 0 : Chiral symmetry U(1)A : ψ → eiθγ5

ψ, generated by
the chiral charge Q0. This is broken anomalously.

▶ Spatial Rotations:

Li = −2ϵijk Tr (ΠjAk ) , Si =
1
2

(
b†
αAσ

i
αβbβA + dαAσ

i
αβd†

βA

)

Ji = Li + Si

▶ Gauge Symmetry:

Gauss Law Genarators, Ga:

Ga = −fabcPibMic + ψ̄γ0T aψ

[Ga,Gb] = ifabcGc , [H,Ga] = 0

Physical states are anihilated by Ga

Ga |·⟩ = 0, |·⟩ ∈ physical states

8 / 25
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Symmetries of The Hamiltonian II

▶ Pauli-Gürsey Symmetry: U(1)B
extended to−−−−−−→ SU(2)B

Generators of SU(2)B → B1,B2,B3

[Bi ,Bj ] = ϵijk Bk , [Q0,B1,2,3] = 0

Three different cases:
▶ m = 0, µ = 0 : U(1)A

Anomaly−−−−→ Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ m ̸= 0, µ = 0 : U(1)A → Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ µ ̸= 0 : SU(2)B → U(1)B

Residual Symmetry ⇒ U(1)B × Z2

▶ We use quantum numbers (B,B3, J, J3) to label eignevalues and
eigenfunctions of the Hamiltonian.

9 / 25



Symmetries of The Hamiltonian II

▶ Pauli-Gürsey Symmetry: U(1)B
extended to−−−−−−→ SU(2)B

Generators of SU(2)B → B1,B2,B3

[Bi ,Bj ] = ϵijk Bk , [Q0,B1,2,3] = 0

Three different cases:
▶ m = 0, µ = 0 : U(1)A

Anomaly−−−−→ Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ m ̸= 0, µ = 0 : U(1)A → Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ µ ̸= 0 : SU(2)B → U(1)B

Residual Symmetry ⇒ U(1)B × Z2

▶ We use quantum numbers (B,B3, J, J3) to label eignevalues and
eigenfunctions of the Hamiltonian.

9 / 25



Symmetries of The Hamiltonian II

▶ Pauli-Gürsey Symmetry: U(1)B
extended to−−−−−−→ SU(2)B

Generators of SU(2)B → B1,B2,B3

[Bi ,Bj ] = ϵijk Bk , [Q0,B1,2,3] = 0

Three different cases:
▶ m = 0, µ = 0 : U(1)A

Anomaly−−−−→ Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ m ̸= 0, µ = 0 : U(1)A → Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ µ ̸= 0 : SU(2)B → U(1)B

Residual Symmetry ⇒ U(1)B × Z2

▶ We use quantum numbers (B,B3, J, J3) to label eignevalues and
eigenfunctions of the Hamiltonian.

9 / 25



Symmetries of The Hamiltonian II

▶ Pauli-Gürsey Symmetry: U(1)B
extended to−−−−−−→ SU(2)B

Generators of SU(2)B → B1,B2,B3

[Bi ,Bj ] = ϵijk Bk , [Q0,B1,2,3] = 0

Three different cases:
▶ m = 0, µ = 0 : U(1)A

Anomaly−−−−→ Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ m ̸= 0, µ = 0 : U(1)A → Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ µ ̸= 0 : SU(2)B → U(1)B

Residual Symmetry ⇒ U(1)B × Z2

▶ We use quantum numbers (B,B3, J, J3) to label eignevalues and
eigenfunctions of the Hamiltonian.

9 / 25



Symmetries of The Hamiltonian II

▶ Pauli-Gürsey Symmetry: U(1)B
extended to−−−−−−→ SU(2)B

Generators of SU(2)B → B1,B2,B3

[Bi ,Bj ] = ϵijk Bk , [Q0,B1,2,3] = 0

Three different cases:
▶ m = 0, µ = 0 : U(1)A

Anomaly−−−−→ Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ m ̸= 0, µ = 0 : U(1)A → Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ µ ̸= 0 : SU(2)B → U(1)B

Residual Symmetry ⇒ U(1)B × Z2

▶ We use quantum numbers (B,B3, J, J3) to label eignevalues and
eigenfunctions of the Hamiltonian.

9 / 25



Symmetries of The Hamiltonian II

▶ Pauli-Gürsey Symmetry: U(1)B
extended to−−−−−−→ SU(2)B

Generators of SU(2)B → B1,B2,B3

[Bi ,Bj ] = ϵijk Bk , [Q0,B1,2,3] = 0

Three different cases:
▶ m = 0, µ = 0 : U(1)A

Anomaly−−−−→ Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ m ̸= 0, µ = 0 : U(1)A → Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ µ ̸= 0 : SU(2)B → U(1)B

Residual Symmetry ⇒ U(1)B × Z2

▶ We use quantum numbers (B,B3, J, J3) to label eignevalues and
eigenfunctions of the Hamiltonian.

9 / 25



Symmetries of The Hamiltonian II

▶ Pauli-Gürsey Symmetry: U(1)B
extended to−−−−−−→ SU(2)B

Generators of SU(2)B → B1,B2,B3

[Bi ,Bj ] = ϵijk Bk , [Q0,B1,2,3] = 0

Three different cases:
▶ m = 0, µ = 0 : U(1)A

Anomaly−−−−→ Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ m ̸= 0, µ = 0 : U(1)A → Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ µ ̸= 0 : SU(2)B → U(1)B

Residual Symmetry ⇒ U(1)B × Z2

▶ We use quantum numbers (B,B3, J, J3) to label eignevalues and
eigenfunctions of the Hamiltonian.

9 / 25



Symmetries of The Hamiltonian II

▶ Pauli-Gürsey Symmetry: U(1)B
extended to−−−−−−→ SU(2)B

Generators of SU(2)B → B1,B2,B3

[Bi ,Bj ] = ϵijk Bk , [Q0,B1,2,3] = 0

Three different cases:
▶ m = 0, µ = 0 : U(1)A

Anomaly−−−−→ Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ m ̸= 0, µ = 0 : U(1)A → Z2

Residual Symmetry ⇒ SU(2)B × Z2
▶ µ ̸= 0 : SU(2)B → U(1)B

Residual Symmetry ⇒ U(1)B × Z2

▶ We use quantum numbers (B,B3, J, J3) to label eignevalues and
eigenfunctions of the Hamiltonian.

9 / 25



Strong Coupling Regime
▶ Recale the Hamiltonian as ⇒ Mi → g− 1

3 Mi and Pi → g
1
3 Pi

H = e0

[
Tr

(
PiPi + g− 4

3 MiMi + ig− 2
3 ϵijk [Mi ,Mj ]Mk − 1

2
[Mi ,Mj ]

2
)

+cHc + Hint + MHm + µHµ]

▶ e0 = g2/3/R, where R is the radius of S3.
▶ Double scaling limit: g → ∞, R → ∞, e0 =finite ⇒ H has

well-defined spectra.

Numerical Strategy:
▶ Hilbert space, H = HFermion ⊗HBoson

▶ HBoson is infinite dimensional, HFermion is finite.
▶ Construct colorless trial states, which span Hphys.
▶ Truncate Hphys to a given boson number, and use Rayleigh-Ritz.
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General properties of the spectrum

▶ Colorless energy eigenstates ⇒ only even number of quarks.
▶ Maximum baryon charge is 2 (because HFermion is finite).
▶ Total spin can only be an integer: J = 0,1,2, · · · .
▶ We have 3 types of states:

▶ Mesons: equal number of quarks and anti-quarks (so B3 = 0).
▶ Diquarks/Anti-diquarks: Number of quarks and anti-quarks differ by

2 (these have B3 = ±1).
▶ Tetraquarks/anti-tetraquarks: Number of quarks and anti-quarks

differ by 4 (these have B3 = ±2).
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Observables

▶ Expectation values of observables depend on c and M.
▶ We compute these in each of the sectors labelled by (B, J).
▶ We have a variety of interesting observables available for

investigation.
▶ Ground state energy in each (B, J).
▶ Glue spin L and quark spin S.
▶ Third and fourth Binder cumulants

g3 =
det M

( 1
3 Tr (MT M)

)3/2 , g4 =
1
16

[
2Tr

(
MT M

)2

( 1
3 Tr (MT M)

)2 − 9

]
.

▶ Chiral charge Q0. It is no longer a constant of motion, but still a
perfectly respectable observable.

▶ Of particular interest are kinks/discontinuities of the above as
functions of (c,M).
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Results

▶ Low-lying eigenvalues as a function of c from each sector (at
µ = 0).
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▶ Ground state is unique and belongs to B = 0, J = 0 sector.
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Phases of (B, J) = (0,0) sector and their properties

▶ Level crossing in the (B,J)=(0,0) is rather special ⇒ Triple
crossing.

▶ Plot of ν (= g−2/3) vs c shows three distinct phases. For g → ∞
or ν → 0 two transition lines merge at the triple point.
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(B, J) = (0,0) sector and its properties

Critical point (c,M) ≈ (0.928,0). Q0,g3 and g4 are singular.
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(B, J) = (1,1) sector
▶ We can also look at the spin division for the (B,J)=(1,1) sector.
▶ Here the QPT occurs at (c,M) =≈ (0.22,0)
▶ Glue (L) and quark (S) spin contribution:
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▶ For c < c∗
1 , the quark contributes significantly, and it is opposite

for c > c∗
1 .

▶ More information is there in ⟨S3⟩± :

For M = 0 : ⟨S3⟩± =

{
±0.67 for c < c∗

1

±0.33 for c > c∗
1

▶ For (M ≫ 1), ⟨S3⟩± ≈ 1: Emergent heavy quark symmetry.
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(B, J) = (0,1) sector

▶ The QPT is at (c,M) = (0,0).
▶ The chiral charge Q0, as well as g3 and g4 are singular here.
▶ Spin division between glue and quark is interesting here.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

2.00

2.02

2.04

2.06

2.08

〈 L
2
〉
an

d
〈 S

2
〉

a)

〈
L2

〉
〈
S2

〉M = 0

c

〈 L
2
〉

(B, J) = (0, 1)

b) M

c
0.00 0.05 0.10 0.15 0.20 0.25

0.478

0.480

0.482

0.484

0.486

c)

A
b
s〈
S
3
〉 ±

c

M = 0.04

▶ For M = 0, ⟨L2⟩, ⟨S2⟩ and ⟨S3⟩J3 nearly independent of c and M.
▶ No decoupling between quark and glue as M increases.
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(B, J) = (1,0) and (2,0) sectors

These sectors are rather tame, but still have some interesting
features.
▶ The ground state of (1,0) is an entangled quark-glue state.

There are no level crossings, so no phase transitions.
▶ The (1,0) sector is isospectral with spin-1 color-1 sector of pure

Yang-Mills.
▶ The ground state of (2,0) is a separable quark-glue state. Again,

there are no level crossings, so no phase transitions.

18 / 25



(B, J) = (1,0) and (2,0) sectors

These sectors are rather tame, but still have some interesting
features.
▶ The ground state of (1,0) is an entangled quark-glue state.

There are no level crossings, so no phase transitions.
▶ The (1,0) sector is isospectral with spin-1 color-1 sector of pure

Yang-Mills.
▶ The ground state of (2,0) is a separable quark-glue state. Again,

there are no level crossings, so no phase transitions.

18 / 25



(B, J) = (1,0) and (2,0) sectors

These sectors are rather tame, but still have some interesting
features.
▶ The ground state of (1,0) is an entangled quark-glue state.

There are no level crossings, so no phase transitions.
▶ The (1,0) sector is isospectral with spin-1 color-1 sector of pure

Yang-Mills.
▶ The ground state of (2,0) is a separable quark-glue state. Again,

there are no level crossings, so no phase transitions.

18 / 25



(B, J) = (1,0) and (2,0) sectors

These sectors are rather tame, but still have some interesting
features.
▶ The ground state of (1,0) is an entangled quark-glue state.

There are no level crossings, so no phase transitions.
▶ The (1,0) sector is isospectral with spin-1 color-1 sector of pure

Yang-Mills.
▶ The ground state of (2,0) is a separable quark-glue state. Again,

there are no level crossings, so no phase transitions.

18 / 25



Baryon Chemical Potential µ
▶

E(µ) = E(µ = 0) + µB3

▶ Degeneracy between mesons, di-quarks and tetra-quarks is
lifted.

▶ New phases emerge:
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▶ Ground State:
1. Phase-I: spin-0 Meson

2. Phase-II: spin-1 di-quark

3. Phase-III: spin-0
tetra-quark

▶ Phase-II: gs is
spin-1-di-quark =⇒
SO(3)rot is spontaneously
broken
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Baryon Chemical Potential µ

a)

M

|µ|

g
4

c=0 b)

M

|µ|

〈L
2
〉

a)

c

|µ
|

g4 ≈ 0.54

g4 ≈ 0.42

g4 ≈ 0.27

g4 ≈ 0.27

M=0

Phase III

Phase I Phase I

Phase II

b)

c

|µ
|

〈L2〉 ≈ 1.92

〈L2〉 ≈ 1.67

〈L2〉 ≈ 0

〈L2〉 ≈ 0

Phase III

Phase I Phase I

Phase II

▶ When c = 0, g4 ≃ 0.3 and ⟨L2⟩ = 0 are both constants in phase
III, but non-trivial functions of M in phase I.

▶ In phase II, the ground state is a spin triplet ⇒ rotational
symmetry is broken (analog of LOFF).
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Summary

▶ We have studied SU(2) gauge theory plus a fundamental Dirac
Fermion.

▶ Pauli-Gürsey symmetry: U(1)v → SU(2)B.
▶ Hadrons can be arranged in 5 different sectors, with

(B, J) = (0,0), (1,1), (0,1), (1,0) and 2,0).
▶ First order QPTs in different (B,J) sectors, from level crossings.
▶ Unusual division of Spin between quark and glue for different

(B, J) hadrons, and in different phases.
▶ Emergence of Heavy Quark Symmetry is some sectors.
▶ Addition of Baryon chemical potential:

▶ SU(2)B
Explicit breaking−−−−−−−−→ U(1)B ⇒ U(1)B × Z2

▶ with sufficiently large µ spin-1 di-(anti- ) quark can have lower
energy than spin-0 meson ⇒ SO(3)rot is spontaneously broken.
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Ongoing and Future Work

▶ Ongoing work:
▶ SU(2) Gauge theory coupled to an adjoint Weyl Fermion. ⇒ N = 1

SUSY. (see talk by N. Acharyya)
▶ 2-color QCD with multiple flavors: for example, 2-flavor case has

SU(4)B symmetry with SSB to Sp(4).
▶ 3-color QCD with 1-, 2- and 3-flavors.
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THANK YOU
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Predictions of QCD Matrix Model

Masses of π, ρ, Λ− , ∆ are used as inputs.

Particle Spin Isospin Matrix Model Mass (MeV) Observed Mass (MeV) % Error

K±/K 0/K̄ 0 0 1/2 395.95 495.65 -20.1 %

η 0 0 138 547.86 -75 %

η′ 0 0 653.85 957.78 -31.7 %

K∗±/K∗0/K̄∗0 1 1/2 1030.99 893.65 +15.3 %

ω 1 0 775.03 782.65 -0.9 %

ϕ 1 0 1287.87 1019.46 +26.4 %

Table: Comparison of the meson masses

Particle Spin Isospin Matrix Model Mass (MeV) Observed Mass (MeV) % Error
p/N 1/2 1/2 935.06 938.91 -0.3 %

Ξ0/− 1/2 1/2 1448.94 1314.86 +10.2 %

Λ0 1/2 0 1190.01 1115.61 +6.6 %

Σ∗(±/0) 3/2 1 1488.99 1384.6 +7.4 %

Ξ∗0/− 3/2 1/2 1745.94 1533.4 +15.5 %

Ω− 3/2 0 2002.89 1672.45 +19.8 %

Table: Comparison of the baryon masses
(M. Pandey and S. Vaidya, Phys. Rev. D 101, no.11, 114020 (2020).)
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Glueball Physical masses Physical masses
states from matrix model from lattice QCD

JC (MeV) (MeV)

0+ 1757.08† 1580 - 1840

2+ 2257.08† 2240 - 2540

0+ 2681.45 2405 - 2715

0∗+ 3180.82 2360 - 2980

1− 3235.41 2810 - 3150

2+ 3054.97 2850 - 3230

0∗+ 3568.02 3400 - 3880

1− 3535.66 3600 - 4060

2∗+ 3435.75 3660 - 4120

2− 4050.14 3765 - 4255

† ≡ (input)
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