Hierarchies and conformal UV Completions

Manfred Lindner

Workshop on the Standard Model and Beyond

August 25 - September 4, 2024

The Standard Model and beyond

The SM is the endpoint of a very successful development: d=4 renormalizable gauge theory

$$\begin{array}{ccc} \mathbf{QED} \Rightarrow & \mathbf{QCD} \Rightarrow & \mathbf{SM} \\ \\ U(1)_{em} \Rightarrow & SU(3)_c \Rightarrow & SU(3)_c \times SU(2)_L \times U(1)_Y \end{array}$$

→ excellent agreement of theory and experiment

Theoretical problems:

SM does not exist without cutoff (triviality, vacuum stability)

Gauge hierarchy problem

Gauge unification & charge quantization

Strong CP problem

Unification with gravity

3 generations, reps., d=4, many parameters

Exper. facts, hints, problems:

- Electro-weak scale < Planck scale
- Gauge couplings almost unify
- Neutrino masses & large mixings
- Flavour: Patterns of masses & mixings
- Baryon asymmetry of the Universe
- Dark Matter
- Dark Energy

Hierarchy Problems

Emerge from scalars upon embedding / connecting to other vastly different scales

Solutions within d=4 QFT:

- **→** an additional symmetry
 - supersymmetry, conformal
- \rightarrow a scale Λ where the scalar sector is composite
 - technicolor, other composite ideas

both:

symmetry breaking Goldstone Bosons TeV-ish new physics

Experiment:

Neither SUSY nor TeV-ish compositeness observed (so far)

- → little hierarchy problem (LHP) ←→ BSM scale is too far away...
- → amplifies the old hierarchy problem (HP)

Must solve both LHP and HP → LHP first: parameter tuning *or* systematically?

- **→** symmetry: all scalars dof (including the Higgs particle) GBs or PGBs
 - problem: GB decay constant $\leftarrow \rightarrow \Lambda$
 - relaxed in little Higgs models ← → natural explanation of LHP

BUT: These models have scalars and scales \rightarrow only shifting problems?

Another experimentally driven Observation

- → SM is a renormalizable QFT like QED w/o hierarchy problem
- \rightarrow Cutoff "\Lambda" has no meaning \rightarrow triviality, vacuum stability

Important observation:

- a remarkable relation between the weak scale, m_t , m_H , gauge couplings and Λ
- connected to <u>log divergences</u> not to <u>quadartic divergences</u> ← → HP

Is there a Message?

- $\lambda(M_X) \simeq 0$? \rightarrow remarkable log cancellations
- remember: μ is the only single scale of the SM \rightarrow special role
- if in addition $\mu^2 = 0 \Rightarrow V(M_X) \ge 0$
 - → Mexican hat becomes flat due to conspiring quantum effects

- alternatively: All scalar and Yukawa couplings dissolve
 i.e. composite scalars → potential dissolves (no metastability issues)
- In both cases tempting: conformal (or shift) symmetry ←→ HP?

UV-Completion & Conformal Symmetry

Successful theories should have a meaningful UV-completion

 \rightarrow vanishing β -functions (UV fixed points) $\leftarrow \rightarrow$ restored scale symmetry

Interacting UV-fixedpoints:

- scalar and Yukawa couplings tend to have Landau poles, instability...
- requires carefully selected particle content \rightarrow explanation?

Trivial fixedpoints:

- no fundamental scalars
- no Yukawa couplings
- asymptotically free non-abelian gauge theories w/o scalars → easy

Little Higgs + conformal UV Completion

Conformal little Higgs: Ahmed, ML, Saake, 2309.07845, PRD 109.075041

- 1) All scalars (including Higgs) are GBs or PGBs
 - \rightarrow scale $\Lambda \simeq$ multi-TeV little Higgs model
 - → symmetry explanation of the LHP
 - \rightarrow all λ 's and Yukawa couplings dissolve at Λ
- 2) Conformal non-abelian UV completion
 - \rightarrow Λ becomes scale of a dimensional transmutation
 - \rightarrow no new scalars or scales $\leftarrow \rightarrow$ HP

Remarks:

- realized for SM = CW, but works only for extended Higgs sectors
- can be combined with neutrino masses, DM, BAU, ...
- gravity comments if time allows

A little Higgs reminder

Λ = scale of compositeness dynamics

$$\mu^2 = c \frac{g^2}{16\pi^2} \Lambda^2 \sim c g^2 f^2, \quad \lambda = c' \frac{g^2}{f^2} \frac{1}{16\pi^2} \Lambda^2 \sim c' g^2$$

- $f = 200-300 \text{ GeV} \leftarrow \rightarrow \text{ correct EW scale } (M_W)$

 $\rightarrow \Lambda$ at most 2-3 TeV: exp. excluded operators

→ spectrum may contain lower lying states? c.f. techni-p in technicolor → S parameter...

- **little Higgs:** f can be $O(TeV) \rightarrow \Lambda = 5-10 \text{ TeV}$

$$v_{\rm EW} = \frac{\pi_{\psi}}{h}$$

$$\mu^2 \sim \frac{g^2}{16\pi^2} f^2 \log \frac{\Lambda^2}{f^2} \sim \frac{g^2}{8\pi^2} f^2 \log(4\pi)$$
- important: *all* scalar dof are GBs or PGBs
- lower lying bound states more remote

Conformal UV Completion

Suitable conformal theory:

- → trivial UV fixedpoint
- $\rightarrow \beta=0 \leftarrow \rightarrow$ no conformal anomaly
- \rightarrow IR dimensional transmutation like χ -ral QCD
- condensation → little Higgs model
- dynamical transmutation no y's or λ 's beyond Λ
 - \rightarrow no Λ^2 corrections \rightarrow no HP

Conformal Little Higgs Models

Ahmed, ML, Saake, arXiv: 2309.07845, PRD 109.075041

Exemplification for "bested little Higgs" model: Schmaltz, Stolarski, Thaler, 1006.1356

- → UV completion without introducing any elementary/fundamental scalars
- confining non-abelian gauge symmetry $SU(N_c)$ we take $N_c = 2$
- new fermions:
 → ``technifermions''
 four light flavors

	$SU(N_c)$	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$\tilde{\psi} \equiv \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$		1		0
$\psi' \equiv \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}$		1	1 1	$-rac{1}{2} + rac{1}{2}$
$\chi \times N_m$		1	1	0

- $SU(2)_L \subset SU(4)_L$ and the custodial group $SU(2)_L' \subset SU(4)_L$, respectively
- conjugate fields transform under the subgroups of $SU(4)_R$
- global symmetry breaking coset $SU(4)_L \times SU(4)_R / SU(4)_V$
- condensation → flavor symmetry breaking

The Higgs Sector

- condensation → 15 Goldstone bosons
- transform under the custodial symmetry $SO(4) \simeq SU(2)_L \times SU(2)_R \subset SU(4)V$ as $15_{SU(4)V} = (2,2) + (2,2) + (3,1) + (1,3) + (1,1)$
- Goldstone matrix: $U=\exp\left[i\Pi/\sqrt{2}f
 ight]$
- where $\Pi = \begin{pmatrix} \sigma^a \Delta_1^a + \eta/\sqrt{2} & -i\Phi_H \\ i\Phi_H^\dagger & \sigma^a \Delta_2^a \eta/\sqrt{2} \end{pmatrix}$
- with bi-doublet $\Phi_H \equiv \left(\widetilde{H}_1 + i\widetilde{H}_2, \quad H_1 + iH_2
 ight); \; \widetilde{H}_i \; \equiv \; i\sigma_2 H_i^*$

where H_i are Higgs doublets under SU(2)L

• and the triplets $\sigma^a\Delta^a=\left(egin{array}{cc}\Delta^0&\sqrt{2}\Delta^+\\\sqrt{2}\Delta^-&-\Delta^0\end{array}
ight)$

Phenomenology

- conformal symmetry is broken at $\Lambda \sim O(5-10)$ TeV by fermion condensate
 - → spontaneous breaking of a global symmetries
 - \rightarrow no quadratic divergences in analogy to χ -ral QCD
- Higgs and partners emerge as pseudo-Goldstone Bosons
- low-energy phenomenology closely resembles "bestest Little Higgs" model \rightarrow little hierarchy between SM and Λ explained by Little Higgs dynamics
- H₁ corresponds to the SM Higgs doublet
- H_2 , scalar triplet Δ_1 and singlet $\eta \rightarrow$ substantial masses O(1) TeV
- heavy gauge boson partners W' and $Z' \rightarrow O(1)$ TeV
- fermionic top-partners have masses at the scale f
 - → promising for future LHC runs
- The lightest stable neutral composite scalar can be a DM candidate.

•

Conformal Symmetry & Neutrino Masses

ML, S. Schmidt and J. Smirnov

- No explicit scale → no explicit (Dirac or Majorana) mass term
 → only Yukawa couplings ⊗ generic scales
- Enlarge the Standard Model field spectrum like in 0706.1829 R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas
- Consider direct product groups: SM ⊗ HS
- Two scales: CS breaking scale at O(TeV) + induced EW scale

Important consequence for fermion mass terms:

- **→** spectrum of Yukawa couplings ⊗TeV or ⊗EW scale
- → interesting consequences ←→ Majorana mass terms are no longer expected at the generic L-breaking scale → anywhere

M. Lindner, MPIK

Examples

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & y_M \langle \phi \rangle \end{pmatrix}$$

Yukawa seesaw:

$$ext{SM} + extstyle{\psi_R} + ext{singlet} \ \langle \phi
angle pprox ext{TeV} \ \langle H
angle pprox 1/4 ext{ TeV}$$

→ generically expect a TeV seesaw

BUT: y_M can be tiny

→ wide range of sterile masses → including pseudo-Dirac case

→ suppressed 0νββ

Radiative masses

The punch line: all usual neutrino mass terms can be generated

- → suitable scalars required
- → no explicit masses: all via Yukawa couplings
- → different numerical expectations ← → could easily explain keV masses

The Planck Scale from CS Breaking

Conformal Gravity (CG):

- more symmetry → claimed to be power counting renormalizable
- CG may have a ghost... → see later
- Spontaneous generation (SG) of M_{Pl} = SG of Einstein-Hilbert theory
- most economic and simple way:

$$\frac{\xi_S}{2} S^2 R \to \frac{\xi_S}{2} \langle S \rangle^2 R \to \frac{M_{\rm Pl}^2}{2} R$$

$$M_{\rm Pl} = \sqrt{\xi_S} \langle S \rangle$$

Brans+Dicke,'61; Fujii,'74; Englert+Truffin+Grastmans,'76; Minkowsky,'77;.....

Idea: Generate M_{Planck} from conformal gravity \otimes SU(N)

⇒ gauge assisted condensate via SU(N) field ⇒ M_{Planck} = effective scale Kubo, ML, Schmitz, Yamada similar ideas: Donoghue, Menezes, ...

$$S_{\rm C} = \int d^4x \sqrt{-g} \left[-\hat{\beta} S^{\dagger} S R + \hat{\gamma} R^2 - \frac{1}{2} \operatorname{Tr} F^2 + g^{\mu\nu} (D_{\mu} S)^{\dagger} D_{\nu} S - \hat{\lambda} (S^{\dagger} S)^2 + a R_{\mu\nu} R^{\mu\nu} + b R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} \right]$$

R = Ricci curvature scalar, $R_{\mu\nu}$ = Ricci tensor, $R_{\mu\nu\alpha\beta}$ = Riemann tensor

F = field-strength tensor of the $SU(N_c)$ gauge theory, $S = complex scalar in fund. rep. <math>\rightarrow N_c$

→ most general diffeomorphism invariance, gauge invariance, and global scale invariance

Condensation in SU(N_c) gauge sector

 \rightarrow dimensional transmutation: $\langle S^+S \rangle \rightarrow$ effective Planck mass

$$M_{\text{planck}} = 2 \beta f_0 = \frac{N_c \beta}{16\pi^2} (2 \lambda f_0) \left(1 + 2 \ln \frac{2 \lambda f_0}{\Lambda^2} \right) \text{ with } f_0 = \langle S^+ S \rangle$$

 \rightarrow Effectively normal gravity with a dynamically generated M_{Planck}

Dilaton-Scalaron Inflation

Effective Jordan-frame Lagrangian:

$$\frac{\mathcal{L}_{\text{eff}}^{J}}{\sqrt{-g_{J}}} = -\frac{1}{2} B\left(\chi\right) M_{\text{Pl}}^{2} R_{J} + G\left(\chi\right) R_{J}^{2} + \frac{1}{2} g_{J}^{\mu\nu} \partial_{\mu} \chi \, \partial_{\nu} \chi - U\left(\chi\right) \quad \Rightarrow \quad \text{auxiliary field } \Psi \Rightarrow$$

$$\frac{\mathcal{L}_{\text{eff}}^{J}}{\sqrt{-g_{J}}} = -\left[\frac{1}{2}B\left(\chi\right)M_{\text{Pl}}^{2} - 2G\left(\chi\right)\psi\right]R_{J} + \frac{1}{2}g_{J}^{\mu\nu}\partial_{\mu}\chi\,\partial_{\nu}\chi - U\left(\chi\right) - G\left(\chi\right)\psi^{2}$$

$$g_{\mu\nu} = \Omega^2 \, g_{\mu\nu}^J$$

$$\Omega^2 = e^{\Phi(\phi)} \,,$$

Weyl rescaling:
$$g_{\mu\nu} = \Omega^2 g_{\mu\nu}^J$$
 $\Omega^2 = e^{\Phi(\phi)}$, $\Phi(\phi) = \frac{\sqrt{2} \phi}{\sqrt{3} M_{\rm Pl}}$

Einstein-frame scalar potential:

$$V\left(\chi,\phi\right) = e^{-2\Phi(\phi)} \left[U\left(\chi\right) + \frac{M_{\rm Pl}^4}{16\,G\left(\chi\right)} \left(B\left(\chi\right) - e^{\Phi(\phi)} \right)^2 \right]$$

- → Slow role inflation
- → fits data very well!

The Ghost Problem in quadratic Gravity

Unlike GR, quadratic gravity is renormalizable thanks to four derivatives of the metric

$$\mathcal{L}_{\rm EH} = \sqrt{-g} M_{\rm pl}^2 R \qquad \qquad \mathcal{L}_{\rm QG} = \sqrt{-g} \Big(-\beta \phi^2 R + \gamma R^2 - \kappa C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \Big)$$
 dimensionful dimensionless

Problem: Double pole - classical Ostrogradsky instability

$$\Delta_{hh} \sim \frac{1}{p^2} - \frac{1}{(p^2 - m_{\rm gh}^2)} \quad \Longrightarrow \quad \mathcal{H} \sim c_+ \pi_+^2 - c_- \pi_-^2 + \cdots \quad \begin{array}{c} \text{unbounded} \\ \text{Hamiltonian} \end{array}$$

Leads after quantization to negative norm states
unitarity violation

M. Lindner, MPIK _

Potential Solutions

- Remove ghosts from asymptotic spectrum Lee-Wick-style
 - Quantize ghosts as "fakeons" that don't appear by definition [Anselmi 1801.00915]
 - Demonstrate ghosts are unstable with nice decay products
 [Donoghue, Menezes 1908.02416]

- Use alternative quantization procedures
 - Define generalized QM norm [Salvio 1907.00983]
 - Employ (non-Hermitian) PT-symmetric QFT [Bender, Mannheim 0706.0207]

- Unitarity OK if interaction energies are below the ghost mass
 - → conformal theories OK if ghost becomes massive after SSB

 $M_{ghost} \simeq M_{Planck} \rightarrow$ no unitarity violation except in the early (pre-inflation) universe Kubo, Kuntz 2202.08298, 2208.12832

Conclusions

The Standard Model

- → works perfectly no problems besides triviality, metastability
- → list of unanswered questions / problems ←→ BSM
- → lots of progress: DM, v's, GR waves, ... + many new ideas
- → hierarchy problem worsened due to the little hierarchy problem
- → remarkable coincidence of parameters: flat Higgs potential @HE

Conformal little Higgs

- → a natural explanation of LHP: all scalar dof are GBs or PGBs
- → conformal UV completion: avoid to reintroduce problems (fund. scalars)
- → non-abelian gauge theory with fermions, gauge bosons and no scale
 - → dimensional transmutation at multi Tev-ish Λ
 - → GBs and PGBs explain scalar physics at EW scale
- → generic mechanism exemplified for ``bested little Higgs''

Not covered:

phenomenological implications, neutrino physics, dark matter, ... combination with gravity (conformal gravity+breaking; inflation, ghosts?)