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FIG. 6. Current landscape of possible sources of gravitational waves from a cosmic first order phase

transition

3 A third option is to have a large baryon chemical potential. The only known way to

do this is to have a large lepton asymmetry [227–229].

While the QCD and electroweak eras are arguably the most well-motivated epochs to

search for (as we know that at least a change in ground state likely occurred) there are many

more motivations for a strong first-order phase transition in the early Universe. A popular

model to realize a scale-invariant potential as described in section III D 2 is B-L breaking

[230–238] (or B/L breaking [239]). Additionally people have considered phase transitions in

neutrino mass models [240–242], GUT symmetry breaking chains [243–247], flavour physics

[248, 249], supersymmetry breaking [250–253], hidden sectors [62, 95, 220, 223, 225, 254–266]

and axions [267–269]. The full landscape of ideas we show in Fig. 6.

Most of the above involve phase transitions involving scalar fields. However, it takes

di↵erent technology to model a confining transition. The typical approach in the literature

is to model some condensate as a scalar field and consider its e↵ective potential [95, 264]. In

the case of the linear Sigma model, one writes an e↵ective potential for the quark condensate
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FIG. 1. Incomplete menu of current and future gravitational wave detectors. These include future

pulsar timing arrays including the NANOGrav [69] (16 years), the EPTA [68] (5 years), IPTA

[77] and SKA [71] (10 years), astrometry proposal like Gaia [56, 59] (5 years) and Theia [57, 62]

(20 years), space-based interferometers including µ-Ares [53] (10 years), LISA [52] (4 years) and

DECIGO [78] (3 years) and ground-based interferometers including LIGO [43] (20 years), cosmic

explorer [51] (20 to 50 years) and the Einstein telescope [79] (3 years). In the () we mention the

tentative mission lifetime of each detector.

II. DETECTION OF GW BACKGROUNDS

It was many decades after gravitational waves were first proposed that they were finally

discovered, which speaks to the di�culty of the task. All experimental designs experience

noise which dwarfs the amplitude of gravitational waves of any known signal. The ambitious

e↵ort to bring about an era of gravitational wave cosmology has therefore required remark-

able ingenuity on both the theoretical and experimental fronts. In this section, we explain

how to model gravitational waves and the main strategies the community has come up with

to detect them.2

Let us begin by showing the large payo↵ to accurately modeling predicted gravitational

wave spectra. We will begin by explaining how to extract transient sources from the noisy

background to introduce key concepts of filtering before moving on to the more relevant

2 For a very informative review, we highly recommend the seminal textbook by Maggiore [80] together with

some review articles [76, 81–83]
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Gravitational Waves are sensitive to :
•First Order Phase transitions FOPT (e.g. QCD)


•Cosmic Strings CS (e.g. U(1) sym breaking)


•Domain Walls DW (e.g. Z2 sym breaking)


• Inflation (e.g. with a kink or hybrid)


•Many other effects (e.g. PBHs,…) 


•See other talks: Wang; Avgoustidis; Vikman; Papanikolaou; 
Goshal; Balazs; Zhou; Ota; Khalil; Mahapatra…

{In this talk we are 
interested in a few 

BSM examples 



Gravitational Waves from First Order Phase Transitions 
(FOPT)

Phase Transition

Phase Transitions:

Bubbles nucleate and grow.

Expand in plasma.

Bubbles and fronts collide - - violent process.

Sound Waves left behind in thermal plasma.

Turbulence, damping.

Anish Ghoshal GW
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FIG. 7. An example of how poor the simplest calculations of the sound wave source can be. In

the above, we compare the sound shell model using the RMS fluid velocity (red) with a numerical

treatment that uses the whole velocity profile (blue). Note that the latter curve also the suppression

factor from the energy lost to vorticity, likely due to the fact that some sound shells do not have

enough time to reach a self-similar solution [282]. Figure taken from [283] and data taken from

[284]

with a spectral shape now having two peaks
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where s = f/fp, rb is the ratio between the peaks, b controls the slope and m is chosen so

that the peak is located at s = 1, M = 1 for rb < 1,

m = (9r4
b
+ b)/(r4

b
+ 1) . (83)

The parameters (rb, b) need to be obtained numerically from the numerical calculation of the

gravitational wave spectrum. Numerical simulations demonstrate that the sound shell model

overestimates the gravitational wave spectrum as some sound shells do not have enough time

to reach a self-similar solution before colliding [282]. This suppression becomes large when

the trace anomaly is large and the wall velocity is small. Other recent improvements come
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FIG. 4. Schematic of an e↵ective potential for some scalar field, �, evolving with temperature with

a nucleation temperature denoted by T

classical nucleation prescription. It is most common to consider phase transitions driven by

the thermal evolution of the e↵ective potential, sketched in Fig. 4, for a scalar field which

we will denote as �. In such a case, we can derive the existence and behaviour of a bubble

as a classical solution to the equations of motion. We simplify our lives by considering only

spherical bubbles, and approximating
R

dt ! 1
T
, in which case the equations of motion are

@2�

@r2
+

2

r

@�

@r
=

@V

@�
. (50)

A solution to this is of course that the field occupies an extremum where the gradient of

the potential vanishes. However, imagine the above equation with the r coordinate replaced

with time - it now describes the equations of motion of a ball on a hill of shape �V with

a strange time-dependent friction term. If we place the ball close to its maximum value,

it will roll down towards the other local maximum. An initial condition that is too high

will result in the ball rolling past the local maximum and continuing forever. If the initial

condition is too low, the ball will roll around forever in the minimum connecting the two

maxima. However, there is a Goldilocks solution where the ball starts in just the right place

to land on the top of the local maximum.

Returning our imagination to the field theory case with radial rather than time deriva-

tives, the solution we have found is of a spherically symmetric object that is in the true

weak, they are expected to be improved foreseeably by future experiments like HL-LHC [64],
FCC [65, 66], ILC [67] and CEPC [68, 69]. Moreover, the Higgs portal coupling also affects
flavour violating processes like the h ! µ⌧ or ⌧ ! µ� decay which can be tested by precious
measurements at colliders [34, 70].

3 Gravitational wave signals

During a first-order phase transition, the scalar field configuration tunnels from the zero
vacuum to a non-zero vacuum locally in the form of bubbles. The scalar bubbles can then
move, collide and expand. Sound waves and turbulence can be produced after the collision of
bubbles. The gravitational wave can be produced through three different mechanisms [36, 37]:
collision between the scalar bubbles, overlap of the sound wave in the plasma and the fluid
turbulence. The total gravitational wave spectrum is the sum of the three contributions

⌦tot(f) = ⌦coll(f) + ⌦sw(f) + ⌦turb(f) . (3.1)

All three contributions depend on the phase transition dynamics which is described by four
key parameters: the wall velocity vw, the inverse phase transition duration �/H⇤, the phase
transition strength ↵T⇤ and the transition temperature T⇤. After these parameters are de-
termined, the gravitational wave spectrum can be computed using results from numerical
simulations.

The crucial step in computing these key parameters is to compute the Euclidean action.
To find the Euclidean action which is defined as the spacial integration of the effective La-
grangian, a solution of the Euclidean equation of motion is required, which is generally not
solvable analytically. For further details see Appendix A. A common treatment for particles
of electroweak scale or below is to make an approximation using Eq.(2.8a) and Eq.(2.8b) after
which the effective potential can be simplified into a quartic function of the scalar field and a
semi-analytical expression for the Euclidean action can be derived [40, 71]. However, as the
leptoquark is typically above TeV scale [72–75], the one-loop finite-temperature correction
from leptoquark is exponentially suppressed and thus negligible. On the other hand, the
approximation in Eq.(2.8a) and Eq.(2.8b) are no longer eligible in the parameter space of
interest. Therefore the Euclidean equation of motion is solved numerically in this work.

In Fig.2 and Fig.3, we show the gravitational wave produced from first-order EWPT for
the 4 benchmark cases in Fig.1. The cases with 1 TeV leptoquarks are shown in Fig.2 and those
with 1 TeV leptoquarks are shown in Fig.3. In order to compare the result with detections, we
shadow the region that can be detected by BBO [76], DECIGO [77, 78], LISA [36] and µAres
[79] with different colours. The gravitational waves produced by different sources during
the phase transition are also shown independently. As the average bubble radius R⇤ at the
percolation temperature is much larger than the initial bubble radius R0, the gravitational
wave produced by bubble collision is subdominant and can be neglected. We have also found
that, for all the cases, the gravitational wave is dominantly produced by the turbulence at
most frequencies, except around the peak frequency for the gravitational wave produced by
the sound wave. The reason is that the sound wave period ⌧sw is relatively small compared
with the Hubble time, which means more energy budget in the fluid motion is released in the
form of turbulence than the sound wave. However, the calculation of gravitational wave from
turbulence after a phase transition has a relatively large uncertainty, and the assumption of
full conversion of the fluid motion energy into turbulence can also lead to an overestimation
of the gravitational wave strength. Therefore the contribution from turbulence is shown as a
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(a) SU(2) singlet leptoquark mS = 1 TeV,
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(b) SU(2) doublet leptoquark mS = 1 TeV,

v⇤/T⇤ = 3.97

(c) SU(2) doublet leptoquark mS = 1 TeV,

v⇤/T⇤ = 1.75
(d) SU(2) triplet leptoquark mS = 1 TeV,

v⇤/T⇤ = 3.42

Figure 2. Gravitational wave signals for benchmark cases with 1 TeV leptoquarks. See the text for
further discussion and explanation.

reference on its upper bound. As the gravitational wave produced by sound wave dominates
when it peaks, the sensitivity to Higgs portal coupling is not affected.

By comparing the panels, it can be noticed that the gravitational wave produced from
first-order EWPT relies on the strength of the transition. To illustrate the relation more
explicitly, we show the dependence of gravitational wave signal peak values on the strength of
the phase transition in the left panel of Fig.4. Here, instead of vc/Tc in the previous section,
the strength of transition is estimated by the ratio of the non-zero minimum of the scalar
potential and temperature when the phase transition happens, i.e. when the probability of
bubble nucleation is significant. The temperature T⇤ is defined by the temperature when one
bubble is nucleated per unit volume per unit time and the non-zero VEV at T⇤ is denoted as
v⇤. We find that the gravitational wave is testable when v⇤/T⇤ is roughly larger than 1.22. In
the right panel of Fig.4, we show how the gravitational wave signal peak values rely on the
Higgs portal coupling when the masses of leptoquarks are 1 TeV. For the first-order phase
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by leptoquark for some benchmark cases and compare it with the detector sensitivities. We
found that in some range of the parameter space, the leptoquark-induced first-order EWPT
is able to produce gravitational wave signals that are strong enough to be detected.

The paper is organised as follows. In Sec.2, we discuss the first-order EWPT induced by
leptoquark through the Higgs portal. We also show the constraints from Higgs physics to the
parameter space. In Sec.3, we show the gravitation wave signal produced during leptoquark-
induced first-order EWPT for benchmark points. Finally, we summarise and conclude in
Sec.4.

2 first-order EWPT induced by scalar leptoquarks

In this section, we discuss how a first-order EWPT can be induced by leptoquarks. We con-
sider the coupling between the SM scalar doublet H and an extra complex scalar leptoquark S
with a SU(2) index a, which runs up to 1, 2 or 3 for singlet, doublet or triplet representations,
respectively. In the simplest case, the scalar potential can be written as

V0 = �µ2
|H|

2 + �H |H|
4 + µ2

S |Sa|
2 + �S |Sa|

4 + 2�HS |H|
2
|Sa|

2 (2.1)

For simplicity, we only consider the minimal quartic interaction between Higgs and scalar
leptoquark in the form of |H|

2
|S|2. Other forms of quartic interactions, such as |H†S|2

for SU(2) doublet leptoquark and H†(�iSi)(�jSj)†H for SU(2) triplet leptoquark, can lead
to mass shifts between the SU(2) components of leptoquarks after spontaneous symmetry
breaking (SSB), as well as extra contributions to the thermal mass of the SM Higgs field.
Such contributions can enhance the phase transition, but the effect can be taken into account
effectively by shifting the minimal quartic coupling �HS . Focussing on the field h in H =
(G+, (h+ iG0)/

p
2) that becomes the SM Higgs boson after spontaneous symmetry breaking,

the scalar potential reads

V0 = �
µ2

2
h2 +

�H

4
h4 +

µ2
S

2

�
s2a,1 + s2a,2

�
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4
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2
h2
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s2a,1 + s2a,2

�
(2.2)

where Sa = (sa,1+i sa,2)/
p
2. As the leptoquark is typically heavier than the electroweak scale,

we assume µ2
S
> 0 in this research. Then the leptoquark mass after SSB is m2

S
= µ2

S
+�HSv20

with v0 the standard model Higgs VEV. At tree level, the phase transition is second-order
as the participation of S does not vary the minimum of the scalar potential. However, by
considering the finite temperature effective potential, the existence of leptoquarks modifies
the minimum through the Higgs portal coupling at loop order. In this study, we consider
the effective potential at one-loop level for simplicity, neglecting higher-order effects [48] that
may vary the transition strength by 20%. We also neglect renormalisation group corrections
which have a smaller effect [49].

At one-loop level, the effective scalar potential receives contributions from zero-temperature
correction �V 1�loop

0 (Coleman-Weinberg potential) and finite-temperature correction �V 1�loop
T

[50]

Ve↵(h, T ) = V0 +�V 1�loop
0 (h) +�V 1�loop

T
(h, T ) . (2.3)

The one-loop zero-temperature correction reads

�V 1�loop
0 (h) =

X

i2b,f

ni

64⇡2
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m4
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ln
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�
3

2

◆
+ 2m2

i (h)m
2
i (v0)

�
, (2.4)
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(a) SU(2) singlet scalar leptoquark (b) SU(2) doublet scalar leptoquark

(c) SU(2) triplet scalar leptoquark (d) SU(2) singlet, doublet and triplet scalar lep-

toquarks

Figure 1. Allowed parameter space for first-order phase transition induced by different types of
scalar leptoquark. Detailed discussion can be found in the text.

{3.59, 4.99}⇥(mS1/1TeV)0.685 for singlet leptoquark, between {2.87, 4.00}⇥(mS2/1TeV)0.679

for doublet leptoquark and between {2.52, 3.50}⇥ (mS3/1TeV)0.676 for triplet leptoquark.
A more complicated case can occur when the scalar potential develops two non-zero

minima simultaneously after the temperature drops below T2. In such a case, the transition
has two steps: first to a non-zero minimum continuously through second-order phase transition
and then to the larger non-zero minimum through first-order phase transition. The regions
where such cases happen are marked as green in Fig.1(b) and Fig.1(c). However, as the
leptoquark is typically above 1 TeV, such regions are not of interest in this study.

Since the coupling that is required for a first-order phase transition to appear grows as
the scalar mass increases, the perturbative method used in the effective potential calculation
can break down. To estimate the reliability of the perturbative method, we evaluate the
loop contribution to the Higgs quartic coupling as has been done in [35]. Since the main
concern is the Higgs portal coupling �HS , we consider the higher loop contributions from
the leptoquarks only involving Higgs portal vertices. Although the contribution to the Higgs
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GW from leptoquark induced FOPT
Leptoquark singlet S1, 
doublet S2 or triplet S3
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• NANOGrav Collaboration, arXiv:2306.16213  
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Figure 1. The data from NANOGrav measurement for relic density of SGWB w.r.t. frequency in Hz
(black) against the best fit using the full sound shell model (red) and the best fit for a broken power
law fit (blue) frequently appearing in the literature (see eqn 2.5). The parameters behind each fit are
in Table 1.

regions, taking the midpoint and fitting to the vertical width. That is, �, in the above
equation is the distance from the midpoint value of log10 h2⌦GW for each uncertainty region
to the top or bottom.

To demonstrate the difference in preferred thermal parameters, in Fig. 2 we fix two
thermal parameters to their best fit values and vary �/H⇤ and Tn. The numerical scan prefers
much more realistic values, slightly larger �/H⇤ (it takes quite a fine tuned supercooling to
go lower) and a temperature around the QCD transition. Using the data of NANOGrav we
obtain the following values for the best fit point: vw ' 0.09, ↵n ' 0.85, Tn ' 132.95 MeV
and �/H ' 42.02. One note of caution, this is in the parameter range where there should
be a large suppression due to energy lost to vorticity [85]. In the supplementary material,
we show that this is somewhat mitigated by the fact that there are good fits which have a
smaller trace anomaly and larger velocity.

3 BSM Scenarios and Complementary Laboratory Probes

We are somewhat spoilt for choice in models that can produce a strong first order phase
transition at roughly the QCD scale. The very large strength of the transition lends credit to
solitosynthesis as a possible explanation [86], as this mechanism typically leads to a stronger
transition than conventional nucleation. The low wall velocity, however, supports a model
that can predict a lot of friction like perhaps a SIMP model which can contain particles
with large multiplicites [87–90]. Quite a few other dark sector phase transitions have been
considered in this temperature range, see for instance [91–96]. Of course, while the QCD
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Full Sound shell
Parameter Best fit value

↵n 0.85
�/H⇤ 42
Tn 133 MeV
vw 0.09
�fit 1.4

Broken power law fit
Parameter Best fit value

↵n 0.89
�/H⇤ 5.17
Tn 142 MeV
vw 0.67
�fit 1.59

Table 1. Best fit values for the full sound shell model and the usual fit used in the literature as given
by Eq. 2.5. The full sound shell model performs somewhat better than the fit.

where Ūf is the root mean square fluid velocity, � ⇠ 4/3 is the adiabatic index and ⌥ is the
suppression factor arising from the finite lifetime [74, 81] (⌧sh) of the sound waves [74]

⌥ = 1�
1

p
1 + 2⌧shHs

. (2.6)

Finally, the spectral form has the shape

S(f) =

✓
f

fp

◆3✓ 7

4 + 3(f/fp)2

◆7/2

(2.7)

where fp is the peak frequency given by

fp = 8.9⇥ 10�6 1

vw

✓
�

He

◆⇣
zp
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⌘✓
Te

100GeV

◆✓
g⇤(Te)

100

◆1/6

Hz (2.8)

However, a full calculation of the sound shell model can see qualitative deviations from this
curve [79] with a better fit being a double broken power law. Most important for our interests
is the fact that the power law after the peak depends on the strength of the phase transition
and the bubble wall velocity [82]. A more optimistic scenario was studied in [11] where the
power law on either side of the peak was treated as a free parameter. In this work, we will
perform a full calculation of the sound shell model to take advantage of this flexibility in the
peak of the spectrum. Note that in the sound shell model, by keeping the force term between
the bubble wall and the plasma longer, the shape can be modified in the infrared [83].

We perform a scan over the space of thermal parameters, (↵n, Tn, vw,�/Hn), to find the
best fit to the NANOGrav data (who have released their full data including uncertainties).
The scans are performed over the following ranges: nucleation temperature 3 MeV < Tn <

150 MeV, bubble wall velocity 0 < vw < 1, phase transition strength 0 < ↵n < 1, and the
efficiency of bubble formation w.r.t. the expansion rate 0 < �/H < 100. Since the relevant
ranges of temperature and frequency are around the quark-gluon confinement regime near
150 MeV, we consider g⇤(Tn) the evolution of degrees of freedom for the energy density of the
thermal bath of SM particles at the nucleation temperature [84]. The best fit point we use
the following figure of merit

�
2
fit =

NX

i=1

�
log10⌦thh

2
� log10⌦exph

2
�2

2�̄2
i

, (2.9)

where ⌦thh
2 and ⌦exph

2 represent the GW relic from theoretical prediction of FOPT and
experimental value from PTA, respectively. Note that we ignore the width in the uncertainty
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|Φ| = η

θie<Φ> = ηv

v

Figure 1. The Abelian Higgs potential in the complex plane [ℜ (Φ) ,ℑ (Φ)]. The
non-trivial phase mapping from the internal space to the physical space (right) leads
to the formation of a cosmic string. The old vacuum |Φ| = 0 becomes trapped inside
the new one |Φ| = ηv.

transition. As pointed by Kibble, this is at most the horizon size dh ∝ t although one

expects it to be much smaller [3, 58, 59, 60, 61]. As a result, there exists closed paths in
space along which θ varies from 0 to 2π (or a multiple of 2π). Such phase configurations

necessarily encompass a point at which |Φ| = 0 (see Fig. 1): the old vacuum has been

trapped into a non-trivial configuration of the new vacuum, and this prevents its decay.

Such a structure is invariant by translations along the third spatial dimension and is

string shaped.

Solitonic solutions of the field equations describing a static straight Abelian string
can easily be computed under the Nielsen–Olesen ansatz. The transverse profile of the

Higgs and gauge field are assumed to be [62]

Φ = ηvH(ϱ)einθ, Bµ =
Q(ϱ)− n

g
δµθ, (4)

where (r, θ) stands for a polar coordinate system aligned along the string. The

dimensionless radial coordinate has been defined by ϱ = mhr where mh =
√
ληv is

the mass of the Higgs boson. The integer n is the “winding number” and gives the

number of times the Higgs winds the potential for one rotation around the string. From

Eq. (2), the dimensionless equations of motion read

d2H

dϱ2
+

1

ϱ

dH

dϱ
=

HQ2

ϱ2
+

1

2
H(H2 − 1),

d2Q

dϱ2
−

1

ϱ

dQ

dϱ
=

m2
b

m2
h

H2Q, (5)
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II. TERRESTRIAL AND COSMIC

SIGNATURES OF GUTS

SO(10) is the minimal simple GUT which o↵ers the
possibility of cosmic string generation. Its breaking to
the SM gauge group can proceed along one of the break-
ing chains shown in Fig. 1, with the additional option of
removing intermediate steps. We use the following ab-
breviations for the symmetries at an intermediate scale:

G51 = SU(5) ⇥ U(1)X , Gflip
51 = SU(5)flip ⇥ U(1)flip ,

G3221 = SU(3)C ⇥ SU(2)L ⇥ SU(2)R ⇥ U(1)B�L ,

G3211 = SU(3)C ⇥ SU(2)L ⇥ U(1)R ⇥ U(1)B�L ,

G0
3211 = SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X ,

G421 = SU(4)C ⇥ SU(2)L ⇥ U(1)Y ,

G422 = SU(4)C ⇥ SU(2)L ⇥ SU(2)R . (1)

Note that G3211 and G0
3211 are equivalent [22]. All pos-

sible SO(10) cases can be classified into four types de-
noted as (a), (b), (c) and (d) in Fig. 1. Types (a), (b)
and (c) are models broken via standard SU(5) ⇥ U(1),
flipped SU(5)⇥U(1)[23–26] and Pati-Salam G422 [27] re-
spectively. Cases with standard SU(5) [2] as the lowest
intermediate symmetry, are classified as type (d). The
scales of proton decay ⇤pd and cosmic strings ⇤cs are
important testable parameters discussed in the following.

A. Proton Decay in SO(10). As quarks and leptons
are arranged in common multiplets in GUTs, heavy new
states which mediate baryon-number-violating (BNV) in-
teractions are introduced. At low energy scales, these
heavy states are integrated out and this induces higher-
dimensional BNV operators which lead to proton decay.

In the main body of the text, we will focus on non-
supersymmetric contributions, while discussions on ad-
ditional sources provided by supersymmetric extensions
will be discussed in the Supplemental Material. In sum-
mary, SUSY with R-parity has similar phenomenologi-
cal/cosmological consequences, see Fig. 1, with the addi-
tion of the K+⌫̄ proton decay channel.

At low energy, the most important operators which re-
spect GSM are the dimension-six ones arising from gauge
contributions,

✏↵�

⇤2
1

⇥
(uc

R
�µQ↵)(dc

R
�µL�) + (uc

R
�µQ↵)(ec

R
�µQ�)

⇤
(2)

+
✏↵�

⇤2
2

⇥
(dc

R
�µQ↵)(uc

R
�µL�) + (dc

R
�µQ↵)(⌫c

R
�µQ�)

⇤
,

where ↵, � denote SU(2)L indices and ⇤1, ⇤2 are the UV-
complete scales of the GUT symmetry [4–8]. For types
(a) and (d), ⇤1 and ⇤2 correspond to the SU(5) and
SO(10) breaking scales, respectively, and thus ⇤1 < ⇤2.
While for type (b), ⇤2 < ⇤1 and ⇤1 = ⇤2 for type (c).
In general, the lower of these two scales will mediate the
dominant proton decay channel and we indicate it as ⇤pd.

These operators induce a series of proton decay chan-
nels. The most stringently constrained is p ! ⇡0e+ as
determined by Super-Kamiokande, ⌧⇡0e+ > 1.6 ⇥ 1034

years (90% C.L., 100% branching ratio assumed) [12].

(a)

SO(10)

Gflip
51

(GSM(Z2)

Gx = G3221 or G421

G0
3211

G51

SO(10)

(GSM(Z2) GSM⇥Z2

(b) (c) (d)

inflation

strings

G3211

SO(10)

G422

G422 ⇥ ZC

2

(Gx ⇥ ZC

2

(Gx(Gx

G3211

inflation

inflation

(GSM(Z2)

If do not distinguish monopole and domain wall, we can simplify the plot to the 
following. Deleting any intermediate symmetry may change topological defects, but 

unwanted topological defects are always involved. 

proton 
decays

unw
anted 

topological 
defects

G51

SO(10)

(SU(5)(Z2)

inflation

(GSM(Z2)

gravitational waves generated via cosmic string

inflation proton 
decays

proton 
decays

proton 
decays

unw
anted defects 

in non-SUSY

strings in SUSY

strings

unw
anted 

topological 
defects

FIG. 1. The breaking chains of SO(10) to GSM are shown
along with their terrestrial and cosmological signatures where
Gx represents either G3221 or G421. Defects with only cos-
mic strings (including cosmic string generated from preserved
discrete symmetries) are denoted as blue solid arrows. Those
including unwanted topological defects (monopoles or domain
walls) are indicated by red dotted arrows. The instability of
embedded strings is not considered. Removing an intermedi-
ate symmetry may change the type of unwanted topological
defect but will not eliminate them. The highest possible scale
of inflation, which removes unwanted defects, is assumed in
this diagram.

This bound translates to the lower limits of ⇤1 > 6.7 ⇥
1015 GeV and ⇤2 > 3.9 ⇥ 1015 GeV, respectively, us-
ing ⌧⇡0e+ ' 8 ⇥ 1034 years ⇥ (⇤1/1016 GeV)4 [28] or
7⇥1035 years⇥(⇤2/1016 GeV)4 [29], respectively. Hyper-
Kamiokande o↵ers at least an order of magnitude im-
provement [14] which will further push the lower bound
of ⇤1 above 1016 GeV.
B. Gravitational Waves From Cosmic Strings.

The cosmological consequence of SSB from the GUT to
the SM gauge group is the formation of topological de-
fects. These defects generically arise from the breaking
of a group, G, to its subgroup, H, such that a mani-
fold of equivalent vacua, M ' G/H, exists. Monopoles
form when the manifold M contains non-contractible
two-dimensional spheres, cosmic strings when it contains
non-contractible loops and domain walls when M is dis-
connected. Di↵erent GUT breaking chains result in dif-
ferent combinations of topological defects forming at var-
ious scales; these have been comprehensively categorised
in [16] where it was shown that the vast majority of GUT
breaking chains produce cosmic strings. In Fig. 1, we
summarise all possible symmetry breaking chains and as-
sociated defects as derived in Ref. [16]. We note that
embedded strings can be generated if a Z2 symmetry is
preserved [30]; however, we do not distinguish them from
topological strings and both scenarios are indicated by
the blue lines of Fig. 1.

Cosmic strings are a source of GWs as they actively

GWs via CSs from gauged 
U(1)B-L in SO(10) GUTs

S.F.K., S.Pascoli, J.Turner and Y.L.Zhou, 2005.13549; 
2106.15634; w/ Marsili  2209.00021; 2308.05799 
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FIG. 2. SGWB predicted from undiluted (solid black) and
diluted (dashed bule) cosmic string networks, where ⇤cs =
1010,11,··· ,15 GeV are input. z̃ denotes the redshift when
strings return to the horizon, namely H(z̃)L(z̃) = 1. Cur-
rent (hatched) and future (coloured) experimental limits are
shown as comparision.

perturb the metric at all times. If cosmic strings form af-
ter inflation, they exhibit a scaling behaviour where the
stochastic GW spectrum is relatively flat as a function of
the frequency and the amplitude is proportional to the
string tension µ. We refer to the string formation scale asp

µ ⌘ ⇤cs as, without fine-tuning, all gauge coe�cients
in GUTs are of order one. We note that this scale is
identical to the symmetry breaking scale up to an order
one coe�cient. This scale, if exists, is the lowest inter-
mediate scale of SO(10) GUT breaking, as indicated in
Fig. 1. The GWs are sourced when the cosmic strings in-
tersect to form loops. Cusps on these strings emit strong
beams of high-frequency GWs or bursts, that constitute
a SGWB if unresolved over time [31, 32]. An inflation-
ary period can suppress the SGWB in high frequencies
[33]. However, it was recently shown that cosmic string
network regrowth can occur to the extent that its as-
sociated GW signal is observable [34], contrary to what
was naively expected. This string regrowth is contingent
upon the initial number of cosmic strings per Hubble
volume and the number of e-folds into inflation that the
string formation occurs. A detailed discussion of these
initial conditions and up-to-date sensitivities of the GW
observatories on the string tension are provided in the
aforementioned reference.

In Fig. 2 we show sensitivities of current and fu-
ture GW experiments alongside the predicted SGWB
for cosmic strings undiluted (solid curves) and diluted
(dashed curves) by inflation. The U(1) symmetry break-
ing scale ⇤cs = 1010,11,··· ,15 GeV corresponds to Gµ '
0.7 ⇥ 10�18,�16,··· ,�8, respectively, where G is Newton’s
constant. We provide formulations of SGWB in both
the undiluted and diluted cosmic strings scenarios in the
Supplementary Material, following [35, 36] and [34], re-
spectively. Furthermore, for a comprehensive review on

cosmic strings see Ref. [37] and references therein.
Applying these standard assumptions, a large range of

⇤cs can be explored using GW detectors. LIGO O2 [38]
has excluded cosmic strings formation at ⇤cs ⇠ 1015 GeV
in the high frequency regime 10-100 Hz. While in low
frequency band, 1-10 nHz, the null result of EPTA [39]
and NANOGrav 11-year data [40] constrains the upper
bound of ⇤cs below 1015 GeV and 1014 GeV, respec-
tively.1 Planned pulsar timing arrays SKA [42], space-
based laser interferometers LISA [43], Taiji [44], TianQin
[45], BBO [46], DECIGO [47], ground-based interferom-
eters Einstein Telescope [48] (ET), Cosmic Explorer [49]
(CE), and atomic interferometers MAGIS [50], AEDGE
[51], AION [52] will probe ⇤cs values in a wide regime
1010-14 GeV. As the spectrum of GWs produced via di-
luted cosmic strings decreases rapidly for f > 10�6 Hz,
this allows them to be distinguished from the undiluted
cosmic strings as shown in Fig. 2.

Unwanted topological defects are generated in all
SO(10) breaking chains, as indicated in Fig. 1 and in-
flation is a promising means to remove them. Consis-
tent hybrid inflation models have been achieved via GUT
breaking [53, 54]. The shape and magnitude of the in-
flaton potential are imprinted in the primordial density
perturbations which are characterised by the spectral in-
dex and the tensor-to-scalar ratio in cosmic microwave
background (CMB) measurements, from which the up-
per limit on inflation is ⇤inf < 1.6⇥1016 GeV (95% C.L.,
Planck) [55]. Future CMB measurements can improve
the tensor-to-scalar ratio upper limit to 0.001 (95% C.L.,
CMB-S4) [56], corresponding to ⇤inf < 5.7 ⇥ 1015 GeV.

III. SYNERGY BETWEEN PROTON DECAY

AND GW MEASUREMENTS

Planned future proton decay searches will either put
a more stringent lower bound on ⇤pd or, in the pres-
ence of a signal, will provide further insight into the
GUT symmetry structure. Due to the relatively model-
independent nature of the operators shown in Eq. (2), the
following experimental results are of particular interest:

• Proton decay is observed in the ⇡0e+ channel. This
provides an explicit link between ⇤pd and ⌧⇡0e+ .

• Proton decay is observed in the K+⌫̄ channel. This
case provides a weaker connection to ⇤pd due to the
involvement of the unknown SUSY-breaking scale.

The observation of GWs from cosmic strings is cru-
cially dependent on the scale of inflation. We consider
two possibilities: i) the case of string formation after in-
flation, namely ⇤cs < ⇤inf , for which a SGWB is gener-
ated from undiluted strings; and ii) the case of GWs from
diluted cosmic strings, if ⇤cs ⇠ ⇤inf . The case ⇤cs > ⇤inf

will not be considered as there are no associated cosmo-
logical signatures of GUTs.

1 These constraints could be relaxed due to the choice of prior as
recently pointed in [41].
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the frequency and the amplitude is proportional to the
string tension µ. We refer to the string formation scale asp

µ ⌘ ⇤cs as, without fine-tuning, all gauge coe�cients
in GUTs are of order one. We note that this scale is
identical to the symmetry breaking scale up to an order
one coe�cient. This scale, if exists, is the lowest inter-
mediate scale of SO(10) GUT breaking, as indicated in
Fig. 1. The GWs are sourced when the cosmic strings in-
tersect to form loops. Cusps on these strings emit strong
beams of high-frequency GWs or bursts, that constitute
a SGWB if unresolved over time [31, 32]. An inflation-
ary period can suppress the SGWB in high frequencies
[33]. However, it was recently shown that cosmic string
network regrowth can occur to the extent that its as-
sociated GW signal is observable [34], contrary to what
was naively expected. This string regrowth is contingent
upon the initial number of cosmic strings per Hubble
volume and the number of e-folds into inflation that the
string formation occurs. A detailed discussion of these
initial conditions and up-to-date sensitivities of the GW
observatories on the string tension are provided in the
aforementioned reference.

In Fig. 2 we show sensitivities of current and fu-
ture GW experiments alongside the predicted SGWB
for cosmic strings undiluted (solid curves) and diluted
(dashed curves) by inflation. The U(1) symmetry break-
ing scale ⇤cs = 1010,11,··· ,15 GeV corresponds to Gµ '
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spectively. Furthermore, for a comprehensive review on

cosmic strings see Ref. [37] and references therein.
Applying these standard assumptions, a large range of

⇤cs can be explored using GW detectors. LIGO O2 [38]
has excluded cosmic strings formation at ⇤cs ⇠ 1015 GeV
in the high frequency regime 10-100 Hz. While in low
frequency band, 1-10 nHz, the null result of EPTA [39]
and NANOGrav 11-year data [40] constrains the upper
bound of ⇤cs below 1015 GeV and 1014 GeV, respec-
tively.1 Planned pulsar timing arrays SKA [42], space-
based laser interferometers LISA [43], Taiji [44], TianQin
[45], BBO [46], DECIGO [47], ground-based interferom-
eters Einstein Telescope [48] (ET), Cosmic Explorer [49]
(CE), and atomic interferometers MAGIS [50], AEDGE
[51], AION [52] will probe ⇤cs values in a wide regime
1010-14 GeV. As the spectrum of GWs produced via di-
luted cosmic strings decreases rapidly for f > 10�6 Hz,
this allows them to be distinguished from the undiluted
cosmic strings as shown in Fig. 2.

Unwanted topological defects are generated in all
SO(10) breaking chains, as indicated in Fig. 1 and in-
flation is a promising means to remove them. Consis-
tent hybrid inflation models have been achieved via GUT
breaking [53, 54]. The shape and magnitude of the in-
flaton potential are imprinted in the primordial density
perturbations which are characterised by the spectral in-
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per limit on inflation is ⇤inf < 1.6⇥1016 GeV (95% C.L.,
Planck) [55]. Future CMB measurements can improve
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CMB-S4) [56], corresponding to ⇤inf < 5.7 ⇥ 1015 GeV.

III. SYNERGY BETWEEN PROTON DECAY

AND GW MEASUREMENTS

Planned future proton decay searches will either put
a more stringent lower bound on ⇤pd or, in the pres-
ence of a signal, will provide further insight into the
GUT symmetry structure. Due to the relatively model-
independent nature of the operators shown in Eq. (2), the
following experimental results are of particular interest:

• Proton decay is observed in the ⇡0e+ channel. This
provides an explicit link between ⇤pd and ⌧⇡0e+ .

• Proton decay is observed in the K+⌫̄ channel. This
case provides a weaker connection to ⇤pd due to the
involvement of the unknown SUSY-breaking scale.

The observation of GWs from cosmic strings is cru-
cially dependent on the scale of inflation. We consider
two possibilities: i) the case of string formation after in-
flation, namely ⇤cs < ⇤inf , for which a SGWB is gener-
ated from undiluted strings; and ii) the case of GWs from
diluted cosmic strings, if ⇤cs ⇠ ⇤inf . The case ⇤cs > ⇤inf

will not be considered as there are no associated cosmo-
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1 These constraints could be relaxed due to the choice of prior as
recently pointed in [41].
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FIG. 3. GUTs constrained by observations of GWs and proton decays. Left panel: Current (hatched) and future (solid)
exclusion limits of energy scales of cosmic string formation, proton decays and inflation. ⇤pd ⇠ ⇤1 is approximated and the
exclusion limit of ⇤cs is shown in the undiluted case only. Right panel: Potential conclusions of GUT properties based on
observations of GWs and proton decays in next-generation experiments.

experiments would crucially allow to further strenghten
this conclusion.

IV. SUMMARY AND CONCLUSION

We propose a strategy to use both proton decay and
gravitational waves (GWs) as a means of identifying pos-
sible breaking chains of Grand Unified Theories (GUTs).
We focus on SO(10) GUT models and categorise them
according to their symmetry breaking patterns as shown
in Fig. 1(a)-(d), corresponding to standard SU(5)⇥U(1),
flipped SU(5) ⇥ U(1), Pati-Salam and standard SU(5),
respectively.

For each pattern of breaking, we compare the scale
of proton decay, ⇤pd, with the cosmic string formation
scale, ⇤cs. These scales can have important testable con-
sequences as they are related to the proton lifetime and
the generation of GWs via cosmic strings. The determi-
nation of these scales, in particular their ordering, pro-
vides useful information in assessing the viability of a
given class of breaking chains within SO(10) GUTs.

Our results are summarised in Fig. 3. In particu-
lar, such observations could exclude SO(10) breaking via
flipped SU(5) ⇥ U(1) or standard SU(5), while break-
ing via a Pati-Salam intermediate symmetry, or standard
SU(5) ⇥ U(1), may be favoured if a large separation of
energy scales associated with proton decay and cosmic

strings is indicated.
We note that recent evidence of a stochastic back-

ground of gravitational waves by the NANOGrav experi-
ment can be interpreted as due to cosmic strings at a scale
⇠ 1014 GeV. This result would strongly point towards the
existence of GUTs, with SO(10) being the prime candi-
date. Our results show that the combination with already
available information from proton decay can identify the
symmetry breaking pattern down to the Standard Model,
with strong preference for type (a) or a subset of type (c).

In conclusion, we have entered an exciting era where
new observations of GWs from the heavens and proton
decay experiments from under the Earth can provide
complementary windows to reveal the details of the uni-
fication of matter and forces at the highest energies.
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Figure 6: Prediction of the string tension, its correction with the scale MB�L and the string
stability in flipped SU(5). In the right panel, Gµ . 10�7 is set by current ground-based
interferometers LVK for stable strings. Space-based interferometers such as LISA, Taiji and
TianQin will have the ability to test GWs for strings with 10�14 . Gµ . 10�7, which is
indicated in the green region of the plot.

p
 is the parameter representing the stability of

strings, and strings with
p
 . 9 are considered as unstable strings.

10-10 10-8 10-6 10-4 0.01 1 100 104
10-12

10-10

10-8

10-6

LISA

Taiji

TianQin

AEDGE

AION

ET

LVK

LIGO O5

NANOGrav15

not inflated

Figure 7: Benchmark of GW spectrums predicted in SUSY flipped SU(5). Gµ = 10�5 is used.p
 = 7.8 is tuned to fit the signal of NANOGrav 15 data in the nHz region. Three curves

of GW spectrum with strings generated during the end of inflation are shown with strings
re-entering the horizon at the redshift zinf = 1010, 1012 and 1014, respectively. The k mode is
summed up to Nk = 105. GW generated fully after inflation is shown in comparison.

string loops associated with the breaking of the high energy U(1)B�L.

We have presented the spectrum of the model and described the breaking pattern of
the flipped SU(5)⇥ U(1)� symmetry via a sequence of scales. We performed a two-loop
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Cosmic string gravitational waves from global U(1)B−L 
symmetry breaking as a probe of the type I seesaw scale
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Table 1. Irreducible representations of the fields of the model under the SU(2)L ⇥ U(1)Y ⇥
U(1)B�L symmetry. The fields Q,L are left-handed SM doublets while uR, dR, eR are right-handed
SM singlets. N represents the right-handed neutrinos and � is a scalar singlet.

The right-handed neutrinos are assumed to be Majorana so that the SM left-handed neu-
trinos can obtain effective Majorana masses at low scale after the electroweak symmetry
breaking. The model is free of anomalies even if the U(1)B�L symmetry is gauged in the
case with three RH neutrinos, but with the absence of the third RH neutrino, the model
only admits a global U(1)B�L symmetry unless the symmetry is flavour-dependent.

The Majorana mass of right-handed neutrinos can be sourced from the vacuum expec-
tation value (VEV) of a scalar singlet, which couples to the right-handed neutrinos in the
form of

1

2
yi�N c

i
Ni + h.c. (2.2)

As the RH neutrinos are charged under the hypothetic U(1)B�L symmetry, the scalar singlet
has to be also charged and thus its VEV h�i = ⌘ would break the symmetry spontaneously.
After the U(1)B�L symmetry is broken, the RH neutrinos become massive with a diagonal
mass matrix

0

B@
M1 0 0

0 M2 0

0 0 M3

1

CA , Mi = yi⌘ . (2.3)

In models only two RH neutrinos, the heavy neutrino mass matrix is
 
M1 0

0 M2

!
, Mi = yi⌘ . (2.4)

2.1 The Littlest Seesaw model

To make a testable connection between the low energy neutrino physics and the high energy
gravitational wave phenomena, we consider a class of highly predictive models, which is
called the Littlest Seesaw models. In the type I seesaw model with two right-handed (RH)
neutrinos, the neutrino Dirac mass is denoted by 3⇥ 2 matrix mD. Under the assumption
of the constrained sequential dominance (CSD) [30], the two columns of mD follow specific
alignments. The first column of mD is proportional to (0, 1, 1), and the second column is
proportional to (1, n, n � 2). Let ma and mb be the coefficients of the two columns, then
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connection between global U(1)B�L symmetry and gravitational waves has not so far been
studied in the type I seesaw framework.

In this paper, then, we make a first study of the connection between neutrino physics
and gravitational waves sourced from the dynamics of global cosmic strings. By considering
a global U(1)B�L extension of the type I seesaw model, the U(1)B�L symmetry breaking is
related to the mass of the heaviest RH neutrino up to an undetermined Yukawa coupling.
After the U(1)B�L symmetry is broken by a heavy scalar, the RH neutrinos become massive
and in the meantime global cosmic string network are formed. The evolution of the global
strings produce stochastic gravitational waves background (SGWB) that can be detected
via several upcoming GW experiments. Such consideration provides us a probe to the mass
scale of the heaviest RH neutrino in the type I seesaw model.

As an example of the general approach to probing the type I seesaw at high scales using
GW signals, we study a particular global U(1)B�L extension of an existing model in the
literature known as the Littlest Seesaw model. By fitting both the low energy neutrino data
and the baryon asymmetry of the universe via leptogenesis, we determine the favoured best
fit values for both RHN masses appearing in this model. In particular, by updating the
data and improving the numerical method in Ref. [35], we evaluate the goodness of fitting
for different values of the heavier RHN mass, whose fit is dominated by the low energy
neutrino data. We remark that the heavier RHN mass is mainly relevant for the U(1)B�L

breaking scale and GWs, while the lighter RHN mass is mainly relevant for leptogenesis.
Choosing regions around the best fitted point, we show how the experimental sensitivity
reaches from the GW detectors may be used to probe the mass of the heavier RHN mass in
this model, which is predicted from low energy neutrino data. Moreover, we also identify
the parameter space which is already ruled out due to existing constraints on global cosmic
strings (limits on the string tension Gµ) coming from the CMB measurements which we
describe in detail.

This paper is organised as follows. In Sec.2, we describe the Littlest Seesaw model
with a global U(1)B�L symmetry. By revisiting the Littlest Seesaw model, we show how
the parameters other than the heaviest RH neutrino mass can be fixed by the neutrino data
and leptogenesis. In Sec.3, we briefly review the property of gravitational wave produced
by the evolution of cosmic string. After that, we show how the gravitational wave can be
used to test the neutrino mass models in Sec.4, with an example of the best-fit benchmark
point in the Littlest seesaw model. Finally, we summarise and discuss in Sec.5.

2 Type I seesaw model with a U(1)B�L symmetry

Here, we start with a type I seesaw extension of the SM with a U(1)B�L symmetry. The
particle content of the model is shown in Tab.1 In the frame work of type I seesaw model,
the SM leptons L↵ couple to two or three singlet fermions Ni, namely the right-handed
neutrinos, and the Higgs boson through Yukawa-like interactions that can be written as

Y↵iL↵H̃Ni + h.c.. (2.1)
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tation value (VEV) of a scalar singlet, which couples to the right-handed neutrinos in the
form of
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To make a testable connection between the low energy neutrino physics and the high energy
gravitational wave phenomena, we consider a class of highly predictive models, which is
called the Littlest Seesaw models. In the type I seesaw model with two right-handed (RH)
neutrinos, the neutrino Dirac mass is denoted by 3⇥ 2 matrix mD. Under the assumption
of the constrained sequential dominance (CSD) [30], the two columns of mD follow specific
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the RG equations are given by [88]
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d lnµ
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� 6y4t � 2Tr[Y †
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†

⌫ Y⌫ ]
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12y2t + Tr[Y †

⌫ Y⌫ ]� 3g21 � 9g22

⌘
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H + 4�2
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�
+ 8�2
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(4⇡)2
d��

d lnµ
= �1

8

X

i

y4i + 8�2
H� +

X

i

y2i �� + 20�2
�

The negative contribution from the seesaw Yukawa can be compensated with the positive
contribution from the coupling between SM Higgs and the heavy scalar �H�, and one may
avoid the vacuum instability [87].

3 Gravitational Waves from Global Cosmic Strings

Cosmic strings (CS) are topological defects that are produced due to U(1) symmetry break-
ing in the early universe [89–91]. These topological defects behave as dynamical classical
objects moving at relativistic speed. In context to string theory however, the description
of these objects are sometimes as fundamental or somtimes as composite objects [92–99].
Interestingly, CS networks once formed offer very promising sources of GW of cosmological
origin which maybe detected in near future. Moreover several Standard Model extensions,
such as models of Grand Unified Theory (GUT) [56, 100, 101], or the seesaw mechanism
for generating the neutrino masses in the Standard Model when UB�L(1) is broken spon-
taneously [44].
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y

Figure 3. Constraints and sensitivities in the M � ⌘ plane. The various GW detectors shown
here tell us the range of U(1)B�L symmetry breaking scales that it will be able to probe via the
measurements of the GW spectrum. The horizontal scale represents the heaviest RH neutrino mass,
and the lines and contours show the Yukawa coupling of this neutrino to the B�L breaking scalar,
whose VEV is indicated by the LH vertical axis. The pink band is the favoured heavier RH neutrino
mass in the Littlest Seesaw model, which can be fully probed by future GW experiments. See the
text for further details.

perturbativity limit and thus not considered theoretically. The constraints on the VEV of
the Higgs singlet are shown are the shadowed areas and the sensitivities of GW detectors
are shown as the horizontal lines. In particular, if any of the GW detectors does not find
any signal, the region above the corresponding line would be excluded. Combined the
perturbativity limit, the GW detection can be used to test models with the heaviest RH
neutrino mass above 2.5⇥ 10

14 GeV.
As an example, the case of the Littlest Seesaw model fitting to the NuFit result with

SK atmospheric data is presented in Fig.3. The red vertical line marks the value of the
heaviest RH neutrino mass in the Littlest Seesaw model for the best-fit benchmark point
in Tab.3. The region shadowed with red represents the allowed range of the heaviest RH
neutrino mass requiring �2 < 10. As can be read from the figure, the region where the
Littlest Seesaw model can fit the neutrino data with �2 < 10 can be excluded if no GW
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gravitational wave phenomena, we consider a class of highly predictive models, which is
called the Littlest Seesaw models. In the type I seesaw model with two right-handed (RH)
neutrinos, the neutrino Dirac mass is denoted by 3⇥ 2 matrix mD. Under the assumption
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Gravitational waves from phase transitions and cosmic 
strings in neutrino mass models with multiple Majorons

Figure 4. Gravitational wave spectrum from first order phase transition of v1 for three benchmark
points shown in Table 2 and from global cosmic string formed by spontaneous breaking of the global
U(1)L3 symmetry by �3 for four representative cases. The shaded region in the phase transition
signals represent uncertainties in the calculation of the gravitational wave amplitude. Sensitivities
and upper bounds from various upcoming and present interferometers are also shown. See main
text for more details.

4 GW from Majorana mass genesis in a three-majoron model

A straightforward generalization of the model is to include three complex scalars with
hierarchical VEVs, so that each scalar gives mass to one of the RH neutrinos,

�LNI+�I
�

⇣
LahaIHNI +

y1

2
�1N

c

1
N1 +

y2

2
�2N

c

2
N2 +

y3

2
�3N

c

3
N3 + h.c.

⌘
+ V0(�1,�2,�3).

(4.1)

The Lagrangian has a U(1)L1
⇥U(1)L2

⇥U(1)L3
symmetry, with each U(1) corresponding

to each scalar.15 We denote the VEVs as h�Ii ⌘ vI and without loss of generality assume
v3 � v2 � v1. The tree-level scalar potential is given by

V0(�1,�2,�3) =

X

I=1,2,3

⇥
�µ

2

I�
⇤
I�I + �I(�

⇤
I�I)

2
⇤
+

1,2,3X

I,J,I 6=J

⇣IJ

2
(�

⇤
I�I)(�

⇤
J�J). (4.2)

15Here we do not identify La with the flavor eigenstates (a = e, µ, ⌧). Then, realistic lepton mixing arises
when the Yukawa matrix haI is rotated to the flavor basis.
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Figure 5. Gravitational wave spectrum from first order phase transition of �1 and �2, with
corresponding parameters shown in rows D and E , respectively, in Table 3, and from cosmic
string formed by spontaneous breaking of the global U(1)L3 symmetry by �3 at v3 = 2 ⇥ 10

14

GeV. Individual GW contributions are shown with dotted, dashed and dotdashed lines, while the
combined spectrum is shown with a solid curve. Band in GW spectrum from phase transition
represent the possible O(0.1) suppression in the parameter e⌦gw.

slanted plateau, if the phase transition signals are sufficiently strong.16 In Table 3, we show
a benchmark point consisting of the phase transition of �1, denoted by D and the phase
transition of �2, denoted by E , that together with v3 = 2⇥10

14 GeV generate the combined
gravitational wave signal shown in Fig. 417. Notice that in this case we have assumed that
at each phase transition N = 1, corresponding to a situation where only the RH neutrino
species NI , coupling to its associated scalar field �I undergoing the phase transition, is
fully thermalised, while the other two either have fully decayed or have not yet thermalised.
This assumption is quite natural because of the strong hierarchy we are assuming for the
vI ’s, implying that a strong hierarchy of the RH neutrino mass spectrum and in turn of the
equilibration temperatures (see Eq. (2.13).

5 Conclusion

We have investigated the gravitational wave signatures of the majoron model of neutrino
mass generation and have identified two sources of gravitational waves. In the simplest

16This is, of course, assuming TRH > v3, otherwise the signals that can be generated only above a given
TRH would not appear.

17The corresponding model parameters are ⇣12 = 0.0032, ⇣23 = 0.0051, µ1 = 4.47 ⇥ 1012 GeV, µ2 =

1.01⇥ 1013 GeV, µ3 = 6.32⇥ 1012 GeV, taking �3 = 0.001 and ⇣13 = 0.001.
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�I vI [GeV] MI [GeV] CI [GeV] ↵ �/H? T? [GeV] h'Ii
true

T?
[GeV]

D 0.00027 1188.2 186.5 10.79 0.30 241.37 5196.52 1.50⇥ 10
5

E 0.00029 2.32⇥ 10
5

3.63⇥ 10
4

1523.02 0.30 203.53 6.7⇥ 10
5

1.88⇥ 10
7

Table 3. Benchmark point for gravitational wave signal from first order phase transition of '1,
denoted by D (I = 1) and '2, denoted by E (I = 2). Taken together, the parameters given in
this table constitute one benchmark point for the three-majoron model.

After spontaneous breaking of the global U(1) symmetries, the three RH neutrinos get
nonzero Majorana mass from the VEV of �1, �2, �3. Assuming these VEVs are along the
radial axis, one can identify the phase part of the complex scalars as massless majorons.

The mixing terms ⇣IJ in Eq. (4.2) introduce a zero temperature cubic term to the
effective potential of a scalar with smaller VEV. As before, the phase transition of �3

occurring at around the scale v3 is not expected to generate any strong gravitational wave
signal, since there is no zero temperature cubic term in its effective potential. However, the
spontaneous breaking of U(1)L3

at this scale would generate global cosmic string induced
gravitational waves, which can be probed if v3 & 10

14 GeV. Suppose the phase transition of
�3 is completed before the universe cools down to the scale v2, when �2 undergoes a phase
transition. The quartic mixing of �2 with �3 now introduces a zero temperature cubic term
to the thermal effective potential of �2, resulting in a strong first order phase transition and
associated gravitational wave from the sound waves. At this stage �1 does not play any
role in the phase transition of �2. Then, during the phase transition of �1 at around the
scale v1, the other two scalars have already completed their phase transition and together
they would introduce an effective zero temperature cubic term from their mixing with �1,
resulting in a strong phase transition and subsequent gravitational wave signal.

Because of the assumed hierarchy v3 � v2 � v1, the cubic terms for the phase transi-
tion of �2 and �1 depend predominantly on the mixing parameters ⇣23 and ⇣12, respectively,
C2 ' v2⇣23/(4�3) and C1 ' v1⇣12/(4�2). The mass parameters µI can be expressed from
minimization of the zero-temperature tree-level potential as

µ
2

I = �Iv
2

I +

X

J 6=I

⇣IJ

2
v
2

J . (4.3)

As before, we will treat the symmetry breaking scales vI and the cubic terms CI as model
parameters instead of µI and ⇣IJ , since the latter can be determined from the former in
conjugation with the rest of the parameters �I .

Typically the percolation temperature T? is proportional to the VEV of the correspond-
ing scalar undergoing the phase transition. From Eq. (2.39), this implies that the combined
effect of the phase transition of the three scalars may yield a double peaked gravitational
wave spectrum, with one peak at a lower frequency due to the phase transition of �1, and
another peak at a higher frequency due to the phase transition of �2. Together with a
global cosmic string induced gravitational wave spectrum from U(1)L3

breaking, the com-
bined amplitude of the gravitational wave signal may resemble twin peaks over a slightly
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Figure 4. Gravitational wave spectrum from first order phase transition of v1 for three benchmark
points shown in Table 2 and from global cosmic string formed by spontaneous breaking of the global
U(1)L3 symmetry by �3 for four representative cases. The shaded region in the phase transition
signals represent uncertainties in the calculation of the gravitational wave amplitude. Sensitivities
and upper bounds from various upcoming and present interferometers are also shown. See main
text for more details.

4 GW from Majorana mass genesis in a three-majoron model

A straightforward generalization of the model is to include three complex scalars with
hierarchical VEVs, so that each scalar gives mass to one of the RH neutrinos,
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15Here we do not identify La with the flavor eigenstates (a = e, µ, ⌧). Then, realistic lepton mixing arises
when the Yukawa matrix haI is rotated to the flavor basis.
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strings created at the highest scale symmetry breaking. The corresponding phase transition
does not produce a sizeable contribution to the GW spectrum, but it results into a VEV
of the complex scalar field that generates a term entering the effective potential describing
the second phase transition at a lower scale. This term strongly enhances the production of
GWs during the second phase transition. In this way the high scale complex scalar associ-
ated with the majoron field provides the external auxiliary scalar that had to be assumed in
[19], so that the model is self-contained and does not rely on external assumptions. Finally,
in Section 4 we consider the case when all three RH neutrino masses are associated with
different complex scalars, each charged under a different global lepton number symmetry.
At high temperatures one has the restoration of a U(1)L1

⇥ U(1)L2
⇥ U(1)L3

symmetry.
While the temperature decreases, a sequential breaking of each U(1)LI

symmetry occurs at
a different scale accompanied by a different phase transition. In this case we show that the
GW spectrum now can receive a contribution from both the two lower scale phase transi-
tions and still from the vibration of cosmic strings at the highest scale symmetry breaking.
We show that such a spectrum may have twin peaks from phase transition signals over a
slightly sloped plateau of the cosmic string signal. We draw conclusions in Section 5 and
point out that the GW spectrum of the model can provide us important information about
the reheating temperature of the universe, and that the model fits naturally within a unified
framework of solving the puzzles of baryon asymmetry and dark matter.

2 Primordial GW stochastic background in the single majoron model

In this section, we first review the main features of the single majoron model and then
discuss the generation of a stochastic background of primordial GWs.

2.1 The single majoron model

The traditional single majoron model is a simple extension of the SM [9], where the
spontaneous breaking of a global UL(1) symmetry generates a Majorana mass term for
the RH neutrinos. The SM field content is then augmented with N RH neutrino fields
NI (I = 1, 2, . . . , N) and a complex scalar singlet,

� =
1
p
2
' e

i✓
, (2.1)

where the real component is CP -even and the imaginary component is CP -odd. The new
scalar � has a tree level potential V0(�). For definiteness, we consider the well motivated
case N = 3. The tree-level extension of the SM Lagrangian is then given by

�LNI+� =

✓
L↵ h↵I NI

e�+
�I

2
�N

c

I
NI + h.c.

◆
+ V0(�) , (2.2)

where e� is the dual Higgs doublet. In the early universe, above a critical temperature Tc,
one has h�i = 0 so that the RH neutrinos are massless. Moreover, since the lepton doublets
L↵ and the RH neutrinos NI have L = 1, and � has L = �2, lepton number is conserved.
Below Tc, the UL(1) symmetry is broken and the scalar � acquires a vacuum expectation

– 3 –
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Gravitational Waves from Domain Walls

7

FIG. 1: The evolution of stable (✏ = 0: left) and unstable (✏ = 0.02: right) domain walls. The white surface corresponds to the
region where the value of � crosses the zero.

between the case with b = 25 and b = 50 may be due to the poor resolution in the simulation with b = 50. If the
wavelength of the scalar field radiations produced by the decay of domain walls is comparable or smaller than the
small scale cuto↵ (⇠ ⌘

�1), the typical length scale over which the scalar field varies becomes shorter than the lattice
spacing. This makes the value of A/V inaccurate because we estimate the value A/V as a sum of the link of points
where � has di↵erent signs (see Appendix A 3). In the case with b = 50, the lattice spacing �x is larger than that
with b = 25 and it is likely to lose many links over which the scalar field changes its signs. Therefore, the oscillation
of the A/V in the case with b = 50 is less violent than that with b = 25, as we see in Fig. 2.

C. Spectrum of Gravitational Waves

By using the method described in Section III, we compute the spectrum of gravitational waves produced by domain
walls. The results are shown in Fig. 3. To take small b with fixed number of lattice points corresponds to increasing
the spatial resolution. Therefore, the frequency range computed in the case with b = 25 is higher than that in the case
with b = 50. The two figures shown in Fig. 3 seem to be di↵erent in spite of the fact that the two results are obtained
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We explore how quantum gravity effects, manifested through the breaking of discrete symmetry
responsible for both Dark Matter and Domain Walls, can have observational effects through CMB
observations and gravitational waves. To illustrate the idea we consider a simple model with two
scalar fields and two Z2 symmetries, one being responsible for Dark Matter stability, and the other
spontaneously broken and responsible for Domain Walls, where both symmetries are assumed to
be explicitly broken by quantum gravity effects. We show the recent gravitational wave spectrum
observed by several pulsar timing array projects can help constrain such effects.

Introduction.—Global symmetries are ubiquitous in
Nature, being already present in the Standard Model
(SM) of particle physics such as the baryon and lepton
numbers. Discrete global symmetries often play a role
in many theories beyond the SM, such as Dark Matter
(DM) and Neutrino Mass models. Unlike gauge symme-
tries (this includes gauge discrete symmetries, for exam-
ple, those that emerge from the Higgsing of a gauged
U(1) symmetry), conventional wisdom tells us that such
global symmetries should be broken [1–3] in theories of
quantum gravity (QG), e.g. by wormholes [4]. Such ideas
fit nicely into recent developments on swampland conjec-
tures [5, 6], which classify low energy effective field the-
ories (EFTs) according to their compatibility with QG.
Although QG is expected to break all global symmetries,
the strength of the breaking is not a priori specified. The
breaking may be associated with operators of any mass
dimension greater than four. The dimensional scale as-
sociated with such operators may be equal to the Planck
scale MPl [7–9], while the operators may be suppressed
by non-perturbative effects leading to an effective break-
ing scale many orders of magnitude higher.

In this Letter, we explore how QG effects, manifested
through the breaking of discrete symmetry responsible
for both DM and Domain Walls (DWs), can have ob-
servational effects through CMB observations and grav-
itational waves (GWs). We especially show that QG
motivates the existence of very small bias terms which
are often assumed to exist to allow DWs to annihilate,
thus preventing them from dominating the energy bud-
get of the Universe. To illustrate the idea we consider
a simple model with two singlet scalar fields and two
Z2 symmetries, one being responsible for DM stability,
and the other spontaneously broken and responsible for
DWs, where both symmetries are assumed to be explic-
itly broken by QG effects by operators at the same mass
dimension and with the same effective Planck scale. We
shall show that this hypothesis leads to observable GW
signatures from the DWs annihilation, which are corre-
lated with the decaying DM signatures constrained by

⇤QG
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FIG. 1. Schematic of how indirect detection and gravitational
wave observatories can provide independent witnesses of the
scale of QG which we assume to be approximately common.

CMB observations. The simple set-up described above is
depicted in Fig. 1.

Recently, several pulsar timing array (PTA) projects
reported the discovery of a stochastic gravitational wave
background (SGWB), in particular, the North Amer-
ican Nanohertz Observatory for Gravitational Waves
(NANOGrav) [10, 11], the European PTA [12, 13], the
Parkes PTA [14] and the Chinese PTA [15]. This could
be due to the merging of supermassive black hole bina-
ries [16, 17], or it may have a cosmological origin or a
combination of effects. For example, the cosmological
origin of SGWB could be due to first-order phase tran-
sitions [18–25], cosmic strings [26–32], or DWs annihi-
lation [33–36], where the latter is of particular interest
here. Indeed several papers have appeared which discuss
these possibilities [37–81]. One of the goals of the present
paper is to investigate the implications of the PTA results
on the framework of interest here.

Discrete Global Symmetry Breakings in QG.—In
particle physics model building, it is often useful to in-
voke discrete global symmetries in EFTs. It has long been
believed [1–3], however, that there exists no exact (con-
tinuous or discrete) global symmetry in QG theories [82].
In other words, any global symmetry of a given EFT is at
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A tale of two Z2’s 

Both broken by QG effects 

2

best an approximate symmetry emergent in the IR [83],
and should be broken by a higher-dimensional operator

L⇢⇢Z2
=

1

⇤QG
O5 , (1)

where we consider the leading dimension-five operator in
four spacetime dimensions.

One might naively expect that ⇤QG ⇠ O(MPl), since
this is a QG effect. A global symmetry, however, can
be broken by non-perturbative instanton effects (e.g. D-
brane instanton in string theory [84–86] or gravitational
instanton [4, 87–89]). The operator in eq. (1) is then
suppressed by a factor e

�S , where the dimensionless pa-
rameter S represents the size of the action of the non-
perturbative instanton [90]. In this case, the scale ⇤QG

should be estimated as

⇤QG ⇠ MPl e
S
� MPl . (2)

In principle, one can achieve an effective trans-Planckian
scale generated by fields with sub-Planckian mass if there
is a very small coupling in the theory. However, the ex-
ponential enhancement due to the instanton means we
are typically many orders of magnitude above the Planck
scale. This implies any resulting phenomenology is al-
most certainly due to QG effects. In this Letter, we con-
sider a scenario where a few different Z2-global symme-
tries are broken by higher dimensional operators associ-
ated with the same energy scale ⇤QG. In general, there is
no guarantee that different global mechanisms for global
symmetry breaking are associated with the same energy
scale. There are, however, important motivations for this
assumption, and our discussion can be regarded as a min-
imal example representing the spirit of more general con-
straints.

The first motivation comes from the fact that the
number of tunable parameters in EFT is finite in string
theory—both the number of Calabi-Yau geometries and
the choices of fluxes therein are believed to be finite
[91], and this leads to infinite constraints on the higher-
dimensional operators in the EFT (see, e.g. ref. [92] for
a recent discussion). Our assumption is a minimal incar-
nation of this constraint.

The second motivation comes from a general consider-
ation of the Z2-symmetry breaking. While it has been
believed that there are no exact global symmetries in QG,
this constraint is not useful unless one formulates a quan-
titative statement concerning the size of global symme-
try breaking. Suppose that we consider a class of string
theory compactifications where the energy scale ⇤QG sat-
isfies the inequality ⇤QG . ⇤max. If such a bound ex-
ists, the choice ⇤QG ⇠ ⇤max gives the best attainable
quality of global symmetry in the class of string theory
compactifications, and a model builder is well motivated
to choose this value for all higher-dimensional operators
whose sizes are severely constrained by experiments [93].

The consequences of our scenarios depend heavily on
the values of ⇤QG. In general, it is often believed the
scale of a global symmetry breaking can be much higher
than the Planck scale. For example, in order for a global
U(1) Peccei-Quinn (PQ) symmetry to solve the strong
CP problem [94, 95], the size of the instanton action S

should satisfy S & 190, resulting in an extremely high
energy scale ⇤QG ⇠ 10

100 GeV (see refs. [96–98] for early
references on the axion quality problem) [99]. It is, how-
ever, non-trivial to have such a high value of S [100] as
there can be many non-perturbative QG effects that can
violate a global symmetry and one would need to sup-
press all of them. In our case, since we are not pushed
into a difficult corner of parameter space by the axion
quality problem, we wish to consider what seems to be a
more natural range of S, that is lower, with the caveat
that the precise value will depend upon the choice of
string compactification.

At present we know little about the case of discrete Z2-
symmetries considered in this Letter. However, general
estimates suggests that the size of the non-perturbative
instanton action scales as S ⇠ O(M

2
Pl/⇤

2
UV) [101, 102],

where ⇤UV is the UV cutoff of the theory. One can con-
sider a scenario where ⇤UV . MPl, which could generate
a value of S ⇠ O(10). In the following we consider the en-
ergy scale ⇤QG ⇠ (10

20
· · · 10

35
) GeV, which corresponds

to the value S ⇠ (4 · · · 38). In practice, we can keep ⇤QG

as a free parameter whose value can be constrained by
phenomenological and cosmological considerations.

Simplified Model for BSM Scenarios.—In the rest
of this Letter, we consider a minimalistic model where the
Standard Model is extended by two singlet scalar fields
S1 and S2, each subject to a Z2-global symmetry, which
generates the following scalar potential at tree level

V = µ
2
H

†
H + �(H

†
H)

2
+H

†
H(�hs1S

2
1 + �hs2S

2
2)

+�s12S
2
1S

2
2 + µ

2
2S

2
2 +

�2

4
S
4
2 +

�1

4
(S

2
1 � v

2
1)

2
. (3)

Here H is the SM Higgs doublet field, and the singlet
under the SM gauge group S2 is our DM candidate, pro-
tected by an approximate Z2-symmetry Z

(DM)
2 . The field

S1 is another scalar singlet under the SM gauge group
with an approximate Z2-symmetry Z

(DW)
2 , and this field

will acquire a vacuum expectation value (vev) v1 in the
early Universe, generating DWs in the process. The
scalar potential should be bounded from below to make
the electroweak vacuum stable, which poses constraints
on the scalar couplings [103]. Next, we write the mass
of S2 as m

2
2 = 2µ

2
2 + �hs1v

2
h + 2�s12v

2
1 with vh = 246

GeV being the vev of H, and consider m
2
2 to be positive

throughout to avoid the inclusion of a non-trivial vev of
S2. We also assume �hs1 to be sufficiently small so that
there would not be large mixing between H and S1.

The two Z2-symmetries are however broken by higher-
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FIG. 10. Shape of gravitational wave spectra as a function frequency generated from DW annihi-

lation. Figure taken from ref [352]

To depict the GW spectrum, the following parametrization for a broken power-law spec-

trum [356, 357] can be adopted

⌦GWh2 = ⌦GWh2
peak

(a + b)c

(bx�a/c + axb/c)c
, (124)

where x := f/fp, and a, b and c are real and positive parameters. Here the low-frequency

slope a = 3 can be fixed by causality, while numerical simulations suggest b ' c ' 1 [353].

While these simulations agree with a scenario where the Z2 symmetry is broken, the scenarios

with larger discrete symmetries require careful treatment.

For the case where N > 2, the UV power law can be modified [354, 357, 358]. In this

case, multiple degenerate vacua appear, hence leading to a domain wall network that is

more complicated to the Z2 case. Again, the degeneracy among the vacua can be broken

by introducing a bias term in the scalar potential, and eventually, a domain with the lowest

energy dominates over others, which causes the annihilation of the walls and the production

of GW. It is interesting to point out that GW signals observed in these scenarios can deviate

from what is observed in the case of Z2 domain walls as also pointed out by a recent study

[354], that suggests that b in Eq.124 decreases with the increasing value of N .
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Toward distinguishing Dirac from Majorana neutrino 
mass with gravitational waves

which yields the diagram,

�

¯̀

H

¯̀

H

N̄ N̄
.

The right-handed neutrinos gain heavy Majorana masses after the B � L symmetry is
spontaneously broken when � gets a nonzero VEV. Light neutrino masses are generated by
integrating out the heavy right-handed neutrinos, and their mass matrix is given by

MM =
1
p
2
v
2
Y M

�1
N Y

T
, (2.2)

where MN is the mass matrix of the right-handed neutrinos.
The main characteristic of this scenario is the breaking of the U(1)B�L symmetry,

which creates a cosmic string network that eventually decays and produces a stochastic
gravitational wave background. As we will discuss in section 3, such GW signals are nearly
flat for a vast range of observable frequencies in gravitational wave interferometers. We note
that there could be a secondary contribution to the GW spectrum if the scalar � undergoes
a first order phase transition (FOPT) when it spontaneously breaks the U(1)B�L symmetry.
However, it is well known that the signal from FOPT of a single scalar is typically suppressed
compared to the cosmic string signal, particularly when the U(1) symmetry is broken at a
sufficiently high scale. Hence, we will not consider the FOPT signal for this model.

2.2 Dirac neutrinos

We consider a minimal model in which SM neutrinos are Dirac and the smallness of their
mass originate from an ultraviolet scale, analogous to the type I seesaw mechanism for
Majorana neutrinos. To facilitate this, we add three copies of a heavy Dirac fermion �,
right-handed counterparts ⌫R of the SM neutrinos, and a scalar �, all assumed to be singlet
under SM gauge groups. The model has a global U(1)L symmetry, which remains unbroken
to ensure the Dirac nature of the SM neutrinos, and prohibits a Majorana mass term for the
right-handed neutrinos. We further ensure that no Dirac mass term for the SM neutrinos is
allowed by imposing a Z2 symmetry under which only ⌫R and � are odd. The Lagrangian
of the model is given by

�LD � YL
¯̀H�R + YR�L�⌫R +M��� , (2.3)

which yields the diagram,
¯̀

H

⌫R

�

� �
.
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After integrating out the heavy mediators and the SM Higgs and the new scalar get VEVs
v and u, respectively, an effective Dirac mass term MDL̄⌫R for the light neutrinos is
generated, where

MD =
1
p
2
v u YLM

�1
� YR (2.4)

is the Dirac mass matrix suppressed by the large eigenvalues of the mass matrix M� of the
heavy fermions �.

The scalar � spontaneously breaks the Z2 symmetry when it acquires a nonzero VEV,
necessary for Dirac mass generation. This leads to the creation of domain walls. Long-
lived domain walls are dangerous for cosmology if they dominate the energy density of
the Universe. However, they can be made to annihilate into gravitational waves by softly
breaking the Z2 symmetry, which lifts the degeneracy between the two Z2 vacua. This
leads to characteristic GW signals peaked at a single frequency. Since the global lepton
number symmetry remains unbroken due to the Dirac nature of the neutrinos, this setup
does not lead to the generation of cosmic strings and an associated flat GE spectrum as in
the Majorana case.

In the following two sections we discuss the generation of gravitational waves in both
scenarios of Majorana and Dirac mass genesis.

3 GW from cosmic strings in Majorana neutrino mass genesis

Spontaneous breaking of the U(1)B�L symmetry leads to the creation of a horizon-length
string network [40]. Here we specifically focus on Nambu-Goto cosmic strings that lose
energy primarily through loop formation and emission of gravitational radiation. The en-
ergy density in the string network is diluted by producing closed string loops [41], about
10% of which are large loops and the remaining are highly boosted smaller loops [42–45].
The formation of the loops from long string networks can be described using the velocity-
dependent one-scale model [46, 47]. The loop formation rate is assumed to be equal to the
rate of energy loss of the evolving long string network in a cosmological background, and
is given by

dn↵

dt
= Fa

Ce↵

↵

1

t4
, (3.1)

with the parameter values ↵ ' F↵ ' 0.1, Ce↵ ' 0.5 and 5.7 during matter and radiation
domination, respectively, are found from lattice simulations [48].

While the kinetic energy of the smaller loops are diluted by simple redshifting, the
larger loops oscillate and emit energy in the form of gravitational waves at a constant rate,

dE

dt
= ��Gµ

2
, (3.2)
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type I seesaw mechanism. A simple way to forbid the tree-level Yukawa term would be to
make both ⌫R and � odd under some new discrete Z2 symmetry, which is spontaneously
broken when � gets a nonzero VEV. In this case the breaking of a discrete symmetry leads
to the creation of domain walls associated with the degenerate vacua [39]. Domain walls are
typically problematic for cosmology, but they may annihilate to emit GWs if the discrete
symmetry is softly broken. Such GW signals are very distinct from cosmic string signals
generated in the case of Majorana neutrinos, thus offering an intriguing way to discriminate
between the two types of neutrino mass.

In this work, we explore two motivated scenarios of tiny neutrino mass generation
giving rise to distinct GW signals that can be differentiated based on whether the neutrino
mass is of the Dirac or Majorana type. We study two simple models of Majorana and Dirac
mass genesis inspired by generating small neutrino masses without assuming tiny Yukawa
couplings. For Majorana neutrinos, spontaneous breaking of the gauged B � L symmetry
gives a cosmic string induced gravitational wave signal flat over a large range of frequencies,
whereas for Dirac neutrinos, spontaneous and soft-breaking of a Z2 symmetry generates
a peaked gravitational wave spectrum from annihilation of domain walls. The striking
difference between the shape of the spectra in the two cases can help differentiate between
Dirac vs Majorana neutrino masses in the two class of models considered, complementing
neutrinoless double beta decay experiments.

The organization of the paper is as follows. In section 2 we discuss models of neutrino
mass generation in the Majorana and Dirac cases. Sections 3 and 4 focus on the production
of gravitational waves, specifically from cosmic strings in the context of Majorana mass
generation, and from domain walls in relation to Dirac mass generation. The resulting
signals are examined in section 5, followed by concluding remarks in section 6.

2 Neutrino mass models

In this section we explore two simple models for generating Majorana and Dirac neutrino
masses. Both models are motivated to produce small neutrino masses without assuming
tiny Yukawa couplings.

2.1 Majorana neutrinos

We consider a type I seesaw scenario in which the SM is extended with three right-handed
neutrinos N̄i and a scalar �, both singlet under the SM gauge groups. However, the model
has an anomaly-free gauged B � L symmetry, under which � has two units of charge and
N̄i have a single unit of charge. The Lagrangian of the model is given by

�LM � Y ¯̀HN̄ + N̄N̄
T
� , (2.1)
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which yields the diagram,

�

¯̀

H

¯̀

H

N̄ N̄
.

The right-handed neutrinos gain heavy Majorana masses after the B � L symmetry is
spontaneously broken when � gets a nonzero VEV. Light neutrino masses are generated by
integrating out the heavy right-handed neutrinos, and their mass matrix is given by

MM =
1
p
2
v
2
Y M

�1
N Y

T
, (2.2)

where MN is the mass matrix of the right-handed neutrinos.
The main characteristic of this scenario is the breaking of the U(1)B�L symmetry,

which creates a cosmic string network that eventually decays and produces a stochastic
gravitational wave background. As we will discuss in section 3, such GW signals are nearly
flat for a vast range of observable frequencies in gravitational wave interferometers. We note
that there could be a secondary contribution to the GW spectrum if the scalar � undergoes
a first order phase transition (FOPT) when it spontaneously breaks the U(1)B�L symmetry.
However, it is well known that the signal from FOPT of a single scalar is typically suppressed
compared to the cosmic string signal, particularly when the U(1) symmetry is broken at a
sufficiently high scale. Hence, we will not consider the FOPT signal for this model.

2.2 Dirac neutrinos

We consider a minimal model in which SM neutrinos are Dirac and the smallness of their
mass originate from an ultraviolet scale, analogous to the type I seesaw mechanism for
Majorana neutrinos. To facilitate this, we add three copies of a heavy Dirac fermion �,
right-handed counterparts ⌫R of the SM neutrinos, and a scalar �, all assumed to be singlet
under SM gauge groups. The model has a global U(1)L symmetry, which remains unbroken
to ensure the Dirac nature of the SM neutrinos, and prohibits a Majorana mass term for the
right-handed neutrinos. We further ensure that no Dirac mass term for the SM neutrinos is
allowed by imposing a Z2 symmetry under which only ⌫R and � are odd. The Lagrangian
of the model is given by

�LD � YL
¯̀H�R + YR�L�⌫R +M��� , (2.3)

which yields the diagram,
¯̀

H

⌫R

�

� �
.
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Figure 3. Gravitational wave spectrum from annihilation of domain walls created by soft-breaking
of the Z2 symmetry in a Dirac neutrino mass model. Benchmark points 1 - 4 are listed in Table 1.

Benchmark Point u [GeV] Vbias [GeV
4] ymax(M� < MPl)

1 10
5

10
�5 4.93

2 5.2⇥ 10
7

7.14⇥ 10
10 0.216

3 1.2⇥ 10
9

10
19 0.045

4 2⇥ 10
11

2.5⇥ 10
32 0.0035

Table 1. Benchmark points for gravitational wave signals from domain walls with � = 1.

wave spectra for these benchmark points are shown in Fig. 3. Benchmark point 1 can be
probed by SKA, while 2 and 3 can be probed by µAres, LISA, AEDGE, DECIGO, BBO,
AION, and 4 by Advanced LIGO+VIRGO, ET and CE, among others.

The main difference between the signals for the Majorana mass model and the Dirac
mass model is their shape. While cosmic string signals for the former are mostly flat for
observable frequencies, domain wall signals for the latter are peaked. We expect that cosmic
string signals should be detected at multiple interferometers at different frequency bands,
whereas domain wall signals are likely to be detected in only a narrow frequency range.
Such a detection will provide valuable information about the nature of neutrinos and will
complement results from neutrinoless double beta experiments.
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where � ' 50 is a dimensionless constant [49], G is the Newton’s constant and µ is the
tension in the strings. Typically µ ⇠ O(⇤), where ⇤ is the scale of the U(1) symmetry
breaking. As a consequence of emitting gravitational radiation, the initial length of a large
loop created by the network at time ti, given by li = ↵ti, decreases as

`(t) = ↵ti � �Gµ(t� ti) , (3.3)

until the loop completely disappears. The total energy loss from a loop can be decomposed
into normal modes with frequency f̃k = 2k/` at a time t̃, where k = 1, 2, 3, . . . is the mode
number. Accounting for redshift evolution, the frequency today becomes f = [a(t̃)/a(t0)] f̃k,
where t0 is the current time. The relative emission rate per mode is given by

�
(k)

=
�k

�4/3

P1
j=1 j

�4/3
'

�k
�4/3

3.60
. (3.4)

Combining Eqs. (3.1), (3.2) and (3.3), and integrating over the emission time, the gravita-
tional wave amplitude of the k-th mode is given by

⌦
(k)
GW(f) =

1

⇢c

2k

f

F↵�
(k)

Gµ
2

↵(↵+ �Gµ)

Z t0

tF

dt̃
Ce↵(t

(k)
i )

t
(k)
i

4


a(t̃)

a(t0)

�5 "
a(t

(k)
i )

a(t̃)

#3

⇥(t
(k)
i � tF ) , (3.5)

where ⇢c = 3H
2
0/(8⇡G) is the critical energy density, t

(k)
i is the formation time of loops

contributing to the k-th mode and is given by

t
(k)
i (t̃, f) =

1

↵+ �Gµ


2k

f

a(t̃)

a(t0)
+ �Gµt̃

�
. (3.6)

Summing over all modes, we get the total amplitude of the gravitational waves

⌦GW(f) =

X

k

⌦
(k)
GW(f) , (3.7)

where the sum can be easily evaluated using

⌦
(k)
GW(f) =

�
(k)

�(1)
⌦
(1)
GW(f/k) = k

�4/3
⌦
(1)
GW(f/k) . (3.8)

4 GW from domain walls in Dirac neutrino mass genesis

We assume a simple potential for the scalar �:

V (�) =
�

4
(�

2
� u

2
)
2
. (4.1)

This potential has two degenerate minima at � = ±u and is symmetric under a Z2 trans-
formation � ! ��. Domain walls are formed around the boundaries of these two minima.
The symmetry is spontaneously broken when the scalar chooses one of the two vacua. This
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choice depends on random fluctuations of the field and is made independently at spatially
distant regions in space, creating the so-called ‘domains’. Domain walls are formed around
the boundaries of these domains. We assume that the domain walls have a static planar
configuration perpendicular to the z direction. Introducing a kinetic term 1

2(@µ�)
2, the field

equation for �(z) is given by

d
2
�

dz2
�

dV

d�
= 0 , (4.2)

which yields the solution,

�(z) = u tanh

 r
�

2
uz

!
, (4.3)

for the boundary condition �(z ! ±1) ! ±u. The surface energy density (also called
tension) of the wall can be derived from integrating the 00 component of the stress-energy
tensor Tµ⌫ = (d�/dz)

2
diag(+1,�1,�1, 0), and is given by

E =
2

3

p

2� u
3
. (4.4)

Domain walls can be very long-lived and may dominate the energy density of the
Universe, alter its equation of state and lead to rapid expansion inconsistent with standard
cosmology. Even if their energy density is subdominant today, domain walls may produce
excessive density perturbations observable in the CMB epoch if their surface energy density
is above O(MeV

3
) [50].

An interesting solution to the domain wall problem is to softly break the discrete
symmetry that lifts the degeneracy between the vacua. We introduce an explicit breaking
term in the potential,

�V (�) = ✏u�

✓
�
2

3
� u

2

◆
, (4.5)

where ✏ is a dimensionless constant. The overall potential V (�) + �V (�) still has two
minima at � = ±u, but with a difference in the potential at these points:

Vbias = V (�u)� V (+u) =
4

3
✏u

4
. (4.6)

The probability p� of a domain ending up in the �u vacuum (‘false’ vacuum) is smaller
compared to p+ of it being in the +u vacuum (‘true’ vacuum), their ratio being related to
the potential difference

p�
p+

' exp

✓
�
Vbias

V0

◆
, (4.7)

where

V0 =
u
4

12�3
(3�� ✏)(�+ ✏)

3 (4.8)
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Majorana vs Dirac can be distinguished 
from shape of GW spectrum 

- - Dirac is better fit to NANOGrav

Toward distinguishing Dirac from Majorana neutrino 
mass with gravitational waves

Majorana seesaw
Dirac seesaw

Figure 2. Gravitational wave spectrum induced by cosmic strings generated via the spontaneous
breaking of the gauged U(1)B�L symmetry responsible for Majorana mass of the neutrinos. ⇤

denotes the scale of symmetry breaking.

Requiring tann < tdom yields a lower bound on the bias potential, Vbias > 4CannA
2
E

2/(3M2

Pl
),

which can be written as

V 1/4

bias
> 8.95⇥ 10

�10
GeV �1/4

✓
Cann

5

◆
1/4

✓
A

0.8

◆
1/2 ⇣ u

GeV

⌘
3/2

. (5.2)

Even if the domain walls decay before they overclose the Universe, their decay products
may destroy the light element abundances created by Big Bang nucleosynthesis (BBN).
Assuming that a significant fraction of the energy density of the domain walls is converted
into energetic particles, constraints on energy injection at the epoch of BBN require tann .
tBBN ' 0.01 sec [104, 105], which can be written as

V 1/4

bias
> 3.97⇥ 10

�6
GeV �1/8

✓
Cann

5

◆
1/4

✓
A

0.8

◆
1/4 ⇣ u

GeV

⌘
3/4

. (5.3)

Equations (5.2) and (5.3), together with Eq. (4.9), constrain the parameter space for
annihilation of domain walls and subsequent gravitational wave production. In terms of the
scalar VEV u and bias potential Vbias, and choosing A = 0.8, Cann = 5, these constraints
can be expressed as

tann < tdom :
Vbias

GeV4
> 6.42⇥ 10

�37�
⇣ u

GeV

⌘
6

, (5.4)
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Figure 4. Gravitational wave spectrum from annihilation of domain walls created by soft-breaking
of the Z2 symmetry in a Dirac neutrino mass model. Benchmark points 1 - 4 are listed in Table 1.

Benchmark Point u [GeV] Vbias [GeV
4] ymax(M� < MPl)

1 4.47⇥ 10
5

1.78⇥ 10
�2

3.96

2 5.2⇥ 10
7

7.14⇥ 10
10

0.37

3 2.7⇥ 10
9

9.3⇥ 10
20

0.051

4 3.63⇥ 10
11

1.38⇥ 10
34

0.004

Table 1. Benchmark points for gravitational wave signals from domain walls with � = 1.

ing that the mediator mass lies below the Planck scale. We note that the values of such
Yukawa couplings cover the range of the third family charged fermion Yukawa couplings in
the SM, and only exceed this range by less than an order of magnitude.

The gravitational wave spectra for these benchmark points are shown in Fig. 4. Bench-
mark point 1 can be probed by SKA, while 2 and 3 can be probed by µAres, LISA,
AEDGE, DECIGO, BBO, AION, and 4 by Advanced LIGO+VIRGO, ET and CE, among
others. We set b = c = 1 for the spectral shape, but slightly different values still yield a
peaked spectrum for a = 3. In Fig. 5, we show the signal-to-noise ratio [106]

SNR ⌘

s

⌧

Z fmax

fmin

df

⌦GW(f)h2

⌦exp(f)h2

�
2

, (5.8)
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Type-I two-Higgs-doublet model and gravitational 
waves from domain walls bounded by strings
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uR� dR� Q↵ L↵ eR� NR� �2 �1 �

SU(2)L 1 1 2 2 1 1 2 2 1

U(1)Y
2
3 �

1
3

1
6 �

1
2 �1 0 1

2
1
2 0

U(1)R 1 �1 0 0 �1 1 1 �1 �2

residual Z2 � � + + � � � � +

Table 1. Field content of the type-I 2HDM with gauged U(1)R symmetry and its residual Z2

subgroup.

call this U(1)R.2 The particle content is listed in Table 1. After � gains a VEV, the U(1)R

is broken into a Z2 symmetry, which is the simplest cyclic group

U(1)R
h�i
�! Z2. (2.2)

With the particle content in Table 1, the allowed fermion Yukawa interactions are

LY � YuQ�̃2uR + YdQ�2dR + YeL�2eR + YNL�̃2NR + yN�NRNR + h.c., (2.3)

where �̃2 = �i�2�⇤
2. Between the Higgs doublets, only �2 is allowed to couple to the

fermions. The most general scalar potential allowed by the SU(2)L ⇥ U(1)Y ⇥ U(1)R

symmetry is
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4
. (2.4)

The potential is CP conserving as the phase of m12 can be eliminated through rephasing the
scalar fields and all the other parameters are required to be real by hermiticity. The m12

term breaks the normal B�L symmetry explicitly and thus there is no spontaneous U(1)B�L

symmetry breaking.3 Despite the absence of a strict B � L symmetry, the Majorana mass
of the right-handed neutrinos is still protected by the U(1)R symmetry. After � gets a VEV
h�i = vM, the potential of the Higgs doublets becomes

V (�1, �2) = m̃
2
11�

†
1�1 + m̃

2
22�

†
2�2 � m̃

2
12

⇣
�†
1�2 + h.c

⌘

+
�1

2
(�†
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2 +
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(�†
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2 + �3(�

†
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†
2�1) , (2.5)

2Not to be confused with the continuous R-symmetry in the context of supersymmetry, or the right-
handed U(1) symmetry arising from left-right symmetric models.

3Different from Ref. [15], the B �L symmetry refers to the one under which both of the Higgs doublets
are uncharged.
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The potential is CP conserving as the phase of m12 can be eliminated through rephasing the
scalar fields and all the other parameters are required to be real by hermiticity. The m12

term breaks the normal B�L symmetry explicitly and thus there is no spontaneous U(1)B�L

symmetry breaking.3 Despite the absence of a strict B � L symmetry, the Majorana mass
of the right-handed neutrinos is still protected by the U(1)R symmetry. After � gets a VEV
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2Not to be confused with the continuous R-symmetry in the context of supersymmetry, or the right-
handed U(1) symmetry arising from left-right symmetric models.

3Different from Ref. [15], the B �L symmetry refers to the one under which both of the Higgs doublets
are uncharged.
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Figure 4. GW spectrum from domain walls bounded by cosmic strings (solid lines). Dotted lines
represent the corresponding pure string induced GW spectrum in the absence of an intermediate
Z2 breaking. See text for details.

probe two symmetry breaking scales (U(1)R and Z2). This offers a unique opportunity
to test BSM scenarios where such scales are separated by orders of magnitude.

• Given that the Z2 breaking scale in the current model is fixed at the electroweak
scale, the model predicts a signal with spectral slope f

3 in the µHz to Hz range for
U(1)R breaking scale 1012 � 1015 GeV. Together with a flat spectrum at frequencies
higher than the IR tail, this is a unique signature of this model.

In summary, the hybrid network generated from the sequential breaking of the U(1)R

symmetry via the intermediate Z2 symmetry results in a unique GW signal distinguishable
from other new physics signals in the observable frequency range, and can be probed in
upcoming GW interferometers.

5 Conclusion

We have investigated the emergence of a hybrid topological defect, namely “domain walls
bounded by cosmic strings”, and the unique gravitational wave signal that emerges from
it in the context of the type-I two-Higgs-doublet model (2HDM) extended with a gauged
U(1)R symmetry. The phenomenological motivation for the U(1)R extension stems from the
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Surface tension in the walls causes the 
combined relic to decay earlier than strings

(a) Before Z2 symmetry breaking. (b) After Z2 symmetry breaking.

Figure 3. Illustration of the appearance of the hybrid topological defect. The spontaneous break-
ing of U(1)R into a residual Z2 symmetry creates a string network. When the Z2 symmetry is
spontaneously broken later, domain walls appear which fill up the space between the string loops.

A useful parameter that dictates the evolution of the defect is defined as Rc ⌘ µ/E ,
where µ ⇠ v

2
M is the string tension, vM being the U(1)R breaking scale, and E ⇠ v

3
SM is the

surface energy density of the domain wall, vSM being the Z2 breaking scale, and assuming a
O(1) coupling constant of the scalar field breaking Z2. After the U(1)R symmetry breaking,
horizon size long strings are created that intersect and form string loops. These circular
loops oscillate non-relativistically and lose their energy by emitting gravitational waves.
When domain walls are formed at tDW ⇡ MPlC/v

2
SM, where C = (8⇡3

g?/90)�1/2, and fill
up the space between the string loops, they tend to make the string motion ultra-relativistic
as long as the loop size is above Rc. This makes the wall-string network collapse earlier
than the case of pure string loops. If tDW < Rc, walls do not dominate the string dynamics
immediately after creation. As such, the hybrid network becomes ultra-relativistic and
collapses after some time, t? ⇠ Rc. On the other hand, if tDW > Rc, the hybrid network
becomes ultra-relativistic as soon as the walls are created and the network collapses at
t? ⇠ tDW. We can, therefore, define the time for the collapse of the hybrid network as
t? ⌘ max(Rc, tDW) [54].

For a loop of radius R with circular length l = 2⇡R, the rate of energy loss is given by

dE

dt
= ��(l)Gµ

2
, (3.1)

where G is the Newton’s constant. The function �(l) ⇡ �s = 50 when l ⌧ 2⇡Rc in the pure
string limit, and �(l) = 3.7(l/(2⇡Rc))2 for l � 2⇡Rc in the pure wall limit. The behavior
around l ⇠ 2⇡Rc can be approximated using a smooth interpolation function, as shown in
Ref. [53].

Because of the energy loss, loops forming at time tk with an initial size lk = ↵tk

slowly decrease in size with time. Here ↵ ⇡ 0.1 is the ratio between loop formation length
and horizon size, and its value is determined from simulations [55, 56]. For the domain
walls bounded by strings, the size of a string loop emitting gravitational waves at time t̃ is
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DW decay without Vbias!

Vilenkin and Everett 1982



Conclusion
•GWs can probe new physics BSM at HE, only a 

few examples here: FOPT, CS, DW (+combos)


•FOPT at QCD scale can describe NANOGrav 


•CS U(1)B-L gauged w/GUTs; global w/Majorons


•DW Z2 w/QG bias; Majorana vs Dirac


•DW bounded by CS in 2HDM (type I )



Figure 4. GW spectrum from domain walls bounded by cosmic strings (solid lines). Dotted lines
represent the corresponding pure string induced GW spectrum in the absence of an intermediate
Z2 breaking. Sensitivity of various upcoming interferometers are shown with colored dashed lines.
Solid gray region on top right corner shows upper bound from LVK third observing run. Gray
region bounded by dashed line on bottom part of the plot represent the sum of various astrophys-
ical foregrounds. We show known foregrounds up to 1.7 ⇥ 103 Hz; however, there may be other
foregrounds in higher frequencies. See text for details.

time tDW is controlled by the Z2 breaking scale vSM. Walls do not immediately affect
the ongoing string-dominated dynamics if tDW < Rc, where Rc ⇠ v

2
M/v

3
SM is controlled

by the separation of the two breaking scales. However, at t? ⌘ max(Rc, tDW) ⇠ Rc

for vM & 1010 GeV, two important phenomena occur that dictates the fate of the
GW spectrum at infrared scales. First, new loop formation ceases, hence only the
pre-existing loops can decay and contribute to the GW spectrum. Second, the pre-
existing loops become ultra-relativistic, leading to a higher chopping rate and near-
instantaneous decay. Overall, the situation mimics the case of a source that decays
very quickly, and the resulting spectrum demonstrates a f

3 slope, as pointed out in
Refs. [95–97]. Note that the condition of no loop creation after t? has been explicitly
put into the Eq. (3.12) with the Heaviside theta function, marking a striking difference
with the pure string case, where loop formation continues resulting in a milder slope
of the spectrum at IR frequencies. The steep f

3 slope of the IR tail in the present case
can be distinguished from the pure string case in planned interferometer sensitivities
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