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1. Introduction



The Standard Model (SM)
• SM is the most general renormalizable quantum field theory with the gauge group 

 
and three generations of fermions and a scalar transforming under the representations 

• SM is formulated by the Lagrangian density: 

• SM contains 19 parameters: 3 gauge couplings in , 13 parameters in  (12 
real and 1 phase), 1 scalar coupling  and 1 dimensionful parameter  in .


• There is an additional parameter  coming from non-trivial topological 
configuration of gauge field localized in the spacetime (the instantons). (See e.g. Mario 
Reig, )

ℒG + ℒF ℒY
λ mh ℒH

θ̄QCD ≲ 10−10

ℒ ⊃ θ trF ∧ F ∼ θ ϵμνρσFa
μνFa

ρσ ∼ θ tr FF̃ .

ℒSM = ℒG + ℒF + ℒY + ℒH .

𝒢SM = SU(3)C × SU(2)L × U(1)Y ,

(3, 2)1/6 + (3̄, 1)−2/3 + (3̄, 1)1/3 + (1, 2)−1/2 + (1, 1)1 and (1, 2)1/2 .
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Facts about the SM
• SM is not complete, it must be an Effective Field Theory (EFT) 

parameterized by the cut-off scale  and a few dimensionless coefficients 
 (e.g. ) 

Λ
ci gi, Yij, θ, …
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Big questions in BSM

• Two big questions naturally arise concerning:


• 1. What is the origin of parameters in the Standard Model?


• 2. What is the cutoff scale of the Standard Model? 
 
To certain extent, these answers can be found in Grand Unified Theory
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2. First Principle model building



Common strategies for BSM model building 

8

Top down

Bottom up

Integrating in: adding new degrees of freedom above  and writing down 
every local operator consistent with symmetries. Theoretical or experimental 
constraints must be imposed to ensure the consistency of the model.

ΛSM

eiSIR[ϕ] = ∫ 𝒟ΦeiSUV[Φ,ϕ]Integrating out:

ℒeff = ℒren +
∞

∑
n=d

cn𝒪n

Λn−d

The more constraints added for model building, the less free-
parameters are allowed which rendering the model more predictive! 



Principles behind EFT approach

• Symmetry principle: all terms allowed by symmetries are allowed. Renormalizability 
is certainly not required. The symmetry  is a free parameter.


• UV/IR decoupling principle: low-energy physics can be effectively described 
independently of high-energy physics within the EFT framework. (Philosophy of 
Wilson’s Renormalization group)


• Naturalness principle: coupling constants in a theory are of order one in the 
appropriate mass scale. Therefore, if any parameter is unusually small or large, a 
good explanation, such as an underlying symmetry, is require. 

𝒢Lorentz × 𝒢Gauge

9

Agmon, Bedroya, Kang, Vafa ’22



An example: non-SUSY SO(10) GUT
• There are a few other motivations to consider the non-SUSY SO(10) GUT 

explicitly, such as the charge quantization, parity violation, absence of low 
energy supersymmetry, etc. 


• A minimal non-SUSY SO(10) model usually contains the following 
additional particles: right-handed neutrinos, axions, and heavy Higgses.


• The exact matter representation needed should be considered together 
with the constraints.
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Consider building a BSM model where the symmetry group and representations are free 
parameters. For the model to be phenomenologically-consistent, it must satisfy certain 
constraints, for examples:


1. Anomaly cancellation


2. Vacuum structure (alignment) (talk by A. Pilaftsis)


3. Stable (long-lived) vacuum (talk by K. Kowalska)


4. UV completion: asymptotic free/safe 


5. Non-trivial constraints from gravity


6. Unification of fundamental couplings

Constraints on GUT model building
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UV completion

Inconsistent EFT

Consistent EFT

Beest, et al. ’21 



3. Constraints from unification
Example 1: unification of gauge couplings

Example 2: unification of Yukawa couplings



Ex1: Unification of gauge couplings
• The unification of fundamental couplings is a specific type of “Reduction” (see 

talks by G. Patellis and M. Mondragon).


• The RGEs are a set of differential equations that takes the form: 
 

• It has an approximate solution:


• All three gauge couplings unify at a scale implies:
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dα−1
i (μ)

d ln μ
= −

ai

2π
− ∑

j

bij

8π2α−1
j (μ)

α−1
i (μ) = α−1

i (μ0) −
ai

2π
ln

μ
μ0

−
1

4π ∑
j

bij

aj
ln

αj(μ)
αj(μ0)

+ Δi
Y

α−1
1 (ΛG) = α−1

2 (ΛG) = α−1
3 (ΛG) = α−1

U (ΛG)

γi



•  The two-loop corrections can be approximated by:


 
 

• The original 2-loop RGEs becomes: 
 

• With initial conditions ( ) and the boundary conditions:αi(MW)
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Ex1: Unification of gauge couplings

γ𝒢
i = −

1
4π ∑

j

b𝒢
ij

a𝒢
j

ln
αj,𝒢(μ)
αj,𝒢(μ0)

≈ −
αU

8π2
θ𝒢

i ln
μ
μ0

θ𝒢
i ≡ ∑

j

b𝒢
ij

ln(1 + a𝒢
j αUt)

a𝒢
j αUt

and t =
1

2π
ln

μ
μ0

α−1
i,𝒢(μ) = α−1

i,𝒢(μ0) − ( a𝒢
i

2π
+

θ𝒢
i

8π2
αU) ln

μ
μ0

α−1
1 (ΛG) = α−1

2 (ΛG) = α−1
3 (ΛG) = α−1

U (ΛG)

[Djouadi, Fonseca, RO, Raidal, ’22] 
(Appendix A2)

[Langecker & Polonsky ’92]



Ex1: Unification of gauge couplings
• In particular in non-SUSY SO(10) with only one intermediate scale, this 

can be approximately solvable: 
 
 
 
 
 
 
 
 
 

ln ( MI

MZ ) =
(α−1

1EW
− α−1

3EW
) − C𝒢I

(α−1
2EW

− α−1
3EW

) + D𝒢I

C𝒢I
Δ𝒢321

32 − Δ𝒢321
31

ln ( MU

MI ) = −
α−1

2EW
− α−1

3EW

Δ𝒢I
3I2LI

−
Δ𝒢321

32

Δ𝒢I
3I2LI

ln ( MI

MZ ) −
D′￼𝒢I

Δ𝒢I
3I2LI

[Djouadi, Fonseca, RO, Raidal, ’22]

Δ𝒢
ij =

a𝒢
i − a𝒢

j

2π
+

θ𝒢
i − θ𝒢

j

8π2
αU .

C𝒢422
= 3Δ𝒢422

42R
/(5Δ𝒢422

42L
) , C𝒢3221

= (3Δ𝒢3221
32R

+ 2Δ𝒢3221
3B−L )/(5Δ𝒢3221

32L
) ,



τ(p → e+π0) ≃ (7.47 × 1035yr)( MU

1016 GeV )
4

( 0.03
αU )

2

Predictions for gauge unification

[Meloni, Ohlsson, Pernow, ’20]



Unification of gauge couplings in non-SUSY SO(10)

Pati-Salam (422) Left-Right Symmetry (3221)
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𝒢422 = SU(4) × SU(2)L × SU(2)R 𝒢3221 = SU(3) × SU(2)L × SU(2)R × U(1)B−L



Ex2: Unification of Yukawa couplings
• Yukawa unification are regarded as boundary conditions for the RGEs.

• Yukawa couplings flows to different values in IR because of RGEs.
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[Croon, Gonzalo, Graf, Košnik, White ’19]

[Djouadi, RO, Raidal, ’21]

The idea of Yukawa unification 

has been extended to

non-supersymmetric case



Ex2: Unification of Yukawa couplings
• Yukawa unification are regarded as boundary conditions for the RGEs.

• Yukawa couplings flows to different values in IR because of RGEs.
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The idea of Yukawa unification 

has been extended to

non-supersymmetric case

[Djouadi, RO, Raidal, ’21]

[Djouadi, Fonseca, RO, Raidal, ’22]

How to motivate the 

Yukawa unification?

The original motivation of GUT:

Unification of matter representation:

Fermions:    ( )


Scalars:    ( )

16 ⟶ 27 = 16 + 10 + 1 E6

10 + 126 ⟶ ? E6

What is the implication

of Yukawa unification?

There is a common origin 

for Yukawa hierarchy 

for a single generation.



Common origin of Yukawas in minimal SO(10)
• In , we calculate the CG decomposition of spinor product  and found:   

 

• As  is a complex representation,  must be associated to a complex field.


• An -symmetric Yukawa section does not involve the coupling , hence, 
there is no such an interaction at leading order. Its absence can be understood by 
the fact that  contains an extra U(1) subgroup which commutes with SO(10).


• After CG decomposition, the SO(10) Yukawa couplings are unified by:

E6 27 × 27

351′￼ 10H

E6 16F16F10*

E6
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Y × 27F ⋅ 27F ⋅ 351′￼H ⊃ c10Y × 16F ⋅ 16F ⋅ 10H + c126Y × 16F ⋅ 16F ⋅ 126H + ⋯

Y10

Y126
=

c10Y
c126Y

=
c10

c126
=

3
5

351′￼⊃ 10 + 126 + ⋯

[Fonseca, ’21]
[Babu, Bajc, Susič, ’15]



What happens at the intermediate scale?
• The mass should be continuous at the intermediate scale . Therefore some 

matching conditions can be deduced for Yukawa couplings in both EFTs 
above or below . 


• From 422 model:  

• From 2HDM: 

• These relations can be simplified to be (assuming no tree-level FCNCs):

MI

MI
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mt =
1

2
Ytvu , mb =

1

2
Ybvd , mτ =

1

2
Yτvd .

mt =
vu

10

2
Y422

10 +
vu

126

4 2
Y422

126 , mb =
vd

10

2
Y422

10 +
vd

126

4 2
Y422

126 , mτ =
vd

10

2
Y422

10 −
3vd

126

4 2
Y422

126 .

(Y422
10 (MI))2 = (Y422

126(MI))2 (3Yb(MI) + Yτ(MI))2

16 [(Y422
126(MI))2 − (Yb(MI) − Yτ(MI))2]



Constraints from Yukawa unification
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Visualizing the matching conditions



Constraints from Yukawa unification
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(Numerical) Solutions of RGEs + matching conditions



Implications of Yukawa unification
• The constraint from unification of Yukawa couplings imposes non-trivial 

relations on the parameters of the scalar sector, which is described by the 
(numerical) solution of RGEs of Yukawa couplings with particular boundary 
conditions and matching conditions.


• The original dimesionless parameters (Yukawa couplings) will be related to 
the ratio of vevs ( ). The unification of Yukawa couplings in our model 
implies that , which can be tested in future collider experiment. 
[e.g. PDG ’23]


• Yukawa unification implies that the Yukawa hierarchy of a single generation 
can be explained dynamically by higher rank symmetry and RGEs.

tan β
tan β ≲ 30
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Conclusions
• Many constraints can be imposed for GUT model buildings. The more 

constraints we have, the less free-parameters are allowed, and the 
more predictive the model will be! 


• In particular, unification of fundamental couplings severely constrains a 
given GUT model. We use two explicit examples in non-SUSY SO(10) 
models to explain how such constraints reduce free parameters in our 
models by performing explicit RGEs analysis.
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Thank you very much for your attention!
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• Counting SM chiral fermions of a single generation: 
8 Left-handed fermions:   

7 Right-handed fermions:  


• All these fermion can be embedded into a single 16-dimensional spinor 
representation of SO(10) group:  , with an additional right-handed fields 
identified as the right-handed neutrino:   
 

 

uc1
L , dc1

L , uc2
L , dc2

L , uc3
L , dc3

L , ℓL, vℓ
L

uc1
R , dc1

R , uc2
R , dc2

R , uc3
R , dc3

R , ℓR

16F
vℓ

R

16F ⊃ (uc1
L , dc1

L , uc1
R , dc1

R , uc2
L , dc2

L , uc2
R , dc2

R , uc3
L , dc3

L , uc3
R , dc3

R , ℓL, vℓ
L , ℓR, vℓ

R)

Fermion representations in SO(10)
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 vℓ
R



Fermion masses in minimal SO(10)
•  The “minimal SO(10) model” have the following Yukawa couplings:


        (without U(1) PQ)


• The real field  and  can be combined into a single complex field  by 
introducing an additional U(1) PQ symmetry, reducing the above Yukawa to:





• Extensive numerical fits to fermion masses and mixings are carried out for the above 
model (Joshipura et al. ’11, Dueck et al. ’13, Altarelli et al. ’13, Meloni et al. ’14)

−ℒYukawa = 16F(Y1010 + Y10*10* + Y126126H)16F

10 10* 10H

−ℒYukawa = 16F(Y1010H + Y126126H)16F
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Unification of fundamental couplings
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The survival hypothesis

• The survival hypothesis: scalars should have masses of order 1 at the 
symmetry breaking scale (the GUT scale), unless there are symmetries to 
protect their masses. (Again motivated by Naturalness)


• Only certain scalar components from  and  representations can 
acquire small vevs, so they can stay light below the GUT scale;

10H 126H



The EFT at intermediate scale
• The EFT at the intermediate scale should be left-right symmetric in the 

discussed breaking chains: it is a left-right model where the left-handed and 
right-handed fermions are coupled via a bi-doublet scalar field as





• The  right-handed symmetry will be broken by the right-handed 
triplet field , which acquires an intermediate scale masses.


• Below the intermediate scale, we can integrate out the heavy gauge bosons 
and decouple most scalars except for the (two) Higgs doublet fields. So we 
should end up with a two Higgs doublet model (2HDM) at lower energy. 

F̄L(Y10Φ10 + Y126Σ126)FR + YRFT
RCΔRFR + h . c .

SU(2)R
ΔR



SO(10) as BSM model
• SO(10) models generalize the gauge group of SM to a larger gauge symmetry. The 

vacuum structure is much more complicated with many different phases. We can 
have different intermediate breaking patterns.


• The fermion within one generation plus a right-handed neutrino can all be 
embedded into a single representation  of SO(10).


• The SM Higgs field, with hypercharge +1/2, come from a decomposition of the 
SO(10) scalar field (can be a mixing of  and ).


• At the intermediate scale, we will have a left-right model, which is broken by the 
vev of . The right-handed neutrinos can thus get Majorana masses at the scale 

, and triggers the seesaw mechanism in this scenario.

16F

Φ10 Σ126

ΔR
ΔR



Proton decay
• Numerical result: proton decay only preferred the Pati-Salam (422) and 

Minimal Left-Right (3221) breaking chains of SO(10). 
 
 
 
 
 
 
 
 
 



Scalar multiplets in different breaking chains


