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What is the problem?

Parameter PLik best fit PLik(1] CamSpec(2] (21~ (1) Combined
Qe 0022383 002237 £ 0.00015 002229£000015  -05  0.02233£0.00015
Q. 012011 0.1200 =0.0012 -03 0.1198 £ 0.0012
1008y 1.040909 1.04092 = 0.00031 -02 1.04089 + 0.00031
T 00543 00544 200073 % -01 0.0540 £ 0.0074
In(10°A) 3.0448 3.044 20,014 3.041 £0.015 -03 3.043 0,014
n... 096605 0.9649 = 0.0042 0.9656 £ 0.0042 +02 0.9652 £ 0.0042
Qi ... 014314 01430200011 0.1426 £ 0.0011 -03 0.1428 0,001
Hylkms'Mpe] ... 6732 6736.+0.54 67392054 +0.1 67374054
Qu.............. 03158 0315300073 03142 £ 0.0074 -02 03147 £ 0.0074
Age(Gyrl ......... 137971 1379720023 13.805 £ 0.023 +04 13.801 £0.024
Ty . . 0.8120 0.8111 £ 0.0060 0.8091 + 0.0060 -03 0.8101 +0.0061
Sy =0o3(@u/03)° .. 08331 0.832£0.013 0.828 £0.013 -03 0.830 £0.013
PR . . 7.68 767073 7.61 £0.75 0.1 764 £0.74
1008, . . . 1.041085 1.04110 = 0.00031 1.04106 + 0.00031 -0.1 1.04108 +0.00031
raeMpel......... 147049 14709026 147.26£028 +06 147.18 £029

[NASA / WMAP Science Team, Planck2018 results: VI. Cosmological parameters]

2/43



How to Infer a Parameter

o Given a Cosmological Model M with parameters 6
o Standard ACDM (ns, to, 7, Ho, Qsh?, Qch?, Qmh?)

o ACDM with primordial features (ACDM + Amplitude,
Frequency, Phase)

@ Use Boltzmann Code (such as CLASS or CAMB)

@ Get Theoretical Prediction

3 Planck TT
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[ESA and the Planck Collaboration] 3/43



How to Infer a Parameter

@ Given some observational data D we can calculate a likelihood
L(D|0, M)

@ This is the probability of the data given our model M and
specific values of parameters 0
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But Bayes! There's more

@ Bayes Theorem:

P(A[B)P(B)
P(B|A) = ————~
. Prior x Likelihood
Posterior = -
Evidence

e With our Likelihood £ and a prior (6| M) we can calculate a
posterior probability P(6|D, M)

@ This allows us to update our likelihood and posterior
probability based on new data
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The circle of parameter inference
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What do we get out of this?

@ We will eventually reach a ‘termination criterion’

@ This should indicate we are confident in our predictions (to
some level of accuracy)

= GP fit, N = 80 samples
—— True Distribution

0.5 00 05 0.0 05 1.0 15
X1 X2
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The Good the Bad and the Ugly of MCMC

Good:
e Easy to implement
o Easy to parallelise
e Very litte extra computation required
e Scales mildly with number of dimensions
o Works great for most of cosmology (near-Gaussian posteriors)
Bad:
Not very good at finding the maximum
Requires a lot of function evaluations (O(10%) for N = O(10))
Ignores most of the information collected
Ugly:
e Struggles with not-nice posteriors (multi-modal,
non-Gaussian, etc..)
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Why is this an issue?

@ If the likelihood is not easy to evaluate or not a “nice” shape
MCMC doesn't work as well

@ In these cases, MCMC's random sampling methodology can
be problematic

@ Can we do better by not ignoring the information from
previous samples?
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Is there a solution?

@ Our goal is to design a more efficient method that learns the
shape of the posterior

@ We want to take advantage of what we already know by
deterministically selecting our next “sample”

@ Bayesian Optimisation may present a possible solution
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Bayesian Optimisation

Fundamentally consists of two steps:

© Regression - Guess the shape of the function based on the
data

@ Next Step Selection - Decide at which point to evaluate the
next function value
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1) Gaussian Process Regression (GPR)

@ A Gaussian Process is specified by a Kernel:
N (p(x), K(x,x))

Where K(x,x') is the covariance function and p(x) is the
mean of the \V/.

@ A simple example covariance function:

—u—iﬁ}
L

K(x,x) = Ae[

e Hyperparameters (h):
o Covariance of the data: K(x,x") (relationship between
parameters)
o Prior Width: A (Certainty in the prediction)
o Correlation Width: L (How much structure we expect in a
given distance)
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1) GPR Hyperparameters

Y Y

larger/smaller p@w

AandL
X X

@ Hyperparameters:

o Prior Width: A (Certainty in the prediction)
o Correlation Width: L (How much structure we expect in a
given distance)
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1) GPR Linear Algebra Machine

nvanance\f\ ovarianca,

| . Data \ i e \ / Function i Test Values \
npu | | | | | | | . |
P \ (Ex,yg) / \ 5T / \ K(:c;:p‘) / \ T /
NS N 4 NS NS
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NS
érget Means\ Jévar\ance}\ ’/Maranﬂl\\
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P! \ f(=D) / \ o ] \ EU%E‘E} /
N4 N NS

o E(h,x|y) is the probability of the model given the data

@ Maximising E as a function of hyperparameters allows us to
let the data decide the most appropriate GP!
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1) GPR What we get out

Uncertainty

Mean Prediction

~500 \

—600 + /
<— Data

092 093 094 095 096 097 0.98 0.99 1.00

@ We are replacing an expensive/complex posterior with a cheap
and easy GPR interpolation
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Bayesian Optimisation

© Regression - Guess the shape of the function based on the
data

@ Next Step Selection - Decide at which point to evaluate the
next function value
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2) Acquisition Function

@ GPR gives us a guess based on data

o This helps quantify uncertainty, but we want to calculate the
next sample in a smart way not randomly

@ We want to recreate how an informed human agent would fit
a function

@ Define some function dependant on GPR mean and
uncertainty that optimises a metric

o i.e Expected Improvement (Largest Value)
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What is Bayesian Optimisation?

@ Bayesian Optimisation is a decision making framework

@ The range of possible acquisition functions makes Bayesian
Optimisation very adaptable
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Bayesian Optimisation - Upsides and Downsides

Advantages:
o Efficiency
e Good at finding global maxima

Good at determing shape of posterior

Works for not-nice functions

Does not require fine tuning of settings by user
Disadvantages:
e Falls into the trap of dimensionality

e Significant extra computation
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Bayesian Optimisation vs MCMC

@ This computational overhead means there is a threshold in
terms of complexity and cost of posterior evaluations

@ Above this threshold, Bayesian Optimisation will peform
better than MCMC (Limit: cost — o0)
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Model Selection for Parameter Inference

@ To do parameter inference, we must choose a model
@ How do we choose this model?

@ How can we compare different models?

Bayesian Optimisation may also provide a solution to this!
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Model Selection with Bayesian Evidence

@ Bayes Theorem:

puup) — SR
o Probability of M given D:
Plaip) - PRLMPLM0

@ Bayesian Evidence (Bayes Factor):

B — P(D|M) = /d@ﬁ(D|«9,M)7r(0|M)
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Model Selection with Bayesian Evidence

@ To compare two different models M7 and Mo:

5. _ P(DIM)
27 P(D|Ma)

@ Mj is By» times more probable than M>
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Model Selection with Bayesian Evidence

@ Bayesian Evidence:

P(DIM) = / dO.L(D|9, M) (6] M)

@ This is the integral over our posterior prediction P(M|D)

@ Rewards models with accurate ‘risky‘ predictions over generic
ones - Occam's Razor
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What do we actually want to optimise?

@ The aim of this optimisation is to find the Bayesian Evidence
to some level of precision.

@ The evidence is a relative measure of how well a model fits
the data.

@ That is to say, we can use the evidence to compare how well
two models fit the data.
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Bayesian Optimisation for Bayesian Evidence

@ Integration over mutli-dimensional posteriors is still hard

o Typical methods require O(10° — 10°) evaluations for ACDM
with primordial features
o Nested Sampling [skilling 2004, Feroz et al. 2013, Handley et al. 2015]

@ We can use the same methodology as parameter inference -
replace the actual posterior with the GPR interpolation
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Optimising for the Evidence

@ We want our acquisition function ‘metric’ to be reducing the
uncertainty in the integral over parameter space

@ We use the Weighted Negative Integrated Posterior Variance

WNIPV(§) = / d0'cGP(6)(0)

e GP(0) - posterior if we pretend to take a sample at a new
point 6

@ o - GP Uncertainty
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Bayesian Optimisation (iteration 1)
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Bayesian Optimisation (iteration 2)
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Bayesian Optimisation (iteration 3)
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=550

-600 -

0.92 093 094 095 096 097 098 099 1.00

—61 —— WNIPV (Internal)

0.92 093 094 095 0956 097 098 099 1.00

30/43



Bayesian Optimisation (iteration 4)
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Bayesian Optimisation (iteration 5)
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Bayesian Optimisation (iteration 6)
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Bayesian Optimistian - Precision Threshold

@ Through each iteration the overal uncertainty of the GP goes
down

@ The maximum value of the acquisition function also reduces

@ This allows us to define a threshold or termination criteria on
the precision of the evidence
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The Finishing Touches

@ We use some smart priors to help deal with higher dimensional
parameter spaces (Sparse Axis-Aligned Subspaces) [Eriksson &
Jankowiak (2021)]

o All dimensions are innocent until proven guilty

@ We use Nested Sampling to get both a direct numerical
estimate of the uncertainty on the evidence as well as
uncorrelated samples of the posterior

@ We sample from hyperparameter space PDF with NUTS
(modified HMC) instead of optimising over it
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Preliminary Results - Banana
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Preliminary Results - Annular Function
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o Efficient ML algorithm for model selection and parameter
inference

e Preliminary improvement of 100x fewer samples

@ Best for difficult to obtain, expensive to calculate and
complicated likelihoods

@ Benchmark is to take fewer samples than other methods with
the same precision on evidence

@ Paper and code coming soon!
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Extra Slides

Extral Extra! Read all about it!
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ropolis-Hastin
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[Metropolis et al. (1953)]
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BOBE Algorithm
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Example Application: ACDM with modulated Primordial
Fluctuations [Jan Hamann & Julius Wons, 2021]

BayOp Samples
—— Planck Best Fit

-15} Running Log Osc

0 10 20 30 40 50 60 70 80 90 100
Wy

e Using Nested Sampling : O(10°) samples
e Our results with BO: 2 orders of magnitude improvement in #
evaluations
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Example Application: ACDM with modulated Primordial
Fluctuations [Jan Hamann & Julius Wons, 2021]

-15 + BayOp Samples == Profile Likelihood +20

@ Also learns the global shape of the function!

e 1700 samples, 8 frequency bins
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