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Broad Strokes: What is the problem?

y

[NASA / WMAP Science Team, Planck2018 results: VI. Cosmological parameters]
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How to Infer a Parameter

Given a Cosmological Model M with parameters θ
Standard ΛCDM (ns , t0, τ , H0, Ωbh

2, Ωch
2, Ωmh

2)

ΛCDM with primordial features (ΛCDM + Amplitude,
Frequency, Phase)

Use Boltzmann Code (such as CLASS or CAMB)

Get Theoretical Prediction

[ESA and the Planck Collaboration] 3 / 43



How to Infer a Parameter

Given some observational data D we can calculate a likelihood
L(D|θ,M)

This is the probability of the data given our model M and
specific values of parameters θ
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But Bayes! There’s more

Bayes Theorem:

P(B|A) = P(A|B)P(B)
P(A)

Posterior =
Prior× Likelihood

Evidence

With our Likelihood L and a prior π(θ|M) we can calculate a
posterior probability P(θ|D,M)

This allows us to update our likelihood and posterior
probability based on new data
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The circle of parameter inference
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What do we get out of this?

We will eventually reach a ‘termination criterion‘

This should indicate we are confident in our predictions (to
some level of accuracy)
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The Good the Bad and the Ugly of MCMC

Good:

• Easy to implement

• Easy to parallelise

• Very litte extra computation required

• Scales mildly with number of dimensions

• Works great for most of cosmology (near-Gaussian posteriors)

Bad:

• Not very good at finding the maximum

• Requires a lot of function evaluations (O(104) for N = O(10))

• Ignores most of the information collected

Ugly:

• Struggles with not-nice posteriors (multi-modal,
non-Gaussian, etc..)
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Why is this an issue?

If the likelihood is not easy to evaluate or not a “nice” shape
MCMC doesn’t work as well

In these cases, MCMC’s random sampling methodology can
be problematic

Can we do better by not ignoring the information from
previous samples?
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Is there a solution?

Our goal is to design a more efficient method that learns the
shape of the posterior

We want to take advantage of what we already know by
deterministically selecting our next “sample”

Bayesian Optimisation may present a possible solution
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Bayesian Optimisation

Fundamentally consists of two steps:

1 Regression - Guess the shape of the function based on the
data

2 Next Step Selection - Decide at which point to evaluate the
next function value
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1) Gaussian Process Regression (GPR)

A Gaussian Process is specified by a Kernel:

N (µ(x),K (x , x
′
))

Where K (x , x
′
) is the covariance function and µ(x) is the

mean of the N .

A simple example covariance function:

K (x , x
′
) = Ae

[
−(x−x

′
)2

L

]

Hyperparameters (h):

Covariance of the data: K (x , x
′
) (relationship between

parameters)
Prior Width: A (Certainty in the prediction)
Correlation Width: L (How much structure we expect in a
given distance)
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1) GPR Hyperparameters

Hyperparameters:

Prior Width: A (Certainty in the prediction)
Correlation Width: L (How much structure we expect in a
given distance)
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1) GPR Linear Algebra Machine

E (h, x |y) is the probability of the model given the data

Maximising E as a function of hyperparameters allows us to
let the data decide the most appropriate GP!
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1) GPR What we get out

We are replacing an expensive/complex posterior with a cheap
and easy GPR interpolation
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Bayesian Optimisation

1 Regression - Guess the shape of the function based on the
data

2 Next Step Selection - Decide at which point to evaluate the
next function value
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2) Acquisition Function

GPR gives us a guess based on data

This helps quantify uncertainty, but we want to calculate the
next sample in a smart way not randomly

We want to recreate how an informed human agent would fit
a function

Define some function dependant on GPR mean and
uncertainty that optimises a metric

i.e Expected Improvement (Largest Value)
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What is Bayesian Optimisation?

Bayesian Optimisation is a decision making framework

The range of possible acquisition functions makes Bayesian
Optimisation very adaptable
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Bayesian Optimisation - Upsides and Downsides

Advantages:

• Efficiency

• Good at finding global maxima

• Good at determing shape of posterior

• Works for not-nice functions

• Does not require fine tuning of settings by user

Disadvantages:

• Falls into the trap of dimensionality

• Significant extra computation
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Bayesian Optimisation vs MCMC

This computational overhead means there is a threshold in
terms of complexity and cost of posterior evaluations

Above this threshold, Bayesian Optimisation will peform
better than MCMC (Limit: cost → ∞)
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Model Selection for Parameter Inference

To do parameter inference, we must choose a model

How do we choose this model?

How can we compare different models?

Bayesian Optimisation may also provide a solution to this!
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Model Selection with Bayesian Evidence

Bayes Theorem:

P(M|D) =
L(D|M)π(θ|M)

P(D)

Probability of M given D:

P(M|D) =
P(D|M)P(M)

P(D)

Bayesian Evidence (Bayes Factor):

B = P(D|M) =

∫
dθL(D|θ,M)π(θ|M)
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Model Selection with Bayesian Evidence

To compare two different models M1 and M2:

B12 =
P(D|M1)

P(D|M2)

M1 is B12 times more probable than M2
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Model Selection with Bayesian Evidence

Bayesian Evidence:

P(D|M) =

∫
dθL(D|θ,M)π(θ|M)

This is the integral over our posterior prediction P(M|D)

Rewards models with accurate ‘risky‘ predictions over generic
ones - Occam’s Razor
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What do we actually want to optimise?

The aim of this optimisation is to find the Bayesian Evidence
to some level of precision.

The evidence is a relative measure of how well a model fits
the data.

That is to say, we can use the evidence to compare how well
two models fit the data.
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Bayesian Optimisation for Bayesian Evidence

Integration over mutli-dimensional posteriors is still hard

Typical methods require O(105 − 106) evaluations for ΛCDM
with primordial features

Nested Sampling [Skilling 2004, Feroz et al. 2013, Handley et al. 2015]

We can use the same methodology as parameter inference -
replace the actual posterior with the GPR interpolation
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Optimising for the Evidence

We want our acquisition function ‘metric’ to be reducing the
uncertainty in the integral over parameter space

We use the Weighted Negative Integrated Posterior Variance

WNIPV (θ) =

∫
dθ

′
σĜP(θ)(θ

′
)

ĜP(θ) - posterior if we pretend to take a sample at a new
point θ

σ - GP Uncertainty
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Bayesian Optimisation (iteration 1)
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Bayesian Optimisation (iteration 2)
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Bayesian Optimisation (iteration 3)
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Bayesian Optimisation (iteration 4)
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Bayesian Optimisation (iteration 5)
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Bayesian Optimisation (iteration 6)
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Bayesian Optimistian - Precision Threshold

Through each iteration the overal uncertainty of the GP goes
down

The maximum value of the acquisition function also reduces

This allows us to define a threshold or termination criteria on
the precision of the evidence
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The Finishing Touches

We use some smart priors to help deal with higher dimensional
parameter spaces (Sparse Axis-Aligned Subspaces) [Eriksson &

Jankowiak (2021)]

All dimensions are innocent until proven guilty

We use Nested Sampling to get both a direct numerical
estimate of the uncertainty on the evidence as well as
uncorrelated samples of the posterior

We sample from hyperparameter space PDF with NUTS
(modified HMC) instead of optimising over it
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Preliminary Results - Banana
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Preliminary Results - Annular Function
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Summary

Efficient ML algorithm for model selection and parameter
inference

Preliminary improvement of 100x fewer samples

Best for difficult to obtain, expensive to calculate and
complicated likelihoods

Benchmark is to take fewer samples than other methods with
the same precision on evidence

Paper and code coming soon!
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Extra Slides

Extra! Extra! Read all about it!
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Metropolis-Hastings MCMC

[Metropolis et al. (1953)]
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BOBE Algorithm
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Example Application: ΛCDM with modulated Primordial
Fluctuations [Jan Hamann & Julius Wons, 2021]

• Using Nested Sampling : O(105) samples
• Our results with BO: 2 orders of magnitude improvement in #
evaluations
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Example Application: ΛCDM with modulated Primordial
Fluctuations [Jan Hamann & Julius Wons, 2021]

Also learns the global shape of the function!

• 1700 samples, 8 frequency bins
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