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Take home message

m ANNSs are a model independent tool that can help us
reconstruct cosmological parameters.

m We can use them to distinguish between the plethora of
theories in the literature, based solely on the data without any

physical or statistical assumption.
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Take home message

m ANNSs are a model independent tool that can help us
reconstruct cosmological parameters.

m We can use them to distinguish between the plethora of
theories in the literature, based solely on the data without any
physical or statistical assumption.

In this work,

m We use ANNSs to agnostically constrain the value of Mg and
assess the impact and statistical significance of a possible
variation with redshift from the Pantheon+ compilation.

m We find an indication for a possible transition redshift at the
z =~ 1 region.
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Reconstruction Methods
€000

Gaussian processes

What are Gaussian processes?
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Reconstruction Methods
€000

Gaussian processes

What are Gaussian processes?

Definition: A GP is a stochastic (random) process where any finite
subset is a multivariant Gaussian distribution with mean p(x)
and covariance k(x, x’).

Setting each p(x) to zero, the covariance function can be used
to learn the behavior that produced the data points.
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Reconstruction Methods
000

Gaussian processes

Gaussian Process Regression

m The covariance function contains non-physical
hyperparameters 6 which define the distribution k(0, x, x").

m Iterating over these values using Bayesian inference (or
others) can produce better hyperparameters.

m The result is a model independent reconstruction (in
physics) of the behabior of some parameter.

m This is superior to regular fitting because it is nonparametric
and so assumes no physical model whatsoever.
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Reconstruction Methods
00®0

Gaussian processes

Squared Exponential Hy GP (GaPP code: Seikel et al. 2012)
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Ho = 67.001 + 1.653km/s/Mpc Hp = 72.022 + 1.076km/s/Mpc
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Reconstruction Methods
ocooe

Gaussian processes

Open problems with GP reconstructions
m Overfitting: GP is very prone to overfitting for small data sets,

which is especially pronounced at the origin, i.e. Hubble constant

Values s Values . Values
. »

Time Time Time

Underfitted Good Fit/Robust Overfitted

m Kernel Selection Problem: There is no natural kernel for cosmology

Square
Exponential

Rational
Quadratic
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Artificial Neural Networks
©0000

Construction and Training of an ANN

Artificial Neural Networks (ANN)

Input Layer . Hidden Layers Output Layer
hy hs oo

.v '7. §Vg~7 .

i 5
:

Cosmological
parameters
(ex. H(z), ou(2))

i
y

A /‘V 2\
YOOy

ReFANN code from Wang et al. (2020)
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Artificial Neural Networks
0000

Construction and Training of an ANN

Training data for the ANN

P(2)
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Artificial Neural Networks
0000

Construction and Training of an ANN

Designing the ANN

m Risk: Optimizes the number of hidden layers and neurons in an ANN
N

N
risk = > (Bias? + Variance;) = ) ([Hobs(z,-) — Hyrea(2z)]? + azH(z,-)>
i=1 i=1
m Loss: Balances the number of iterations a system needs to predict the
observational data
Least absolute deviation (L1)

N
L1= Z |Hobs(zi) - Hpred(zi)|
i=1

Smoothed L1 (SL1)
Mean Square Error (MSE)

MSE = — Z obs(2i) — pred(zl))2
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Artificial Neural Networks
00000

Construction and Training of an ANN

Designing the ANN

What we use here

LX2 = Z [Mons(zi) — mpred(zi)]TC,'j'l [mobs(zj) - mpred(zj)] )

where Cj; is the total noise covariance matrix of the data, which
includes the statistical noise and systematics.
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Artificial Neural Networks
JoleYele] )

Construction and Training of an ANN

Building the ANN
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Left: Risk function for one layer (number of neurons 2", n € 7, ..., 14),

Evolution of L1, SL1 and MSE loss functions
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Artificial Neural Networks
°

Reconstructing H(z) and H’(z)

USing the ANN (KD, Levi Said et al. '21) (KD, Mukherjee et al.
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w25
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Figure: Reconstructed reduced Hubble parameter from the (i) Pantheon SN
compilation (left) and (ii) combined CC+BAO Hubble data set (right), using
ANNs.
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Methodology
€000

Observational Datasets

m Pantheon+: SNIla observations from 1701 light curves that
represent 1550 distinct SNla spanning the redshift range
z < 2.3.

m CC: 32 H(z) measurements, along with the full covariance
matrix that includes systematic and calibration errors, as
reported in Moresco, et al, Astrop. J. 2020.
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Methodology
0®00

ANN Training and Validation

We split the Pantheon+ dataset into training (70%) and
validation (30%) sets and we train the network.

To incorporate the covariance matrix of the dataset, we
minimize the x? loss function.

The optimal network is one with two hidden layers and 128
neurons each.

The optimal network architecture is iterated over 500 times
for random initialization of the hyperparameters along with
the dropout effect. Out of these 500 samples, we compute the
mean function and the respective uncertainties.
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Methodology
0000

Theoretical Framework

In a spatially flat Friedmann-Lemafitre-Robertson-Walker universe,
the luminosity distance is related to the Hubble parameter H(z) at
some redshift z, as,

z dz
0 H(E)'

di(z) =c(l+2)
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Methodology
0000

Theoretical Framework

In a spatially flat Friedmann-Lemafitre-Robertson-Walker universe,
the luminosity distance is related to the Hubble parameter H(z) at
some redshift z, as,

z dz
0 H(E)'

di(z) =c(l+2)

The observed luminosity of SNla, from a specific redshift, is related
to the apparent peak magnitude m via the following relation,
independent of any physical model as,

di(2)
1 Mpc

Kostas Dialektopoulos
Possible late-time transition of Mg inferred via neural networks

m(z) — Mg = 5logyg { ] +25.



Methodology
ocooe

Theoretical Framework

We can rewrite the luminosity distance as,
di(z) = 105[m(x)~Ms=25]

and we can compute d], the first order derivative of d; with
respect to the redshift z as,

log(1
di(z) = og(5 0 10_@m’(z).
Combining them, we can express the Hubble parameter as,
1 2
Hz) = c(1+2)

(1+2)di(2) — du(2)
In this way, we can derive the Hubble parameter H(z), from the

Pantheon+ apparent magnitudes m and its corresponding
derivatives m’ employing specific values of Mp.
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Results
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Constraints on Mg
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Figure: ANN reconstruction of the Pantheon+ apparent magnitudes

m(z) (left panel) and its corresponding derivatives m’(z) [right panel] at
the CC redshifts (zcc).
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Results
0®0

Constraints on Mpg [Mukherjee, KD, Levi-Said, Mifsud, 2402.10502

Reference Methodology Datasets Mp
CMB - Pantho — -
Camarena & Marra[144] Josmography oBao + 1y -+ Pantheon 401 £ 0.027
a0 + rSMB + Pantheon 9.262 4 0.030
Mukherjee & Mukherjee[115] _ Gaussian Process CC + Pantheon —19.387 + 0.060
CC + Panth ~19.360 + 0.059
Mukherjee & Banerjee[61] Gaussian Process + Pantheon o
CC + rBao + Pantheon —19.398 + 0.041
CC + Pantheon ~19.384 £ 0.052
Dinda & Banerjee[115] Gaussian Process BAO + Pantheon —19.396 + 0.016
CC + BAO + Pantheon —19.395 4 0.015
CMB r
. . 5 Panthe ~10.38 £0.20
Benisty et al [68] Neural Networks @pao Frg |t Pantheon
apao + r51°FS 4+ Pantheon —19.2240.20
Gémez-Valent[145) Index of Inconsistency CC + BAO + Pantheon

CC + BAO + Pantheon (24 # 0)
CC + Pantheon+
CC + BAO + Pantheon+

Favale et al.[122] Gaussian Process
CC + SHOES + Pantheon+ -19 ;
CC + BAO + SHOES + Pantheon+  —19.25270 (2%
Banerjee et al.[119] Gaussian Process CC + rpao + Pantheon+ (Qx #0)  —19.40470 707
Panthe y SR -19 3
Shah et al.[111] Neural Networks wtheon + apao +rq Soou
Pantheon + fpao + g —19.257+592%
This work” Neural Networks CC & Pantheon+ ~19.35370 073

Figure: Comparison between the model-independent constraints on Mg
obtained in this work vs those present in the literature.
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Results
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Constraints on MB [Mukherjee, KD, Levi-Said, Mifsud, 2402.10
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Results
°

Data-driven transition on Mg

Cumulative binning method /Redshift layer binning with z
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~19.0
~19.20 o1
~19.25 los
T -19.30 — o
H T —19.:
1935 =
= = 194
= 1940 105

——
—19.45
~19.6
~19.50
—19.7

—19.55
0.00 025 050 075 100 125 150 175 200 0.00 025 050 075 1..00 125 150 175 2.00

Zmaz z

Figure: Predictions of the supernovae absolute magnitudes: Mg(Zmax) by
adopting cumulative binning, where Mg(zmax) is the derived value of Mg by
considering CC H(z) data up to zmax (left panel), and Mg(Z) by adopting the
redshift layer binning, where Mg(Z) is the derived value of Mg by considering
CC H(z) data within that redshift layer with a mean redshift z (right panel).
The purple region corresponds to the 1 — o model independent constraint

Mg = —19.214 £ 0.037, as inferred from the Pantheon and SHOES data-sets.
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Conclusions
°

Conclusions

m Given the observed apparent magnitudes m of the SNla, we
reconstruct m(z) using ANNSs.

m We express the Hubble parameter inferred from SN-la as a
function of its peak absolute magnitude.

m We obtain constraints on Mg by minimizing its negative
log-likelihood. The result we get is Mg = —19.35375:073.

m We test the evolution of Mg as a function of redshift and we
find a possible transition at z ~ 1.
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Conclusions
°

Conclusions

m Given the observed apparent magnitudes m of the SNla, we
reconstruct m(z) using ANNSs.

m We express the Hubble parameter inferred from SN-la as a
function of its peak absolute magnitude.

m We obtain constraints on Mg by minimizing its negative
log-likelihood. The result we get is Mg = —19.35375:073.

m We test the evolution of Mg as a function of redshift and we
find a possible transition at z ~ 1.

Thank you!
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Null tests
®0

Om diagnostics (Sahni, Shafieloo, Starobinsky '08) (Shafieloo, Clarkson '10)

Distinguish ACDM from alternative dark energy and modified gravity models:
E*(z) -1

Om(z) = m .

N

— Rr21 § 0.2
--- TRGB
—= P18 0.1
-+ ACDM

2.0

Figure: Reconstructed Om diagnostics using (i) ANNs (left) and (ii) GPs
(right) from the Pantheon SN data for three different priors.
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Null tests
oce

HO diagnostics (Krishnan, Colgain, Sheikh-Jabbari, Yang '20)

It is defined as
H(z)

B \/Qm0(1+z)3+1_QmO ’
and its non-constancy suggests evidence for new physics beyond ACDM.

HO

140 140
— R21 g — R21
--- TRGB --- TRGB
1201 —— P18 1201 —— P18
o 100 o 100
= = P
-
80
—
60 60 Dy
X
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

Figure: Reconstructed Hg diagnostics using (i) ANNs (left) and (ii). GPs

Kostas Dialektopoulos

Possible late-time transition of Mg inferred via neural networks



Constraining theories of gravity
0000

Constraining theories Arjona, Cardona, Nesseris 19

Example: Horndeski mapping:
Gy = K(X), G3 = G(X), G4 =1/2,and G5 =0,

The action is given by:

R
S— /d4x« = (2 — K(X) - G(X)ng) + St (¥, &) -
Cosmological equations (flat FLRW):

JV2XHA(X)  JV2X (1= Qmo)

K(X) = —3H2 (1 — Qmo) + H 9 ,
03fm m

and
2T H'(X)

 3H2Qmo
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Constraining theories of gravity
0000

12 — Rz b5l — R — B2
---- TRGB ’ TRGB 30 ---- TRGB
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b T
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(KFD, Mukherjee, Levi Said, Mifsud '23)
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Constraining theories of gravity
0000

We can also compute the DE EoS as

—K 4+ V2XXGx
w., —
? 7 K — 2X(Kx + 3v2X HGy)

arctan(1 + wy(z

0.0

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

Figure: Plots for dark energy EoS wy(z) (left) and its compactified form
arctan(1 + wy(z)) (right) considering R21, TRGB, and P18 Hy priors.
The shaded regions with ‘—’, ‘|" and ‘X' hatches represent the 1o
confidence levels for the above priors respectively.
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Constraining theories of gravity
000

R21 TRGB PI§

— z=00

15 -10 -05 00 05 5 5 05 00 05 5 -15 -10 —05 00 05
arctan(l + wy(z)) arctan(l + wy(2)) arctan(1 + wy(z))

Figure: Plots showing the posteriors of probability distribution of the
compactified dark energy EoS for the theory at some sample redshifts for
the R21, TRGB, and P18 Hy priors, respectively.
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