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Scalar-tensor gravity

• Contains majority of inflation & dark energy models

• Contains GR + a scalar field as a special case

• Metric g + scalar field 

• Jordan (1955), Brans & Dicke (1961), Bergmann (1968), 

Wagoner (1970), …

• Most general scalar-tensor theory of gravity with 2nd order 

covariant EOM: Horndeski (1974)

• DHOST theories beyond Horndeski: Langlois & Noui (2016)

• U-DHOST theories beyond DHOST: DeFelice, Langlois, 

Mukohyama, Noui & Wang (2018)  

• All of them (and more) are universally described by 

an effective field theory (EFT)



Effective field theory (EFT) 

approach
Theory 1

Theory 2

Theory 3

Theory 4

Theory 5

Theory 6

・
・
・

EFT

Free parameters

1, , , , 

, , …

Experiment 1

Experiment 2

Experiment 3

・
・
・

・
・
・

Observation 2

Observation 3

Observation 1

D
ic

tio
n
a
ry

C
o
n
s
tra

in
ts

/T
a
rg

e
ts

EFT plays the role of bridge between 

theories and experiments/observations!



EFT of scalar-tensor gravity 

with timelike scalar profile
• Inflaton/dark energy has timelike derivative

• Time diffeo is broken by the scalar profile 

but spatial diffeo is preserved.

 = const.

Timelike gradient

Inflaton or

dark energy



EFT on Minkowski
background = ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

• Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
• All terms that respect spatial diffeo must be included in the EFT action.
• Derivative & perturbative expansions
• Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity with timelike scalar profile



Higgs mechanism Ghost condensate

Order 

parameter

Instability Tachyon Ghost

Condensate V’=0, V’’>0 P’=0, P’’>0

Broken 

symmetry

Gauge symmetry Time 

diffeomorphism

Force to be 

modified

Gauge force Gravity

New force 

law

Yukawa type Newton+Oscillation
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 and timelike

Minkowski metric

EFT of ghost condensation = 
EFT of scalar-tensor gravity with timelike

scalar profile on Minkowski background

Backgrounds characterized by 
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𝜕𝜇 = 𝑐𝑜𝑛𝑠𝑡 ≠ 0

t → t + const & t → -t    unbroken

up to →  + const & → -
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Action invariant under i
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Beginning at quadratic order, 

since we are assuming flat 

space is good background.
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has scaling dimension 1/4.  (Barely) irrelevant

Good low-E effective theory

Robust prediction

e.g. Ghost inflation [Arkani-hamed, Creminelli, Mukohyama, Zaldarriaga 2004]



EFT on Minkowski
background

EFT on cosmological 
background

= ghost condensation

= EFT of inflation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

Creminelli, Luty, Nicolis and Senatore 2006
Cheung, Creminelli, Fitzpatrick, Kaplan and  Senatore 2007

• Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
• All terms that respect spatial diffeo must be included in the EFT action.
• Derivative & perturbative expansions
• Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity with timelike scalar profile



Extension to FLRW background

= EFT of inflation/dark energy
Creminelli, Luty, Nicolis, Senatore 2006

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

• Action invariant under xi
→ xi(t,x) 

• Ingredients

𝑔𝜇𝜈 , 𝑔
𝜇𝜈 , 𝑅𝜇𝜈𝜌𝜎 , ∇𝜇 , t & its derivatives

• 1st derivative of t

• 2nd derivative of t

0t  =



Unitary gauge action

derivative & perturbative expansions



NG boson
• Undo unitary gauge

• NG boson in decoupling (subhorizon) limit

• Sound speed

𝑐𝑠 : speed of propagation for modes with 𝜔 ≫ 𝐻

𝜔2 ≃ 𝑐𝑠
2 𝑘2

𝑎2
 for 𝜋 ∼ 𝐴 𝑡 exp −𝑖∫ 𝜔𝑑𝑡 + 𝑖𝑘 ⋅ Ԧ𝑥



Application: non-Gaussinity of 

inflationary perturbation 𝜻 = −𝑯𝝅
power spectrum

non-Gaussianity

2 types of 3-point interactions

𝑐3 → shape of non-Gaussianity

𝑐𝑠
2
→ size of non-Gaussianity

plots of 𝐵𝜁(𝑘, 𝜅2𝑘, 𝜅3𝑘)/𝐵𝜁(𝑘, 𝑘, 𝑘)

𝜅2 𝜅2 𝜅2

𝜅3 𝜅3 𝜅3

𝒄𝟑 = 𝟎 𝒄𝟑 = −𝟑. 𝟔 𝒄𝟑 = −𝟒. 𝟑

∝
𝟏

𝒄𝒔
𝟐
for small 𝒄𝒔

𝟐

Prototype of the

equilateral shape

Prototype of the

orthogonal shape

Linear combination

of the two shapes



Parametrization suitable for DE

→ EFT of DE
• Matter (in addition to DE) needs to be added 

→ Jordan frame description is convenient

• In Jordan frame the coefficient of the 4d Ricci 

scalar is not constant.

Gubitosi, Piazza, Vernizzi 2012

Gleyzes, Langlois, Piazza, Vernizzi 2013
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EFT on Minkowski
background

EFT on cosmological 
background

EFT on arbitrary 
background

= ghost condensation

= EFT of inflation/dark energy

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

Creminelli, Luty, Nicolis and Senatore 2006; Cheung, Creminelli, Fitzpatrick, Kaplan and  
Senatore 2007; Gubitosi, Piazza, Vernizzi 2012; Gleyzes, Langlois, Piazza, Vernizzi 2013

• Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
• All terms that respect spatial diffeo must be included in the EFT action.
• Derivative & perturbative expansions
• Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity with timelike scalar profile

= Main subject of this talk



It is not straightforward… 

• General action in the unitary gauge ( = )

• Taylor expansion around the background

• The whole action is invariant under 3d diffeo

but each term is not…

• Each coefficient is a function of (, xi) but 

cannot be promoted to an arbitrary function. 



Solution: consistency relations
• The chain rule

relates xi-derivatives of an EFT coefficient to other 

EFT coefficients, and leads to consistency relations.

• The consistency relations ensure the spatial 

diffeo invariance. 

• Taylor coefficients should satisfy the consistency 

relations but are otherwise arbitrary. 

• (No consistency relation for -derivatives.)



EFT action

• EFT coefficients should satisfy the consistency 

relations but are otherwise arbitrary

• One can restore 4d diffeo by Stueckelberg trick

• Easy to find dictionary between EFT coefficients 

and theory parameters

• Can be applied to arbitrary background with 

timelike scalar profile



EFT on Minkowski
background

EFT on cosmological 
background

EFT on arbitrary 
background

= ghost condensation

= EFT of inflation/dark energy

Consistency relations 

Taylor expansion of the general action

S is invariant under spatial diffeo but the background breaks it.

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

Creminelli, Luty, Nicolis and Senatore 2006; Cheung, Creminelli, Fitzpatrick, Kaplan and  
Senatore 2007; Gubitosi, Piazza, Vernizzi 2012; Gleyzes, Langlois, Piazza, Vernizzi 2013

• Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
• All terms that respect spatial diffeo must be included in the EFT action.
• Derivative & perturbative expansions
• Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity with timelike scalar profile

Mukohyama and Yingcharoenrat, JCAP 09 (2022) 010

= Main subject of this talk



Conformal/disformal transformation

• EFT of DE is usually written in Jordan 

frame, to which matter minimally couple

• EFT of BH perturbations is studied mainly 

in an almost Einstein frame (with constant 

coefficient of 4d Ricci scalar)

• In order to bridge these EFTs, one needs 

to know how EFT coefficients are mapped 

under conformal/disformal transformations

[arXiv: 2407.15123 w/E.Seraille, K.Takahashi & V.Yingeharoenrat]



GW speed near BH 

• GW170817 → |cGW – 1| < 10-15 @ cosmological 

scale → constraint on DE/MG models

• Typically, one requires cGW=1 on FLRW for all 

H(t) & (t) @ low E

• Does this imply cGW=1 around BH @ low E?

• Yes, in Horndeski theory [G4,X=0=G5].

• No, in general, e.g. in cubic HOST theories.

• In EFT, the following operator does the job. 

[arXiv: 2407.15123 w/E.Seraille, K.Takahashi & V.Yingeharoenrat]

traceless part of 

background K




Stealth BH with  = qt+(r) 
• Schwarzschild in k-essence (Mukohyama 2005)

• Schwarzschild-dS in Horndeski theory (Babichev & Charmousis 2013, 

Kobayashi & Tanahashi 2014) Schwarzshild-dS in DHOST (Ben Achour & Liu 

2019, Motohashi & Minamitsuji 2019)

• Kerr-dS in DHOST (Charmousis & Crisotomi & Gregory & Stergioulas 2019)

• However, perturbations around most of those stealth 

solutions are infinitely strongly coupled (de Rham & Zhang 2019) . 

This means the solutions cannot be trusted.

• Fortunately, Scordatura (= detuning of degeneracy condition) 

solves the strong coupling problem (Motohashi & Mukohyama 2019), if 

and only if the scalar profile is timelike.

• EFT of ghost condensation already includes scordatura (Arkani-

Hamed & Cheng & Luty & Mukohyama 2004)

• Approximate Schwarzschild in ghost condensation (Mukohyama 

2005). Also in quadratic HOST (DeFelice & Mukohyama & Takahashi, JCAP 03 

(2023) 050).



Applications to BHs with 

timelike scalar profile
• Background analysis for spherical BH 

[arXiv: 2204.00228 w/ V.Yingcharoenrat]

• Odd-parity perturbation around spherical BH

→ Generalized Regge-Wheeler equation
[arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]

[see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

→ Quasi-normal mode
[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]



• Non-singular BH

background

• Set p4 = M3
2 = 0 to ensure cT

2 = 1 @ r→∞ 

• Fundamental QNM frequency

• Overtones show more prominent deviations 
[Konoplya, arxiv: 2310.19205]

QNM of Hayward BH
[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]



Applications to BHs with 

timelike scalar profile
• Background analysis for spherical BH 

[arXiv: 2204.00228 w/ V.Yingcharoenrat]

• Odd-parity perturbation around spherical BH

→ Generalized Regge-Wheeler equation
[arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]

[see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

→ Quasi-normal modes deviate from GR
[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

→ Static Tidal Love number
[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]



• TLNs  regularity @ horizon

• Analytic continuation of multipole index l

→ Separation of growing & decaying sols.

• Expansion w.r.t. 

• Static tidal Love numbers are non-vanishing

Tidal Love number of Hayward BH
[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]
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→ (In)stability of greybody factors 
[arXiv: 2406.04525 w/N.Oshita and K.Takahashi]



(In)stability of greybody factor 
[arXiv: 2406.04525 w/N.Oshita and K.Takahashi]
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Applications to BHs with 

timelike scalar profile
• Background analysis for spherical BH 

[arXiv: 2204.00228 w/ V.Yingcharoenrat]

• Odd-parity perturbation around spherical BH

→ Generalized Regge-Wheeler equation
[arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]

[see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

→ Quasi-normal modes deviate from GR
[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

→ Static Tidal Love numbers are non-vanishing
[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]

→ (In)stability of greybody factors 
[arXiv: 2406.04525 w/N.Oshita and K.Takahashi]

• Even-parity perturbation around spherical BH
[work in progress w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

• Rotating BH
[work in progress w/ N.Oshita & K.Takahashi & Z.Wang & V.Yingcharoenrat]



SUMMARY



• Majorities of inflation/DE models are described by scalar-
tensor gravity with timelike scalar profile.

• Ghost condensation universally describes all scalar-tensor 
theories of gravity with timelike scalar profile on Minkowski
background respecting time translation / reflection 
symmetry (up to shift / reflection of the scalar).

• Extension of ghost condensation to FLRW backgrounds 
results in the EFT of inflation/DE.

• These EFTs provide universal descriptions of all scalar-tensor 
theories of gravity with timelike scalar profile on each 
background, including Horndeski theory, DHOST theory, U-
DHOST theory, and more. 

• EFT of scalar-tensor gravity with timelike scalar profile on 
arbitrary background was developed. Consistency relations 
among EFT coefficients ensure the spatial diffeo invariance. 
Applicable to BHs with scalar field DE. 

• Any other applications? Let’s discuss!
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background

EFT on arbitrary 
background

= ghost condensation

= EFT of inflation/dark energy

= EFT of BH perturbations

Consistency relations 

Taylor expansion of the general action

S is invariant under spatial diffeo but the background breaks it.

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

Creminelli, Luty, Nicolis and Senatore 2006; Cheung, Creminelli, Fitzpatrick, Kaplan and  
Senatore 2007; Gubitosi, Piazza, Vernizzi 2012; Gleyzes, Langlois, Piazza, Vernizzi 2013

• Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
• All terms that respect spatial diffeo must be included in the EFT action.
• Derivative & perturbative expansions
• Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity with timelike scalar profile
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Vector-tensor

Residual symmetry in the unitary gauge
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Further extension of the web of EFTs

Residual symmetry in the unitary gauge

leaving invariant

Vector-tensorScalar-tensor

See also "CMB spectrum in unified EFT of 
dark energy: scalar-tensor and vector-
tensor theories", arXiv: 2405.04265
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Backup slides



Stealth solutions in k-essence

• Action in Einstein frame

• EOMs

• Stealth sol with X = X0, where P’(X0)=0

• X = X0 (≠ 0)

defines geodesic congruence

defines Gaussian normal coord.

Mukohyama 2005



Stealth solutions in k-essence

• Any metric locally admits Gaussian normal coord.

• If P’(X) has a real root X0 then any vacuum GR sol 

with                            locally leads to a stealth sol.

• Schwarzshild metric admits a “globally” well-behaved 

Gaussian normal coord. (Lemeitre reference frame)

• Stealth Schwarzschild

solution with                  ,

if P’(X) has a positive root X0

and if eff is canceled by bare

Mukohyama 2005
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Stealth solutions with  = qt+(r) 

• Schwarzschild in k-essence (Mukohyama 2005)

• Schwarzschild-dS in Horndeski theory (Babichev & 

Charmousis 2013, Kobayashi & Tanahashi 2014) Schwarzshild-dS in 

DHOST (Ben Achour & Liu 2019, Motohashi & Minamitsuji 2019)

• Kerr-dS in DHOST (Charmousis & Crisotomi & Gregory & Stergioulas

2019)

• However, perturbations around most of those stealth 

solutions are infinitely strongly coupled (de Rham & Zhang 

2019) . This means the solutions cannot be trusted.

• Approximately stealth solution in ghost condensate 

does not suffer from strong coupling (Mukohyama 2005). 

Why?



Origin of strong coupling
• EFT around stealth Minkowski sol. (= ghost 

condensate) → universal dispersion relation 

without the usual k2 term 

• For  = O(1) (>0), EFT is weakly coupled all 

the way up to ~M. [                            ]

• If eom’s for perturbations are strictly 2nd order 

(as in DHOST) then  = 0 and the dispersion 

relation loses dependence on k

→ strong coupling

• [For 2=cs
2k2, strong coupling @ E~           ]



Strong coupling scales
• EFT of inflation in decoupling limit

• If cs
2 ≃ const is not too small,         can be 

ignored. We further assume 0 < cs< 1.

(                     )



A solution: scordatura

• Detuning of degeneracy condition recovers

and uplifts the strong coupling 

scale to ~            . If the amount of detuning 

is at most of O(1) then an apparent ghost is 

heavy enough to be integrated out. 

• Scordatura = weak and controlled detuning 

of degeneracy condition

• Scordatura DHOST realizes 

ghost condensation near stealth

solutions while it behaves as 

DHOST away from them. educalingo.com

Motohashi & Mukohyama 2019



Strong coupling scales
• De Sitter limit = small cs

2 limit

for



Stealth solutions with  = qt+(r) 
• Schwarzschild in k-essence (Mukohyama 2005)

• Schwarzschild-dS in Horndeski theory (Babichev & Charmousis 2013, 

Kobayashi & Tanahashi 2014) Schwarzshild-dS in DHOST (Ben Achour & Liu 

2019, Motohashi & Minamitsuji 2019)

• Kerr-dS in DHOST (Charmousis & Crisotomi & Gregory & Stergioulas 2019)

• However, perturbations around most of those stealth 

solutions are infinitely strongly coupled (de Rham & Zhang 2019) . 

This means the solutions cannot be trusted.

• Fortunately, Scordatura (= detuning of degeneracy condition) 

solves the strong coupling problem (Motohashi & Mukohyama 2019), if 

and only if the scalar profile is timelike.

• EFT of ghost condensation already includes scordatura (Arkani-

Hamed & Cheng & Luty & Mukohyama 2004)

• Approximate Schwarzschild in ghost condensation (Mukohyama 

2005). Also in quadratic HOST (DeFelice & Mukohyama & Takahashi, JCAP 03 

(2023) 050).



Approximately stealth BH in 

ghost condensate
• Two time scales:  tBH <<  tGC ~ MPl

2/M3

• For tBH << t << tGC, a usual BH sol is a good 

approximation → approximately stealth

2

2 2 2( , )
( , )

gr dR
g dx dx d r R d

r R

 

  


= − + + 

2/3
3

( , ) ( )
2

gr R r R 
 

= −  

Schwarzschild metric:

2M = Exact sol in the absence 

of higher derivative terms 

Mukohyama 2005

R



 =  + E p

= −



Approximately stealth BH in ghost 

condensate

• A tiny tadpole due to higher derivative terms is 

canceled by extremely slow time-dependence.

• As a result,  =  starts accreting gradually.

• XTE J1118+480 (Mbh~7Msun,r~3Rsun,t~240Myr or 7 

Gyr)         M<1012GeV much weaker than M<100GeV

Mukohyama 2005; Cheng, Luty, Mukohyama and Thaler 2006






2/3
2 2

0 2

0

9 3
1

4 4

Pl
bh bh

Pl bh

M M v
M M

M M

  
=  +  

   
v : advanced null coordinate

 : coefficient of h.d. term

See DeFelice, Mukohyama, Takahashi, 

arXiv: 2212.13031 for a similar formula 

in more general HOST.



Summary of stealth BH with 

timelike scalar profile

• Stealth solutions = backgrounds with GR metric and non-trivial scalar 

profile → examples of BH solutions with timelike scalar profile

• They suffer from strong coupling problem, which is solved by 

scordatura (= controlled detuning of degeneracy condition)

• DHOST/Horndeski do not include scordatura but U-DHOST does 

(DeFelice, Mukohyama, Takahashi 2022) . 

• EFT of ghost condensation already included scordatura. 

• Approximately stealth solutions in ghost condensation (Mukohyama 2005)

and in more general HOST with scordatura (DeFelice & Mukohyama & 

Takahashi, arXiv: 2212.13031) are stealth at astrophysical scales (no need 

for screening?, c.f. arXiv:1402.4737 by Davis, Gregory, Jha & Muir) and are free 

from the strong coupling problem.



• Cosmology and black holes (BHs) play as important 

roles in gravitational physics as blackbody radiation 

and hydrogen atoms did in quantum mechanics. 

• In cosmology a time-dependent scalar field can act 

as dark energy (DE), while BHs serve as probes of 

strong gravity. We then hope to learn something 

about the EFT of DE by BHs. 

• This would require the scalar field profile to be 

timelike near BH. Otherwise, the two EFTs, one for 

DE and the other for BH, can be unrelated to each 

other (unless a UV completion is specified). 

EFT of scalar-tensor gravity on arbitrary 

background with timelike scalar profile



Applications to BHs with 

timelike scalar profile
• Background analysis for spherical BH 

[arXiv: 2204.00228 w/ V.Yingcharoenrat]



Background analysis
• Spherically symmetric, static background

• Lemaitre coordinates

• Shift and Z2 symmetries



• Tadpole cancellation condition



Applications to BHs with 

timelike scalar profile
• Background analysis for spherical BH 

[arXiv: 2204.00228 w/ V.Yingcharoenrat]

• Odd-parity perturbation around spherical BH

→ Generalized Regge-Wheeler equation
[arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]

[see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]



Odd-parity perturbations
• General odd-parity perturbations

• Gauge fixing (         )

• Master variable



• Quadratic action



• Sound speeds

• For p4=0, i.e.

• Stability



• Going back to Schwarzschild coordinates

• Generalized Regge-Wheeler equation



Applications to BHs with 

timelike scalar profile
• Background analysis for spherical BH 

[arXiv: 2204.00228 w/ V.Yingcharoenrat]

• Odd-parity perturbation around spherical BH

→ Generalized Regge-Wheeler equation
[arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]

[see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

→ Quasi-normal mode
[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]



QNM of stealth Schwarzschild BH

• Background with 2m=1

A(r) = B(r) = 1 – 1/r

• Set p4 = 0 to make c
2 finite @ r→∞ 

• Generalized Regge-Wheeler potential

• QNM frequency

[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

→ (cT
2
→ 1)



• Non-singular BH

background

• Set p4 = M3
2 = 0 to ensure cT

2 = 1 @ r→∞ 

• Fundamental QNM frequency

• Overtones show more prominent deviations 
[Konoplya, arxiv: 2310.19205]

QNM of Hayward BH
[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]



Applications to BHs with 

timelike scalar profile
• Background analysis for spherical BH 

[arXiv: 2204.00228 w/ V.Yingcharoenrat]

• Odd-parity perturbation around spherical BH

→ Generalized Regge-Wheeler equation
[arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]

[see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

→ Quasi-normal modes deviate from GR
[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

→ Static Tidal Love number
[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]



• TLNs  regularity @ horizon

• Analytic continuation of multipole index l

→ Separation of growing & decaying sols.

• Expansion w.r.t. 

• Static tidal Love numbers are non-vanishing

Tidal Love number of Hayward BH
[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]



Applications to BHs with 

timelike scalar profile
• Background analysis for spherical BH 

[arXiv: 2204.00228 w/ V.Yingcharoenrat]

• Odd-parity perturbation around spherical BH

→ Generalized Regge-Wheeler equation
[arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]

[see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

→ Quasi-normal modes deviate from GR
[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

→ Static Tidal Love numbers are non-vanishing
[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]

→ (In)stability of greybody factors 
[arXiv: 2406.04525 w/N.Oshita and K.Takahashi]



(In)stability of greybody factor 
[arXiv: 2406.04525 w/N.Oshita and K.Takahashi]

Reflectivity Greybody factor
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Applications to BHs with 

timelike scalar profile
• Background analysis for spherical BH 

[arXiv: 2204.00228 w/ V.Yingcharoenrat]

• Odd-parity perturbation around spherical BH

→ Generalized Regge-Wheeler equation
[arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]

[see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]

→ Quasi-normal modes deviate from GR
[arXiv: 2304.14304 w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

→ Static Tidal Love numbers are non-vanishing
[arXiv: 2405.10813 w/C.G.A.Barura, H.Kobayashi, N.Oshita, K.Takahashi, V.Yingcharoenrat]

→ (In)stability of greybody factors 
[arXiv: 2406.04525 w/N.Oshita and K.Takahashi]

• Even-parity perturbation around spherical BH
[work in progress w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]

• Rotating BH
[work in progress w/ N.Oshita & K.Takahashi & Z.Wang & V.Yingcharoenrat]



Extension of EFT of inflation to 
arbitrary background

= EFT of BH perturbations

• We call it EFT of BH perturbations simply because we 
applied it to BH in the presence of DE.

• Can be applied to any background as far as the scalar 
profile is timelike.

Mukohyama and Yingcharoenrat, JCAP 09 (2022) 010



Extension of EFT of inflation to 
arbitrary background

= EFT of BH perturbations

• We call it EFT of BH perturbations simply because we 
applied it to BH in the presence of DE.

• Can be applied to any background as far as the scalar 
profile is timelike.

• Can be applied to e.g. astrophysics after inflation with 
ever rolling inflaton, such as ghost inflation. 

Mukohyama and Yingcharoenrat, JCAP 09 (2022) 010



!0



NOT SLOW ROLL

Scale-invariant perturbations
cf. tilted ghost inflation, Senatore (2004)


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~

 ~ 2M

scaling dim of 

[compare                ]
Pl

H

M 

Similar to 

hybrid inflation but

Arkani-Hamed, Creminelli, Mukohyama and Zaldarriaga 2004

Ghost inflation



V



Prediction of Large non-Gauss.

Leading non-linear interaction

non-G of  ~
H

M

 
 
 

1/4 scaling dim of op.
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dtd x
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 

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

[Really “0.1”                  ~ 10-2. VISIBLE.

In usual inflation, non-G ~             ~ 10-5 too small.]

( ) 5/1
/ 

( ) /

fNL ~ 82 -4/5,  equilateral type

Planck 2018 constraint (equilateral type)

fNL = −26 ± 47 (68% CL statistical) ➔ −0.89 ≤ 𝛽𝛼−4/5 ≤ 0.26



Extension of EFT of inflation to 
arbitrary background

= EFT of BH perturbations

• We call it EFT of BH perturbations simply because we 
applied it to BH in the presence of DE.

• Can be applied to any background as far as the scalar 
profile is timelike.

• Can be applied to e.g. astrophysics after inflation with 
ever rolling inflaton, such as ghost inflation. 

• Any other applications? Depending on them, we may 
have to change the name… Let’s discuss!

Mukohyama and Yingcharoenrat, JCAP 09 (2022) 010



More backup slides



at Short and Long Scales

There are Frontiers in Physics:



10-10 m

10-15 m

10-18 m

There is a 

story going 

into smaller 

and smaller 

scales.



Solar system  1015cm

Cluster 
of 
galaxies

Mpc

Large scale 
structure

100 Mpc

Also at Large scales

Galaxy
10 kpc

(pc = 3.3 light year=3.1×1018 cm)



Physics @ largest scale

COSMOLOGY



History of Our Universe

http://map.gsfc.nasa.gov/

Inflation
Dark energy

Dark matter

Cosmic microwave 

background



History of Our Universe

http://map.gsfc.nasa.gov/

Inflation
Dark energy

Dark matter

3 major mysteries 

in modern 

cosmology

Cosmic microwave 

background

We (almost) know they are/were there... 

But, we don’t know what they are.



Two phases of the accelerated 

expansion of the universe

• Inflation in the early universe

• Accelerated expansion of the late-time 

universe driven by dark energy



Inflation generates tiny 

inhomogeneities

• Quantum effects become important 

in the early universe

• Quantum mechanically, the inflaton

 （alarm clock） moves forward or 

backward slightly due to fluctuations

• Exponential expansion stretches 

microscopic fluctuations to 

macroscopic lengthes

• If inflation ends a little earlier (or 

later) than the surrounding area, the 

energy density will be lower (higher) 

than the surrounding area. 



V()

reheating
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Inflation generates tiny 

inhomogeneities

• Quantum effects become important 

in the early universe

• Quantum mechanically, the inflaton

 （alarm clock） moves forward or 

backward slightly due to fluctuations

• Exponential expansion stretches 

microscopic fluctuations to 

macroscopic lengthes

• If inflation ends a little earlier (or 

later) than the surrounding area, the 

energy density will be lower (higher) 

than the surrounding area. 
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V()

reheating



Perfect match with observation 



The composition of the universe:

95% unknown!

６９％ dark energy

２６％
dark matter

5% ordinary matter



Cosmic microwave background

Inflation, dark energy & dark matter 

are (almost) confirmed by



& Supernava observation

http://supernova.lbl.gov/

Explosion of a 

heavy star

10 billion times 

brighter than the 

sun

Doppler effect~expansion of universe
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Two phases of the accelerated 

expansion of the universe

• Inflation in the early universe

• Accelerated expansion of the late-time 

universe driven by dark energy

We (almost) know they (or something like them)

are/were there... 

But, we don’t know what they are.



• Cosmology and black holes (BHs) play as important 

roles in gravitational physics as blackbody radiation 

and hydrogen atoms did in quantum mechanics. 



• Cosmology and black holes (BHs) play as important 

roles in gravitational physics as blackbody radiation 

and hydrogen atoms did in quantum mechanics. 

• In cosmology a time-dependent scalar field can act 

as dark energy (DE), while BHs serve as probes of 

strong gravity. We then hope to learn something 

about the EFT of DE by BHs. 



• Cosmology and black holes (BHs) play as important 

roles in gravitational physics as blackbody radiation 

and hydrogen atoms did in quantum mechanics. 

• In cosmology a time-dependent scalar field can act 

as dark energy (DE), while BHs serve as probes of 

strong gravity. We then hope to learn something 

about the EFT of DE by BHs. 

• This would require the scalar field profile to be 

timelike near BH. Otherwise, the two EFTs, one for 

DE and the other for BH, can be unrelated to each 

other (unless a UV completion is specified). 



 = const.

Timelike gradient

Black hole
https://www.eso.org/public/images/eso1907a/

Dark energy
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Spacelike gradient

Timelike gradientUnlucky case

Black hole

Taylor expansion 

around X=XDE>0
(1, 2, 3,…)

Taylor expansion

around X=XBH<0
(1, 2, 3,…)

Dark energy

Gn(X)

Gn(X)
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 = const.

Timelike gradient Timelike gradient

Lucky case

Black hole Dark energy

Gn(X)

Taylor expansion 

around X=XDE>0
(1, 2, 3,…)

Taylor expansion 

around X=XBH>0
(’1, ’2, ’3,…)

Gn(X)



 = const.

Timelike gradient Timelike gradient

Lucky case

Black hole Dark energy

EFT
(1(t,xi), 2(t,xi), 3(t,xi),…)

Gn(X)Gn(X)

EFT
(1(t,xi), 2(t,xi), 3(t,xi),…)



• Cosmology and black holes (BHs) play as important 

roles in gravitational physics as blackbody radiation 

and hydrogen atoms did in quantum mechanics. 

• In cosmology a time-dependent scalar field can act 

as dark energy (DE), while BHs serve as probes of 

strong gravity. We then hope to learn something 

about the EFT of DE by BHs. 

• This would require the scalar field profile to be 

timelike near BH. Otherwise, the two EFTs, one for 

DE and the other for BH, can be unrelated to each 

other (unless a UV completion is specified). 

EFT of scalar-tensor gravity on arbitrary 

background with timelike scalar profile
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