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QG phenomenology

Popular phenomenological “windows” for quantum gravity:

• Modified energy-momentum dispersion relations (time delays, modified thresholds)

• Departures from CPT symmetry

• Fundamental decoherence

THIS TALK: add to the list departures from ordinary particle statistics

some works scattered in the literature argued for such possibility
(Jackson and Hogan, “A New Spin on Quantum Gravity,” Int. J. Mod. Phys. D 17, 567-570 (2008) [arXiv:hep-th/0703133

[hep-th]]; Swain, “Exotic Statistics for Ordinary Particles in Quantum Gravity,” Int. J. Mod. Phys. D 17, 2475-2484 (2009)

[arXiv:0805.2373 [gr-qc]])

I will argue that one of the most studied effective frameworks for QG phenomenology,
non-commutative deformations of Poincaré symmetries,

leads to modifications of the usual Fock space picture in QFT
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A “flat space-time limit” of QG?

THE IDEA: there exists a “flat space-time limit” of quantum gravity

~ ,G → 0 with
√

~
G

= κ = const

The Planckian quantity κ, introduces a fundamental (observer independent)
UV energy scale in the the algebraic structure of relativistic symmetries

• “Quantum Minkowski space-time” described by a non-commutative algebra of
functions of coordinates belonging to a Lie algebra which becomes abelian in the
κ→∞ limit

• The four-momenta describing the particle kinematics become coordinates on a
non-abelian Lie group
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Group-valued momenta from 2 + 1-dimensional gravity

This scenario is realized for QG in 2 + 1 space-time dimensions!

• When Λ = 0 all solutions to the Einstein’s equation are locally flat!

• The theory is topological: it admits no local degrees of freedom

• Point particles are described by conical defects; their momenta are elements of
the Lie group SL(2,R) (Matschull and Welling, Class. Quant. Grav. 15, 2981-3030 (1998))

• Upon quantization relativistic particles are described by a non-commutative field
theory with sl(2,R) coordinates (Freidel and Livine, Phys.Rev.Lett. 96 (2006))

[Xµ,Xν ] = i
κ
εµνλXλ

(see also ’t Hooft, Class. Quant. Grav. 13, 1023-1040 (1996))
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Group momentum space from 3d gravity

Curved momentum space in flatland

• Point particles → conical space with deficit angle α = 8πGm
4 M. Arzano, D. Latini and M. Lotito

Figure 2. The cone is cut out along the dashed line and flattened on a plane. The dashed lines and the

squares identify the same points.

whose determinant is detp = (p0)2 � |p|2. We can describe physical momenta by boosting
the momentum at rest of a particle. The latter will be given in matrix representation by

p = m�0 =


0 m

�m 0

�
and the boost is achieved via the adjoint action of SL(2, R) on sl(2, R)

so that a physical momentum will be given by

p = h�1ph. (2.1)

Such action preserves the determinant and the physical momenta, obtained by boosting the
three momentum at rest, will be characterized by the mass-shell condition

detp =
�
p0
�2 � |p|2 = m2.

We thus have that in three-dimensional Minkowski space the extended momentum space of
a relativistic point particle can be identified with sl(2, R) and the physical momenta belong to
orbits of SL(2, R) on sl(2, R) which determine the mass-shell.

We can now have an intuitive characterization of the momentum space of a moving conical
defect in three dimensions (for more formal discussions we refer the reader to [9, 23]). As
discussed above the momentum at rest of a conical defect can be parametrized by a rotation
g = e4⇡Gm�0 2 SL(2, R), i.e. a group element rather than the vector p = m�0. The action of
a Lorentz boost on the momentum at rest will be described just by an action of SL(2, R) on itself

g = h�1gh (2.2)

and thus physical momenta of a defect of mass m will be given by elements of SL(2, R) belonging
to the conjugacy class of a rotation by an angle 4⇡Gm. Therefore, when gravity is switched on,
the extended momentum space of a point particle is given by the group manifold SL(2, R) (to
be contrasted with the vector space sl(2, R) in the ordinary Minkowski case) while its physical
momentum space is given by the action by conjugation of SL(2, R) on the momentum at rest
g = e4⇡Gm�0 (to be contrasted with the adjoint action in the ordinary case) [9, 23]. In Section 4.2
we will discuss how the transition from vector valued momenta to group valued momenta viz.
from equation (2.1) to (2.2) can be understood from a mathematical point of view in terms
of a lift morphism between functions on Minkowski space to functions on SL(2, R). Physically
speaking the transition from (2.1) to (2.2) simply reflects the fact that the phase space of a point
particle coupled to 2 + 1 gravity is the cotangent bundle of SL(2, R) with the latter describing
the momentum degrees of freedom2 of the particle [23]. In the next section we give a detailed
account of the group momentum space of the particle and of the classification of the conjugacy
classes describing “on-shell” momenta.

2Very similar structures arise in loop quantum gravity and group field theory where the configuration space
is given by a Lie group, see e.g. [13, 14, 26].

• Particle’s mass is a topological charge determined by a rotation gα ∈ SL(2,R)

gα = e4πGmγ0 where γ0 =

[
0 1
−1 0

]
• The three-momentum of a particle of mass m is obtained by “boosting” gα:

g = h gαh
−1 with h ∈ SL(2,R)

(for a review see MA, Latini and Lotito SIGMA 10, 079 (2014))

Bottomline: momenta are elements of SL(2,R)

Michele Arzano — Quantum particles in noncommutative spacetime: An identity crisis 6/20
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and thus physical momenta of a defect of mass m will be given by elements of SL(2, R) belonging
to the conjugacy class of a rotation by an angle 4⇡Gm. Therefore, when gravity is switched on,
the extended momentum space of a point particle is given by the group manifold SL(2, R) (to
be contrasted with the vector space sl(2, R) in the ordinary Minkowski case) while its physical
momentum space is given by the action by conjugation of SL(2, R) on the momentum at rest
g = e4⇡Gm�0 (to be contrasted with the adjoint action in the ordinary case) [9, 23]. In Section 4.2
we will discuss how the transition from vector valued momenta to group valued momenta viz.
from equation (2.1) to (2.2) can be understood from a mathematical point of view in terms
of a lift morphism between functions on Minkowski space to functions on SL(2, R). Physically
speaking the transition from (2.1) to (2.2) simply reflects the fact that the phase space of a point
particle coupled to 2 + 1 gravity is the cotangent bundle of SL(2, R) with the latter describing
the momentum degrees of freedom2 of the particle [23]. In the next section we give a detailed
account of the group momentum space of the particle and of the classification of the conjugacy
classes describing “on-shell” momenta.

2Very similar structures arise in loop quantum gravity and group field theory where the configuration space
is given by a Lie group, see e.g. [13, 14, 26].

• Particle’s mass is a topological charge determined by a rotation gα ∈ SL(2,R)

gα = e4πGmγ0 where γ0 =

[
0 1
−1 0

]
• The three-momentum of a particle of mass m is obtained by “boosting” gα:

g = h gαh
−1 with h ∈ SL(2,R)

(for a review see MA, Latini and Lotito SIGMA 10, 079 (2014))

Bottomline: momenta are elements of SL(2,R)
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Basic quantum theory

Elementary one-particle Hilbert space H: irreps of Poincaré group

• basis of H: eigenstates of the translation generators labelled by on-shell
momenta k

Pµ|k〉 = kµ|k〉

• action on 〈k| ∈ H∗, dual space:

Pµ〈k| = −kµ〈k| = 〈k|(−kµ) ≡ 〈k|S(Pµ)

• action on composite system H⊗H:

Pµ(|k1〉 ⊗ |k2〉) = Pµ|k1〉 ⊗ |k2〉+ |k1〉 ⊗ Pµ|k2〉 = (kµ
1 + kµ

2 )|k1〉 ⊗ |k2〉
≡ ∆Pµ|k1〉 ⊗ |k2〉

“Antipode”: S(Pµ) = −Pµ , “Co-product”: ∆Pµ = Pµ ⊗ 1 + 1⊗ Pµ

Hopf algebra notions “built in” in everyday quantum theory..

Michele Arzano — Quantum particles in noncommutative spacetime: An identity crisis 7/20



Basic quantum theory

Elementary one-particle Hilbert space H: irreps of Poincaré group
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Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

• kets |g〉 labelled by elements of a non-abelian Lie group g ∈ G

Pµ|g〉 = Pµ(g)|g〉

Pµ coordinate functions on the group manifold

• for the action on bras the non-trivial properties of momenta come into play

Pµ〈g | = Pµ(g−1)〈g | ≡ 〈g |S(Pµ)

• action on multi-particle states

Pµ(|g1〉 ⊗ |g2〉) = Pµ(g1g2)|g1〉 ⊗ |g2〉 ≡ ∆Pµ|g1〉 ⊗ |g2〉

• composition rule of momentum eigenvalues is deformed

Pµ(g1g2) ≡ Pµ(g1)⊕ Pµ(g2) 6= Pµ(g2g1) , Pµ(g)⊕ Pµ(g−1) = Pµ(1) = 0

In Hopf algebraic lingo: non-trivial co-product ∆Pµ and antipode of S(Pµ)
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Embedding coordinates and non-trivial coproduct

Fix choice of Pµ:

parametrize group elements by coordinates pµ

g = u1 + pµ

κ
γµ

where Tr(γµ) = 0 and κ = (4πG)−1

Unit determinant condition

u2 + p2/κ2 = 1

pµ are embedding coordinates on 3d AdS space;

Given two SL(2,R) elements: g1 = u(p1)1 +
p
µ
1
κ
γµ and g2 = v(p2)1 +

p
µ
2
κ
γµ

momentum coordinates obey a non-abelian composition rule

pµ(g1g2) = v(p2) pµ
1 + u(p1) pµ

2 +
1

κ
εµνσp1νp2σ

pµ
1 ⊕ pµ

2 = pµ
1 + pµ

2 +
1

κ
εµνσp1νp2σ +O(1/κ2) 6= pµ

2 ⊕ pµ
1

reflecting a non-trivial co-product for translation generators

∆Pµ = Pµ ⊗ 1 + 1⊗ Pµ +
1

κ
εµνσPν ⊗ Pσ +O(1/κ2)
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Group-valued momenta in 3+1 dimensions?

GR in 3+1 dimensions certainly is not a topological theory...

• It has been speculated that a UV completion of QG might be a topological theory
(K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))

• particles coupled to gravity described by a topological BF theory can exhibit a
deformation of kinematics similar to the 2 + 1-dimensional case

(Kowalski-Glikman and Starodubtsev, Phys. Rev. D 78, 084039 (2008))

A rigorous link between deformed kinematics and QG is far from being established...

⇒ focusing on deformed kinematics is important in order to develop effective
models of Planck-scale physics useful to extract phenomenological predictions

THE MODEL: κ-Poincaré algebra:it was introduced more than 30 years ago
(Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))

⇒ use quantum groups tools to deform symmetries introducing a UV energy-scale κ
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THE MODEL: κ-Poincaré algebra:it was introduced more than 30 years ago
(Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))

⇒ use quantum groups tools to deform symmetries introducing a UV energy-scale κ

Michele Arzano — Quantum particles in noncommutative spacetime: An identity crisis 10/20



Group-valued momenta in 3+1 dimensions?

GR in 3+1 dimensions certainly is not a topological theory...

• It has been speculated that a UV completion of QG might be a topological theory
(K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))

• particles coupled to gravity described by a topological BF theory can exhibit a
deformation of kinematics similar to the 2 + 1-dimensional case

(Kowalski-Glikman and Starodubtsev, Phys. Rev. D 78, 084039 (2008))

A rigorous link between deformed kinematics and QG is far from being established...

⇒ focusing on deformed kinematics is important in order to develop effective
models of Planck-scale physics useful to extract phenomenological predictions
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κ-deformation

• Basic geometric picture:

κ-four-momenta: coordinates on Lie group AN(3) obtained form the
Iwasawa decomposition of SO(4, 1) ' SO(3, 1)AN(3), sub-manifold of dS4

−p2
0 + ~p 2 + p2

−1

embedding coordinates

= κ2 , p0+p−1 > 0

This just reflects the fact that the ANðnÞ group can be
obtained from the Iwasawa decomposition [24] of the
Lorentz group: SOðnþ 1; 1Þ ¼ ANðnÞSOðn; 1Þ∪ANðnÞ
N SOðn; 1Þ. Indeed the full nþ 1-dimensional de Sitter
space is equivalent to the quotient SOðnþ 1; 1Þ=SOðn; 1Þ.
Since our purpose is to study diffusion processes based

on momentum space Laplacians constructed out of coor-
dinates of the ANðnÞ manifold, we need a prescription to
obtain an Euclidean version of the group manifold. We
follow here a suggestion from [21] and map the group
ANðnÞ to an Euclidean manifold by acting with a group
element on the timelike vector ðκ; 0;…; 0Þ. We express
again the resulting group element as g⊳ðκ; 0;…; 0Þ ¼
ðp−1; fpag; p0Þ where now

p0 ¼ κ sinh
!
k0
κ

"
−

1

2κ
ek0=κkaka;

pa ¼ ek0=κka;

p−1 ¼ κ cosh
!
k0
κ

"
þ 1

2κ
ek0=κkaka: ð7Þ

As it is easily checked the coordinates now satisfy the
conditions p2

0 þ papa − p2
−1 ¼ −κ2 and p−1 > 0 as well as

p0 þ p−1 > 0, −p0 þ p−1 > 0 but the latter ones are
actually redundant. The first condition defines a ð1; nÞ-
hyperboloid i.e. Euclidean anti–de Sitter space, also known
as hyperbolic space, embedded in Minkowski space. The
second condition is again restricting us to one half of
the manifold. The subtle point here is that the roles of the
coordinates p0 and p−1 are now reversed compared to

the previous, Lorentzian, case. Indeed in the classical limit
κ → þ∞ we obtain p0 → k0, pa → ka but p−1 → þ∞,
which justifies our designation of the coordinates. This is
our “Euclidean realization” of the group ANðnÞ, given as a
manifold by half of Euclidean anti–de Sitter space
(cf. Fig. 2). The other half manifold can be obtained
in the same way as in the de Sitter case. This reflects
another Iwasawa decomposition of the Lorentz group
SOðn þ 1; 1Þ ¼ ANðnÞSOðn þ 1Þ∪ANðnÞN SOðn þ 1Þ.
The full nþ 1-dimensional Euclidean anti–de Sitter space
is equivalent to the quotient SOðnþ 1; 1Þ=SOðnþ 1Þ. To
make an analogy with more familiar structures one can
notice that the manifolds we described can be seen as
higher-dimensional analogues of the four-dimensional
mass-shells of tachyons, for the Lorentzian case and of
massive particles, for this latter Euclidean realization. A
direct connection with the Lorentzian realization can be
made by showing that the Euclidean manifold can be
obtained by a “Wick rotation” of the Lorentzian manifold.
One can observe this in two steps. First, taking κ↦iκ,
k0↦ik0 we obtain

p0 ¼ i
!
κ sinh

!
k0
κ

"
−

1

2κ
ek0=κkaka

"
;

pa ¼ ek0=κka;

p−1 ¼ i
!
κ cosh

!
k0
κ

"
þ 1

2κ
ek0=κkaka

"
; ð8Þ

satisfying −p2
0þpapaþp2

−1¼−κ2. Then, taking p0↦ip0,
p−1↦ip−1 we arrive at the “Euclidean realization”.

FIG. 1. Lorentzian de Sitter space of momenta (p2;…; pn
suppressed) and the p0 þ p−1 ¼ 0 surface.

FIG. 2. Euclidean anti–de Sitter space of momenta (p2;…; pn
suppressed) and the p−1 ¼ 0 surface.

DIFFUSION ON κ-MINKOWSKI SPACE PHYSICAL REVIEW D 89, 124024 (2014)

124024-3

(see e.g. Kowalski-Glikman and Nowak, hep-th/0411154)

• an(3) Lie algebra: κ-Minkowski “non-commutative space-time”

[X0,Xa] =
i

κ
Xa , [Xa,Xb] = 0
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notice that the manifolds we described can be seen as
higher-dimensional analogues of the four-dimensional
mass-shells of tachyons, for the Lorentzian case and of
massive particles, for this latter Euclidean realization. A
direct connection with the Lorentzian realization can be
made by showing that the Euclidean manifold can be
obtained by a “Wick rotation” of the Lorentzian manifold.
One can observe this in two steps. First, taking κ↦iκ,
k0↦ik0 we obtain
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−1¼−κ2. Then, taking p0↦ip0,
p−1↦ip−1 we arrive at the “Euclidean realization”.

FIG. 1. Lorentzian de Sitter space of momenta (p2;…; pn
suppressed) and the p0 þ p−1 ¼ 0 surface.

FIG. 2. Euclidean anti–de Sitter space of momenta (p2;…; pn
suppressed) and the p−1 ¼ 0 surface.
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Lorentz transformations of AN(3) momentum space

From the Iwasawa decomposition of SO(4, 1) ' SO(3, 1)AN(3) an element
G ∈ SO(4, 1) can be decomposed as

SO(4, 1) 3 G = Λ g ∈ SO(3, 1)AN(3)

where Λ ∈ SO(3, 1) and g ∈ AN(3).

One can also wright the “right” Iwasawa decomposition of the same element

G = Λ g = g ′Λ′g ∈ AN(3)SO(3, 1)

This allows to define the Lorentz transformed AN(3) momentum

g ′ = Λ g Λ
′−1
g

For two momenta
(gh)′ = ΛghΛ

′−1
gh

and (gh)′ 6= g ′h′:

(gh)′ = ΛgΛ
′−1
g Λ′g hΛ

′−1
gh = g ′ Λ′g hΛ

′−1
gh

leading to a deformed co-product for Lorentz generators
(MA and Kowalski-Glikman, Phys. Rev. D 107, no.6, 065001 (2023) [arXiv:2212.03703 [hep-th]])
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Deformed translations from AN(3) momentum space

Consider translation generators Pµ associated to embedding coordinates pµ on dS4

Their co-products and antipodes at leading order in κ

∆(P0) = P0 ⊗ 1 + 1⊗ P0 +
1

κ
Pm ⊗ Pm ,

∆(P i ) = P i ⊗ 1 + 1⊗ P i +
1

κ
P i ⊗ P0 ,

S(P0) = −P0 +
1

κ
~P2 ,

S(P i ) = −P i +
1

κ
P i P0 ,

this choice of translation generators of the κ-Poincaré is called “classical” because

• action of Lorentz sector on Pµ in undeformed;

• mass-shell condition undeformed (P0)2 − ~P2 = const

In embedding coordinates we have ordinary relativistic kinematics at the
one-particle level...all non-trivial structures confined to “co-algebra” sector
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For further reading...
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The trouble with (anti)-symmetrized states

In QFT Fock space is given by (anti-)symmetrized tensor prods of one-particle states

1√
2

(|p1〉 ⊗ |p2〉+ |p2〉 ⊗ |p1〉)

Noncommutative case total momentum of |g1〉 ⊗ |g2〉 is determined by the co-product

∆Pµ(|g1〉 ⊗ |g2〉) = pµ(g1g2)(|g1〉 ⊗ |g2〉)

|g1〉 ⊗ |g2〉 and |g2〉 ⊗ |g1〉 have different total momenta: pµ(g1g2) 6= pµ(g2g1)

The standard symmetrized state 1√
2

(|g1〉 ⊗ |g2〉+ |g2〉 ⊗ |g1〉) is not an eigenstate of Pµ

(MA and Marciano, Phys. Rev. D 76, 125005 (2007))

Flip of tensor products as “exchange” of particles ⇒ changes total momentum??

if the particles are indistinguishable, swapping the factors in the tensor product
describing their state should lead to another state which is indistinguishable from the

original one, i.e., with the same quantum numbers!!
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Braiding multi-particle states

Way out (?): |g1〉 ⊗ |g2〉 → |g1g2g−1
1 〉 ⊗ |g1〉 “flux metamorphosis” (Bais, NPB 170, 32 (1980))

The symmetrized state

|g1g2〉 ≡
1√
2

(
|g1〉 ⊗ |g2〉+ |g1g2g−1

1 〉 ⊗ |g1〉
)

has well defined total momentum pµ(g1g2)!

The two-particle case straightforwardly extends to n-particle states via

τ(i)(|g1〉 ⊗ . . . |gi 〉 ⊗ |gi+1〉 . . .⊗ |gn〉) = |g1〉 ⊗ . . . |gigi+1g
−1
i 〉 ⊗ |gi 〉 . . .⊗ |gn〉

The “deformed exchange operators τ(i) = (σ ◦ R)i do not square to the identity
and they provide a representation of the braid group

(MA, Kowalski-Glikman and Trzesniewski, Class. Quant. Grav. 31, 035013 (2014))

So, can we build a Fock space?
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τ(i)(|g1〉 ⊗ . . . |gi 〉 ⊗ |gi+1〉 . . .⊗ |gn〉) = |g1〉 ⊗ . . . |gigi+1g
−1
i 〉 ⊗ |gi 〉 . . .⊗ |gn〉

The “deformed exchange operators τ(i) = (σ ◦ R)i do not square to the identity
and they provide a representation of the braid group

(MA, Kowalski-Glikman and Trzesniewski, Class. Quant. Grav. 31, 035013 (2014))

So, can we build a Fock space?
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A closer look at the braiding

Main question for deformations of Fock space is relativistic covariance...
(MA and Marciano, Phys. Rev. D 76, 125005 (2007) and following works)

In the 3d case easy to check that the braided symmetrization is covariant

(Λ(h)⊗ Λ(h))|g1, g2〉 ≡ |hg1h−1, hg2h
−1〉

This is no surprise since the 3d deformed algebra comes equipped with an R-matrix...

In 4d the κ-Poincaré algebra notoriously lacks an R-matrix but

|g〉 ⊗ |h〉 −→ Λ B |g〉 ⊗ |h〉 = |g ′〉 ⊗ |Λg h Λ
′−1
gh 〉

∆Pµ (Λ B |g〉 ⊗ |h〉) = pµ((gh)′) (Λ B |g〉 ⊗ |h〉)

|ghg−1〉 ⊗ |g〉 −→ Λ B |ghg−1〉 ⊗ |g〉 = |(ghg−1)′ Λ
′−1
ghg−1 〉 ⊗ |Λ−1 g ′ Λ′gΛ

′−1
gh 〉

∆Pµ
(

Λ B |ghg−1〉 ⊗ |g〉
)

= pµ((gh)′)
(

Λ B |ghg−1〉 ⊗ |g〉
)
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An identity crisis

Let’s go back to the symmetrized state

|g1g2〉 ≡
1√
2

(
|g1〉 ⊗ |g2〉+ |g1g2g−1

1 〉 ⊗ |g1〉
)

it is evident that if we braid twice the state |g1g2〉 we obtain

|g1〉 ⊗ |g2〉 → |g1g2g−1
1 〉 ⊗ |g1〉 → |g1g2g1g

−1
2 g−1

1 〉 ⊗ |g1g2g
−1
1 〉

and the final state has again total momentum pµ(g1g2)!

Any superposition of states obtained from an arbitrary number of braidings of
the initial state |g1〉 ⊗ |g2〉 is a legitimate candidate for a two-particle state with

total momentum pµ(g1g2)!

• Loss of Fock space description?

• Multiparticle states defined in terms of “equivalence classes” of tensor products?

• Only total momentum of the system is a well-defined quantum number?
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Open questions

Non-commutative theories with Lie group momentum space lead to a radical
departure from description of quantum multiparticle states in terms of a Fock space

• What kind of mathematical structure replaces the Fock space in these
non-commutative models?

• How does one obtain on ordinary Fock space description in the limit
κ→∞?

• What’s the physical picture/can we extract useful phenomenological
insights?

Fascinating challenges for the non-commutative community!
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THANK YOU!


