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The general idea
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Separating the chiral fermions

Three massless chiral fermions One massless and two massive chiral fermions

Mass lifting

Energy Energy
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The EFT will look anomalous

Three massless chiral fermions One massless and other massive fermions

Energy Energy

Higgs mechanism

Anomaly cancellation among the  three
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The EFT will look anomalous

Three massless chiral fermions One massless and two massive chiral fermions

UV cutoff of the EFT

Energy
Energy

Anomaly cancellation among the  three Anomaly cancellation lost in the EFT

Old story but very few explicit realizations 
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A perturbative EFT field description

Many massless chiral fermions

+


Gauge bosons

Hierarchy of Yukawa couplings

Hierarchy gauge vs Yukawa couplings

UV cutoff of the EFT
Energy

Energy

Higgs mechanism

Hierarchy might lead to non-perturbative coupling Example: top quark in SM
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Aiming for:

UV cutoff of the EFT

Energy

Our objective is:


 To orchestrate a situation in which 

the contributions to the anomalies 

of the          gauge symmetry 


cancel out between: 


- the light fields present in the effective 
field theory 


and 


- the (non-observable) heavier chiral 
fermions.

U(1)A
<latexit sha1_base64="vcu39b/eblJ4GeZ7z050eDBkX9Q="></latexit>

Picture after Higgs 
mechanism
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An explicit Model:    

Our objective is:


 To orchestrate a situation in which the contributions to the anomalies of the               
gauge symmetry cancel out between: 


- the light fields present in the effective field theory = Standard Model  


and 


- the (non-observable) heavier chiral fermions = New (secluded) sector

U(1)A
<latexit sha1_base64="vcu39b/eblJ4GeZ7z050eDBkX9Q="></latexit>
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through the vacuum expectation value (vev) of a single complex scalar field S.

More precisely, the extra fermions come in representations of SU(3) ◊ SU(2) as follows:

• A set of 2NL fermions, labeled as Â
Li , in the (1, 2) representation.

• A set of 2Ne fermions, labeled as Â
ej , in the (1, 1) representation.

• A set of 2Nd fermions, labeled as Â
dk , in the (3, 1) and (3̄, 1) representations.

• A set of 2NQ fermions, labeled as Â
Qm , in the (3, 2) and (3̄, 2) representations.

The complete set of matter fields, along with their associated quantum numbers, is com-
prehensively displayed in Table 1. Here, the index f spans from 1 to 3 and represents the
three SM families.

SU(3) SU(2) U(1)Y U(1)A
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Table 1: The particle content of the model

We assume that the scalar fields develop non-vanishing vacuum expectation values

ÈHÍ = 1
Ô

2

A
0
v

B

, ÈSÍ = vS
Ô

2
, (2.1)

Both of these vev’s contribute to the mass MA of the U(1)A gauge boson. However, we
work in the limit where v π vS , where we have

MA ≥ gAqSvS . (2.2)
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The Model Field Content

Our objective is:


 To orchestrate a situation in which 

the contributions to the anomalies 

of the               gauge symmetry 


cancel out between: 


- the light fields present in the effective 
field theory 


and 


- the (non-observable) heavier chiral 
fermions.

U(1)A
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Masses through Higgses
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Masses through Higgses

U(1)A
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MA ⇠ gA|qS |vS .
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Finally, the Yukawa terms YijÂ̄
i

L
Â

i

R
S̃, where by S̃ we denote S or S

ú, give masses to the
fermions

MÂ,ij = YijvS (2.3)

Since we assume that all extra fermions are heavier than energies that can be probed, we
consider Yij to be large enough, typically of order one. Furthermore, for the purposes of
our analytical framework, we deem it su�cient to consider the simpler case of Yij Ã ”ij

2.1 Constraints on the charges from Yukawa couplings

The presence of Yukawa couplings among the SM fields establishes the following relation-
ships between the U(1)A charges of the SM particles:
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R
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L ≠ z
j
eR

+ zH = 0.

(2.4)

for i, j = 1, 2, 3 the SM families.

Another constraint arises with the introduction of a Dirac mass term for the neutrinos,

L̄
i
H̃‹

j

R
æ ≠z

i

L ≠ z
j
‹R

≠ zH = 0, (2.5)

which, by itself, would necessitate extremely small Yukawa couplings. The popular alter-
native approach is to consider a see-saw mechanism, achieved by incorporating a Majorana
mass term generated through the vacuum expectation value (vev) of the field S [1](?):
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n

�n≠1 æ q
i
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+ q
j
‹R

≠ (Áij
‹ )n

n qS = 0, (2.6)

where Á
ij
‹ = ±1 depending if we use S or S

ú, and ⁄ is a high energy scale which, if to be
associated with the vev of an integrated field, this should be neutral under U(1)A.

The secluded fermions acquire their masses from the vacuum expectation value of S. Ini-
tially, we will undertake an analysis similar to that of the SM fermions, introducing the
Yukawa coupling at the renormalizable level. Given that the Yukawa interactions can in-
volve either S or S

ú, we introduce a sign Á
i

L, Á
j
e, Á

k

d
, Á

m

Q = ±1. This leads to the following
relationships between the U(1)A charges of the fermions within the secluded sector:

Â̄
Li
L

Â
Li
R
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(2.7)

where Ŝ denotes either S or S
ú. In the final section, we will explore the possibility of

utilizing higher-order non-renormalizable terms, thereby leading to:
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where � is a high energy scale suppressing the non-renormalizable interactions.
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through the vacuum expectation value (vev) of a single complex scalar field S.

More precisely, the extra fermions come in representations of SU(3) ◊ SU(2) as follows:

• A set of 2NL fermions, labeled as Â
Li , in the (1, 2) representation.

• A set of 2Ne fermions, labeled as Â
ej , in the (1, 1) representation.

• A set of 2Nd fermions, labeled as Â
dk , in the (3, 1) and (3̄, 1) representations.

• A set of 2NQ fermions, labeled as Â
Qm , in the (3, 2) and (3̄, 2) representations.

The complete set of matter fields, along with their associated quantum numbers, is com-
prehensively displayed in Table 1. Here, the index f spans from 1 to 3 and represents the
three SM families.

SU(3) SU(2) U(1)Y U(1)A

SM sector Q
f

L
f = 1, 2, 3 3 2 1/6 z

f

Q
u

c,f

R
3̄ 1 ≠2/3 z

f
u

d
c,f

R
3̄ 1 1/3 z

f

d

L
f

L
1 2 ≠1/2 z

f

L
e

c,f

R
1 1 1 z

f
e

‹
c,f

R
1 1 0 z

f
‹

H 1 2 1/2 zH

Secluded sector Â
Li
L

1 2 y
i

L q
i

L
(ÂLi

R
)c

i = 1, .., NL 1 2 ≠y
i

L ÊqL
i

Â
ej

L
1 1 y

j
e q

j
e

(Âej
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)c

j = 1, .., Ne 1 1 ≠y
j
e
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dk
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k

d
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k

d

(Âdk
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k = 1, .., Nd 3̄ 1 ≠y

k
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k

Â
Qm
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3 2 y
m

Q q
m

Q
(ÂQm

R
)c

m = 1, .., NQ 3̄ 2 ≠y
m

Q ÊqQ
m

S 1 1 0 qS

Table 1: The particle content of the model

We assume that the scalar fields develop non-vanishing vacuum expectation values

ÈHÍ = 1
Ô

2

A
0
v

B

, ÈSÍ = vS
Ô

2
, (2.1)

Both of these vev’s contribute to the mass MA of the U(1)A gauge boson. However, we
work in the limit where v π vS , where we have

MA ≥ gA|qS |vS . (2.2)
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The Complete Model anomaly cancellation equations

Cancellation of the anomalies contributions

2.2 Anomaly cancellation conditions

The conditions to ensure the absence of gauge and mixed gauge-gravitational anomalies
within the field content described in Equation (2) read:

Tr[Y ]SM = Tr[Y ]secluded = 0,

T r[Y Y Y ]SM = Tr[Y Y Y ]secluded = 0,

T r[Y T2T2]SM = Tr[Y T2T2]secluded = 0,

T r[Y T3T3]SM = Tr[Y T3T3]secluded = 0,

T r[T3T3T3]SM = Tr[T3T3T3]secluded = 0,

T r[qA]SM = ≠Tr[qA]secluded © tA,

T r[Y Y qA]SM = ≠Tr[Y Y qA]secluded © tY Y A,

T r[Y qAqA]SM = ≠Tr[Y qAqA]secluded © tY AA,

T r[qAqAqA]SM = ≠Tr[qAqAqA]secluded © tAAA,

T r[qAT2T2]SM = ≠Tr[qAT2T2]secluded © t2,

T r[qAT3T3]SM = ≠Tr[qAT3T3]secluded © t3.

(2.9)

The notation Tr[...]SM (Tr[...]secluded) denotes the traces over all the fermions in the SM
(secluded) sector running in the triangle loop, and T

a
2 (T a

3 ) are the generators of the SU(2)
(SU(3)) factor of the SM gauge group, normalized as Tr[T a

i
T

b

j
] = ”

ab
”ij/2, where i, j run

over the non-abelian factors and a, b over their generators. For simplicity, we omit the
explicit labeling of these generators.

The five first conditions involving the new fermions are trivially satisfied since these fields
are vector-like with respect to the SM gauge group. The aim of this section is to analyze
and provide some solutions to the remaining two sets of conditions.

Anomalies from the SM fermions

Explicitly, from the spectrum (2), the anomalies from the SM sector are given by:
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d
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f
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f

d
] = t3,

(2.10)
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Anomalies contributions = Triangular Feynman diagrams

through the vacuum expectation value (vev) of a single complex scalar field S.
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• A set of 2Nd fermions, labeled as Â
dk , in the (3, 1) and (3̄, 1) representations.

• A set of 2NQ fermions, labeled as Â
Qm , in the (3, 2) and (3̄, 2) representations.

The complete set of matter fields, along with their associated quantum numbers, is com-
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We assume that the scalar fields develop non-vanishing vacuum expectation values
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Constraints from SM fermions masses

SM Yukawa couplings

Finally, the Yukawa terms YijÂ̄
i

L
Â

i

R
S̃, where by S̃ we denote S or S

ú, give masses to the
fermions

MÂ,ij = YijvS (2.3)

Since we assume that all extra fermions are heavier than energies that can be probed, we
consider Yij to be large enough, typically of order one. Furthermore, for the purposes of
our analytical framework, we deem it su�cient to consider the simpler case of Yij Ã ”ij

2.1 Constraints on the charges from Yukawa couplings

The presence of Yukawa couplings among the SM fields establishes the following relation-
ships between the U(1)A charges of the SM particles:
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j
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i

Q ≠ z
j

d
+ zH = 0,
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j
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≠ zH = 0,

L̄
i
He

j

R
, æ ≠z

i

L ≠ z
j
eR

+ zH = 0.

(2.4)

for i, j = 1, 2, 3 the SM families.

Another constraint arises with the introduction of a Dirac mass term for the neutrinos,

L̄
i
H̃‹

j

R
æ ≠z

i

L ≠ z
j
‹R

≠ zH = 0, (2.5)

which, by itself, would necessitate extremely small Yukawa couplings. The popular alter-
native approach is to consider a see-saw mechanism, achieved by incorporating a Majorana
mass term generated through the vacuum expectation value (vev) of the field S [1](?):
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�n≠1 æ q
i
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+ q
j
‹R

≠ (Áij
‹ )n

n qS = 0, (2.6)

where Á
ij
‹ = ±1 depending if we use S or S

ú, and ⁄ is a high energy scale which, if to be
associated with the vev of an integrated field, this should be neutral under U(1)A.

The secluded fermions acquire their masses from the vacuum expectation value of S. Ini-
tially, we will undertake an analysis similar to that of the SM fermions, introducing the
Yukawa coupling at the renormalizable level. Given that the Yukawa interactions can in-
volve either S or S

ú, we introduce a sign Á
i

L, Á
j
e, Á

k

d
, Á

m

Q = ±1. This leads to the following
relationships between the U(1)A charges of the fermions within the secluded sector:
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where Ŝ denotes either S or S
ú. In the final section, we will explore the possibility of

utilizing higher-order non-renormalizable terms, thereby leading to:
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where � is a high energy scale suppressing the non-renormalizable interactions.
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S̃, where by S̃ we denote S or S

ú, give masses to the
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consider Yij to be large enough, typically of order one. Furthermore, for the purposes of
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Dirac neutrino mass

Majorana neutrino mass

Finally, the Yukawa terms YijÂ̄
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Since we assume that all extra fermions are heavier than energies that can be probed, we
consider Yij to be large enough, typically of order one. Furthermore, for the purposes of
our analytical framework, we deem it su�cient to consider the simpler case of Yij Ã ”ij

2.1 Constraints on the charges from Yukawa couplings

The presence of Yukawa couplings among the SM fields establishes the following relation-
ships between the U(1)A charges of the SM particles:

Q̄
i

L
Hd

j

R
æ ≠z

i

Q ≠ z
j

d
+ zH = 0,

Q̄
i

L
H̃u

j

R
æ ≠z

i

Q ≠ z
j
uR

≠ zH = 0,

L̄
i
He

j

R
, æ ≠z

i

L ≠ z
j
eR

+ zH = 0.

(2.4)

for i, j = 1, 2, 3 the SM families.

Another constraint arises with the introduction of a Dirac mass term for the neutrinos,

L̄
i
H̃‹

j

R
æ ≠z

i

L ≠ z
j
‹R

≠ zH = 0, (2.5)

which, by itself, would necessitate extremely small Yukawa couplings. The popular alter-
native approach is to consider a see-saw mechanism, achieved by incorporating a Majorana
mass term generated through the vacuum expectation value (vev) of the field S [1](?):

‹̄
c,i

R
‹

j

R

S̃
n

�n≠1 æ z
i
‹R

+ z
j
‹R

≠ (Áij
‹ )n

n qS = 0, (2.6)

where Á
ij
‹ = ±1 depending if we use S or S

ú, and ⁄ is a high energy scale which, if to be
associated with the vev of an integrated field, this should be neutral under U(1)A.

The secluded fermions acquire their masses from the vacuum expectation value of S. Ini-
tially, we will undertake an analysis similar to that of the SM fermions, introducing the
Yukawa coupling at the renormalizable level. Given that the Yukawa interactions can in-
volve either S or S

ú, we introduce a sign Á
i

L, Á
j
e, Á

k

d
, Á

m

Q = ±1. This leads to the following
relationships between the U(1)A charges of the fermions within the secluded sector:

Â̄
Li
L

Â
Li
R
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Ŝ
r

æ ≠q
k

d
≠ Âqd

k + (Ák

d
)r

r qS = 0
1

�t≠1 Â̄
Qm
L

Â
Qm
R

Ŝ
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through the vacuum expectation value (vev) of a single complex scalar field S.

More precisely, the extra fermions come in representations of SU(3) ◊ SU(2) as follows:

• A set of 2NL fermions, labeled as Â
Li , in the (1, 2) representation.

• A set of 2Ne fermions, labeled as Â
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• A set of 2Nd fermions, labeled as Â
dk , in the (3, 1) and (3̄, 1) representations.

• A set of 2NQ fermions, labeled as Â
Qm , in the (3, 2) and (3̄, 2) representations.

The complete set of matter fields, along with their associated quantum numbers, is com-
prehensively displayed in Table 1. Here, the index f spans from 1 to 3 and represents the
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We assume that the scalar fields develop non-vanishing vacuum expectation values
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Both of these vev’s contribute to the mass MA of the U(1)A gauge boson. However, we
work in the limit where v π vS , where we have

MA ≥ gA|qS |vS . (2.2)
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Constraints from the extra fermions Yukawa’s

Secluded sector Yukawa couplings

Finally, the Yukawa terms YijÂ̄
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Since we assume that all extra fermions are heavier than energies that can be probed, we
consider Yij to be large enough, typically of order one. Furthermore, for the purposes of
our analytical framework, we deem it su�cient to consider the simpler case of Yij Ã ”ij
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where Ŝ denotes either S or S
ú. In the final section, we will explore the possibility of

utilizing higher-order non-renormalizable terms, thereby leading to:
1

�n≠1 Â̄
Li
L

Â
Li
R

Ŝ
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through the vacuum expectation value (vev) of a single complex scalar field S.

More precisely, the extra fermions come in representations of SU(3) ◊ SU(2) as follows:

• A set of 2NL fermions, labeled as Â
Li , in the (1, 2) representation.

• A set of 2Ne fermions, labeled as Â
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• A set of 2Nd fermions, labeled as Â
dk , in the (3, 1) and (3̄, 1) representations.

• A set of 2NQ fermions, labeled as Â
Qm , in the (3, 2) and (3̄, 2) representations.

The complete set of matter fields, along with their associated quantum numbers, is com-
prehensively displayed in Table 1. Here, the index f spans from 1 to 3 and represents the
three SM families.
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Table 1: The particle content of the model

We assume that the scalar fields develop non-vanishing vacuum expectation values

ÈHÍ = 1
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, (2.1)

Both of these vev’s contribute to the mass MA of the U(1)A gauge boson. However, we
work in the limit where v π vS , where we have

MA ≥ gA|qS |vS . (2.2)
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    Anomaly equations from SM fermions

Cancellation of the anomalies contributions

2.2 Anomaly cancellation conditions

The conditions to ensure the absence of gauge and mixed gauge-gravitational anomalies
within the field content described in Equation (2) read:

Tr[Y ]SM = Tr[Y ]secluded = 0,

T r[Y Y Y ]SM = Tr[Y Y Y ]secluded = 0,

T r[Y T2T2]SM = Tr[Y T2T2]secluded = 0,

T r[Y T3T3]SM = Tr[Y T3T3]secluded = 0,

T r[T3T3T3]SM = Tr[T3T3T3]secluded = 0,

T r[qA]SM = ≠Tr[qA]secluded © tA,

T r[Y Y qA]SM = ≠Tr[Y Y qA]secluded © tY Y A,

T r[Y qAqA]SM = ≠Tr[Y qAqA]secluded © tY AA,

T r[qAqAqA]SM = ≠Tr[qAqAqA]secluded © tAAA,

T r[qAT2T2]SM = ≠Tr[qAT2T2]secluded © t2,

T r[qAT3T3]SM = ≠Tr[qAT3T3]secluded © t3.

(2.9)

The notation Tr[...]SM (Tr[...]secluded) denotes the traces over all the fermions in the SM
(secluded) sector running in the triangle loop, and T

a
2 (T a

3 ) are the generators of the SU(2)
(SU(3)) factor of the SM gauge group, normalized as Tr[T a

i
T

b

j
] = ”

ab
”ij/2, where i, j run

over the non-abelian factors and a, b over their generators. For simplicity, we omit the
explicit labeling of these generators.

The five first conditions involving the new fermions are trivially satisfied since these fields
are vector-like with respect to the SM gauge group. The aim of this section is to analyze
and provide some solutions to the remaining two sets of conditions.

Anomalies from the SM fermions

Explicitly, from the spectrum (2), the anomalies from the SM sector are given by:
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through the vacuum expectation value (vev) of a single complex scalar field S.

More precisely, the extra fermions come in representations of SU(3) ◊ SU(2) as follows:

• A set of 2NL fermions, labeled as Â
Li , in the (1, 2) representation.

• A set of 2Ne fermions, labeled as Â
ej , in the (1, 1) representation.

• A set of 2Nd fermions, labeled as Â
dk , in the (3, 1) and (3̄, 1) representations.

• A set of 2NQ fermions, labeled as Â
Qm , in the (3, 2) and (3̄, 2) representations.

The complete set of matter fields, along with their associated quantum numbers, is com-
prehensively displayed in Table 1. Here, the index f spans from 1 to 3 and represents the
three SM families.

SU(3) SU(2) U(1)Y U(1)A

SM sector Q
f

L
f = 1, 2, 3 3 2 1/6 z

f

Q
u

c,f

R
3̄ 1 ≠2/3 z

f
u

d
c,f

R
3̄ 1 1/3 z

f

d

L
f

L
1 2 ≠1/2 z

f

L
e

c,f

R
1 1 1 z

f
e

‹
c,f

R
1 1 0 z

f
‹

H 1 2 1/2 zH

Secluded sector Â
Li
L

1 2 y
i

L q
i

L
(ÂLi

R
)c

i = 1, .., NL 1 2 ≠y
i

L ÊqL
i

Â
ej

L
1 1 y

j
e q

j
e

(Âej

R
)c

j = 1, .., Ne 1 1 ≠y
j
e

Âqe
j

Â
dk
L

3 1 y
k

d
q

k

d

(Âdk
R

)c
k = 1, .., Nd 3̄ 1 ≠y

k

d
Âqd

k

Â
Qm
L

3 2 y
m

Q q
m

Q
(ÂQm

R
)c

m = 1, .., NQ 3̄ 2 ≠y
m

Q ÊqQ
m

S 1 1 0 qS

Table 1: The particle content of the model

We assume that the scalar fields develop non-vanishing vacuum expectation values

ÈHÍ = 1
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0
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B

, ÈSÍ = vS
Ô
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, (2.1)

Both of these vev’s contribute to the mass MA of the U(1)A gauge boson. However, we
work in the limit where v π vS , where we have

MA ≥ gA|qS |vS . (2.2)
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where the y
f

X
are the SM fermion X hypercharges. Imposing the Yukawa constrains (2.4),

the generic formulas in (2.10) become
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Prior to enforcing the constraints (2.5) stemming from the presence of neutrino Dirac
masses, three independent anomalies (tA, tAAA, t2) are present and can be chosen as tA,
tAAA and t2 while

tY Y A = ≠
1
2 t2 , tY AA = ≠2zHt2 , t3 = 0. (2.12)

By imposing (2.5), additional relations are introduced,

tA = 0 , tAAA = ≠6z
2
Ht2 , (2.13)

thereby establishing connections between all Standard Model (SM) anomalies. These
anomalies can now be expressed as functions of a single anomaly, such as the mixed anomaly
t2, and the charge zH .

Anomalies from the secluded sector

To facilitate our analysis and seek specific charge assignments that result in an anomaly-
free spectrum for the field content listed in Table 1, we introduce additional assumptions
to simplify the model. Specifically, we assume charge universality with respect to both
U(1)Y and U(1)A for all secluded particles of each type: L, e, Q, and d. In other words,
we assume the following:

’ i = 1, ..., NL ’ j = 1, ..., Ne ’ k = 1, ..., Nd ’ m = 1, ..., NQ
Á

i

L = ÁL Á
j
e = Áe Á

k

d
= Ád Á
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   Universality hypothesis

Assume universality with respect to both U(1)’s

through the vacuum expectation value (vev) of a single complex scalar field S.

More precisely, the extra fermions come in representations of SU(3) ◊ SU(2) as follows:

• A set of 2NL fermions, labeled as Â
Li , in the (1, 2) representation.

• A set of 2Ne fermions, labeled as Â
ej , in the (1, 1) representation.

• A set of 2Nd fermions, labeled as Â
dk , in the (3, 1) and (3̄, 1) representations.

• A set of 2NQ fermions, labeled as Â
Qm , in the (3, 2) and (3̄, 2) representations.

The complete set of matter fields, along with their associated quantum numbers, is com-
prehensively displayed in Table 1. Here, the index f spans from 1 to 3 and represents the
three SM families.
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We assume that the scalar fields develop non-vanishing vacuum expectation values
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0
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, ÈSÍ = vS
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2
, (2.1)

Both of these vev’s contribute to the mass MA of the U(1)A gauge boson. However, we
work in the limit where v π vS , where we have

MA ≥ gA|qS |vS . (2.2)
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Prior to enforcing the constraints (2.5) stemming from the presence of neutrino Dirac
masses, three independent anomalies (tA, tAAA, t2) are present and can be chosen as tA,
tAAA and t2 while
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thereby establishing connections between all Standard Model (SM) anomalies. These
anomalies can now be expressed as functions of a single anomaly, such as the mixed anomaly
t2, and the charge zH .
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To facilitate our analysis and seek specific charge assignments that result in an anomaly-
free spectrum for the field content listed in Table 1, we introduce additional assumptions
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Anomalies from the extra fermions

Cancellation of the anomalies contributions

through the vacuum expectation value (vev) of a single complex scalar field S.

More precisely, the extra fermions come in representations of SU(3) ◊ SU(2) as follows:

• A set of 2NL fermions, labeled as Â
Li , in the (1, 2) representation.

• A set of 2Ne fermions, labeled as Â
ej , in the (1, 1) representation.

• A set of 2Nd fermions, labeled as Â
dk , in the (3, 1) and (3̄, 1) representations.

• A set of 2NQ fermions, labeled as Â
Qm , in the (3, 2) and (3̄, 2) representations.

The complete set of matter fields, along with their associated quantum numbers, is com-
prehensively displayed in Table 1. Here, the index f spans from 1 to 3 and represents the
three SM families.
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We assume that the scalar fields develop non-vanishing vacuum expectation values
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Ô
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0
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B

, ÈSÍ = vS
Ô

2
, (2.1)

Both of these vev’s contribute to the mass MA of the U(1)A gauge boson. However, we
work in the limit where v π vS , where we have

MA ≥ gA|qS |vS . (2.2)
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Under these assumptions, the anomaly conditions given in Equation (A.2) can be simplified
to:

Tr[qA]secluded =
1
2ÁLNL + ÁeNe + 3ÁdNd + 6ÁQNQ

2
qS = ≠tA,

T r[Y Y qA]secluded =
1
2ÁLy

2
LNL + Áey

2
eNe

+ 3Ády
2
d
Nd + 6ÁQy

2
QNQ

2
qS = ≠tY Y A,

T r[Y qAqA]secluded = ≠q
2
S

1
2yLNL + yeNe + 3ydNd + 6yQNQ

2

+ 2qS

1
2ÁLyLqLNL + ÁeyeqeNe

+ 3ÁdydqdNd + 6ÁQyQqQNQ
2

= ≠tY AA,

T r[qAqAqA]secluded = q
3
S

1
2ÁLNL + ÁeNe + 3ÁdNd + 6ÁQNQ

2

≠ 3q
2
S

1
2qLNL + qeNe + 3qdNd + 6qQNQ

2

+ 3qS

1
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2
LNL + Áeq

2
eNe

+ 3Ádq
2
d
Nd + 6ÁQq

2
QNQ

2
= ≠tAAA,

T r[qAT2T2]secluded = (ÁLNL + 3ÁQNQ)qS = ≠t2,

T r[qAT3T3]secluded = (ÁdNd + 2ÁQNQ)qS = ≠t3.

(2.15)

In the subsequent analysis, we will determine charge assignments that fulfill the aforemen-
tioned relations.

3 Anomaly-free solutions

Our primary aim is not to provide an exhaustive classification of all conceivable solutions,
which would be intricate and of limited utility at this stage. Instead, our goal is to demon-
strate the existence of viable solutions to this problem and highlight some of their features.
In particular, we present a collection of explicit solutions where all additional family num-
bers NL/e/Q/d are non-zero (Subsection 3.1). In addition, we present two simple solutions
characterized by (NQ, Nd) or (NL, Ne) being zero in (Subsection 3.2).

3.1 Solution with all N ’s non-vanishing

The equations t3 = 0 and tA = 0 lead to:

2ÁLNL + ÁeNe = 0, (3.1a)
2ÁQNQ + ÁdNd = 0. (3.1b)

Since the N ’s are positive integers, we must have ÁLÁe = ≠1, ÁQÁd = ≠1 and thus

Ne = 2NL, Nd = 2NQ. (3.2)
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Solving in the case where all N’s are non zero

through the vacuum expectation value (vev) of a single complex scalar field S.

More precisely, the extra fermions come in representations of SU(3) ◊ SU(2) as follows:

• A set of 2NL fermions, labeled as Â
Li , in the (1, 2) representation.

• A set of 2Ne fermions, labeled as Â
ej , in the (1, 1) representation.

• A set of 2Nd fermions, labeled as Â
dk , in the (3, 1) and (3̄, 1) representations.

• A set of 2NQ fermions, labeled as Â
Qm , in the (3, 2) and (3̄, 2) representations.

The complete set of matter fields, along with their associated quantum numbers, is com-
prehensively displayed in Table 1. Here, the index f spans from 1 to 3 and represents the
three SM families.
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Both of these vev’s contribute to the mass MA of the U(1)A gauge boson. However, we
work in the limit where v π vS , where we have

MA ≥ gA|qS |vS . (2.2)
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Using these two relations, the equations for tY Y A, tY AA and tAAA yield the following
system:

2ÁLNL
Ë
y

2
L ≠ y

2
e

È
+ 6ÁQNQ

Ë
y

2
Q ≠ y

2
d

È
= t2

2qS

, (3.3a)

≠2q
2
S [NL(yL+ye)+3NQ(yd+yQ)]+4qS [ÁLNL(yLqL≠yeqe)+3ÁQNQ(yQqQ≠ydqd)]=2zHt2,

(3.3b)
≠q

2
S [NL(qL+qe)+3NQ(qd+qQ)] + qS

Ë
ÁLNL(q2

L≠q
2
e)+3ÁQNQ(q2

Q≠q
2
d)

È
= z

2
Ht2. (3.3c)

The t2 anomaly equation links NL and NQ as follows:

ÁLNL + 3ÁQNQ = ≠
t2
qS

. (3.4)

We solve them by requiring the following:

• All charges are rational numbers.

• The lepton-like extra fermions Â
L have electric charges 0 or ±1, and Â

e electric charge
±1.

• The quark-like extra fermions Â
Q and Â

d have electric charges ±1/3 or ±2/3. Indeed,
this condition ensures that when the color forces confine, the resulting bound states
can all carry integer charges.

• We will consider ÁL = 1, Áe = ≠1, Ád = 1 and ÁQ = ≠1

We end up with 12 parameters: yL, ye, yQ, yd, qL, qe, qQ, qd, qS , zH , NL and NQ for the
three equations (3.3). The above requirements lead to the hypercharges1

yL = ±
1
2 , yQ = ±

1
6 , yd = ±

2
3 , ye = ±1, (3.5)

together with2

NL = NQ. (3.6)

This charge assignment directly solves the equation (3.3a). Since NL = NQ, NL simplifies
in the two remaining equations (3.3b)-(3.3c), so that we end with 6 parameters qL, qe, qQ,
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To obtain rational solutions for the U(1)A charges q within the secluded sector, one su�-
cient condition we have chosen is to eliminate the quadratic terms in Equation (3.3c) by

1Another possibility for the hypercharge of Âd would be yd = ±1/3. However, this gives ye =
±

Ò
NL≠NQ

2NL
, which vanishes for NL = NQ. This case is excluded, since it leads to extra fermions Âe

not charged under the SM gauge group. On the other hand, yd = ±2/3 gives ye = ±
Ò

NL+NQ
2NL

, which is
still rational when NL = NQ and gives ye = ±1.

2Rationality of the ye charge can also be obtained with other particle numbers assignments, such that
NL = 8NQ or NL = 49NQ, but this leads to fractional electric charge for Âe.
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Ë
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(3.3b)
≠q

2
S [NL(qL+qe)+3NQ(qd+qQ)] + qS

Ë
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We demand:

We get:



Model a Model b Model c

SU(3) SU(2) U(1)Y U(1)A U(1)Y U(1)A U(1)Y U(1)A

Qf

L
f = 1, 2, 3 3 2 1/6 1/3 1/6 2/3 1/6 1/3

u
c,f

R
3̄ 1 ≠2/3 ≠10/3 ≠2/3 ≠8/3 ≠2/3 ≠4/3

d
c,f

R
3̄ 1 1/3 8/3 1/3 4/3 1/3 2/3

Lf

L
1 2 ≠1/2 1 ≠1/2 2 ≠1/2 1

e
c,f

R
1 1 1 2 1 0 1 0

‹
c,f

R
1 1 0 ≠4 0 ≠4 0 ≠2

H 1 2 1/2 3 1/2 2 1/2 1

Â
Li
L

1 2 ≠1/2 ≠3 ≠1/2 ≠3 ≠1/2 ≠1
(ÂLi

R
)c

i = 1, · · · , NL 1 2 +1/2 6 +1/2 5 +1/2 2
Â

ej

L
1 1 ≠1 ≠3 +1 ≠3 ≠1 ≠1

(Âej

R
)c

j = 1, · · · , 2NL 1 1 +1 0 ≠1 1 +1 0
Â

dk
L

3 1 ≠2/3 0 2/3 1/3 ≠2/3 0
(Âdk

R
)c

k = 1, · · · , 2NL 3̄ 1 +2/3 3 ≠2/3 5/3 2/3 1
Â

Qm
L

3 2 +1/6 0 +1/6 1/3 +1/6 0
(ÂQm

R
)c

m = 1, · · · , NL 3̄ 2 ≠1/6 ≠3 ≠1/6 ≠7/3 ≠1/6 ≠1
S 1 1 0 3 0 2 0 1

t2 6 12 6
tY Y A ≠3 ≠6 ≠3
tY AA ≠36 ≠48 ≠12
tAAA ≠324 ≠288 ≠36

Table 3. Examples of anomaly-free solutions, with all Nis ”= 0. Model a: Anomaly-free solution
with qL = qe, qd = qQ, and NL = 1, zL = 1. Model b: Anomaly-free solution with qL = qe, qd = qQ,
and NL = 3, zL = 2. Model c: Anomaly-free solution with qL = qe, qd = qQ, and NL = 3, zL = 1.

3.2 Solution with some vanishing Nis

Let us briefly discuss the scenario where certain quantum numbers of the extra fermions
are absent. As indicated by Equation (??), meaningful possibilities arise when either
(Nd, NQ) = (0, 0) or (NL, Ne) = (0, 0). We will discuss each of these cases in sequence.

• Nd = NQ = 0 case:

• Model a: n = 2, Á‹ = 1, zL = ≠6, zQ = 8/3, which implies zu = ≠17/3, zd = 1/3, ze = 9, z‹ = 3.

• Model b: n = 1, Á‹ = ≠1, zL = ≠1, zQ = 5/3, which implies zu = ≠11/3, zd = 1/3, ze = 3, z‹ = ≠1.

• Model c: n = 2, Á‹ = +1, zL = ≠2, zQ = 4/3, which implies zu = ≠7/3, zd = ≠1/3, ze = 1, z‹ = 1.
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Energy domain of validity


I: The UV cut-off of the EFT



sets the coe�cients of the axionic and GCS terms in (??) and (??) according to:

MAcAA = ≠g
3
A

tAAA,

MAcAY + eY AA = ≠2gY g
2
A

tY AA,

MAcY Y ≠ eY AY = ≠g
2
Y

gAtAY Y ,

MAdi + f
A

i
= ≠g

2
i
ti, ’i = 2, 3,

eY AY = ≠2gAg
2
Y

tAY Y ,

eY AA = ≠gY g
2
A

tY AA,

f
Y

i
= 0, ’i = 2, 3,

f
A

i
= 2g

2
i
ti, ’i = 2, 3.

(4.13)

The first set of four equations comes from the U(1)A variation, the second set of three
equations comes from the U(1)Y variation, and the last equation from the non-abelian
variations. This can be simplified into:

MAcAA = ≠g
3
AtAAA, (4.14)

MAcAY = ≠gY g
2
AtY AA, (4.15)

MAcY Y = ≠3g
2
Y gAtAY Y , (4.16)

MAdi = ≠3g
2
i ti, ’i = 2, 3, (4.17)

eY AY = ≠2gAg
2
Y tAY Y , (4.18)

eY AA = ≠gY g
2
AtY AA, (4.19)

f
Y

i = 0, ’i = 2, 3, (4.20)
f

A

i = 2g
2
i ti, ’i = 2, 3. (4.21)

5 The ultraviolet cut-o� of the e�ective field theory

In the context of this study, we are operating within an e�ective field theory that explores
energies above the mass scale of the anomalous U(1)A but below the mass scale of some
or all of the fermions within the secluded sector. Consequently, the contributions from the
detectable fermions to the anomaly do not cancel out, and the U(1)A appears as anomalous
in the e�ective field theory. We will now explore the regime of validity of this framework,
focusing on expectations derived from low-energy considerations to ascertain the location
of the ultraviolet cut-o�. A previous discussion of predictions for limits on ultraviolet cut-
o�s by Preskill and Swampland conjectures, as well as by the unitarity of an e�ective field
theory with anomalous U(1), can be found in [? ].

5.1 The heavy fermions scale

We assume knowledge of the mass MA and the coupling constant gA of the U(1)A gauge bo-
son, denoted as Z

Õ, either through theoretical calculations or experimental measurements.
The vector boson Z

Õ obtains its mass MA as the sum of two distinct contributions:
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• The tree-level mass for the gauge boson Z
Õ
A

arises from the Higgs mechanism when
the scalar field S acquires a vacuum expectation value. This contribution to the mass
is given by:

M
(0)
A

= gA|qS |vS (4.1)

where we chose vS to be a positive quantity.

• The predominant radiative contribution to the U(1)A gauge boson Z
Õ
A

mass originates
from the non-cancellation of anomalies in triangular loops. This contribution stems
from the diagram depicted in Figure 5 and was computed by Preskill in [2]. It is
quoted of order:

MA
(1)

ƒ

-----
[g3

A
t
(light)
AAA

+ 2g
2
A

gY t
(light)
Y AA

+ gAg
2
Y

t
(light)
AY Y

+ gAg
2
2t

(light)
2 + gAg

2
3t

(light)
3 ]�eff

64fi3

-----
(4.2)

We denoted denoted �eff the e�ective theory ultraviolet cut-o� scale. The superscript
(light) is employed to explicitly indicate that we are considering only contributions to the
anomaly coe�cients t2, t3, tAAA, . . . from the light fermions which lie in the reach of the
e�ective field theory. As the complete model is anomaly free, we can instead use the heavy
secluded fermions with an assumed common mass scale Mf , which lies beyond the reach of
the e�ective field theory. These fermions may constitute either part or the entirety of the
secluded sector. We will use then t

(h)
AAA

, t
(h)
Y AA

, t
(h)
AY Y

, t
(h)
2 , t

(h)
3 where the superscript (h) is

employed to explicitly indicate that we are considering only contributions to the anomaly
coe�cients that stem from the existence of secluded fermions with an assumed common
mass scale Mf , which lies beyond the reach of the e�ective field theory. These fermions
may constitute either part or the entirety of the secluded sector.

The e�ective theory cut-o� scale �eff will be approximately equal to the mass scale of the
heavy fermions, i.e.,

�eff ƒ Mf (4.3)

Above this scale, these additional fermions must be taken into account in all tree-level and
virtual processes. For instance, the diverse contributions from triangular diagrams to the
anomaly cancel, and therefore the contribution described by Equation (4.2), to the Z

Õ
A

mass drops out too.

In our framework, the heavy secluded fermion mass originates from the Yukawa coupling
to the scalar field S, thus:

Mf ƒ YijvS ƒ vS (4.4)

In general, the expression given by (4.2) is significantly subdominant compared to (4.1).
To prevent this from occurring, it is necessary for gA not to be too small, and for the
U(1)A charges to be su�ciently large so that t

(h)
AAA

provides a substantial contribution.
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• The tree-level mass for the gauge boson Z
Õ arises from the Higgs mechanism when

the scalar field S acquires a vacuum expectation value. This contribution to the mass
is given by:

M
(0)
A

= gA|qS |vS , (5.1)

where we chose vS to be a positive quantity.
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We denoted �eff the e�ective theory ultraviolet cut-o� scale. The superscript (light) is
employed to explicitly indicate that we are considering only contributions to the anomaly
coe�cients t2, t3, tAAA, . . . from the light fermions which lie within the reach of the e�ective
field theory. As the complete model is anomaly free, we can instead use the heavy secluded
fermions with an assumed common mass scale Mf , which lies beyond the reach of the
e�ective field theory. These fermions may constitute either part or the entire secluded
sector. We will use then t

(h)
AAA

, t
(h)
Y AA

, t
(h)
AY Y

, t
(h)
2 , t

(h)
3 , where the superscript (h) is employed

to explicitly indicate that we are considering only contributions to the anomaly coe�cients
that stem from the existence of secluded fermions.

The e�ective theory cut-o� scale �eff will be approximately equal to the mass scale of the
heavy fermions, i.e.,

�eff ƒ Mf . (5.3)

Above this scale, these additional fermions must be taken into account in all tree-level
and virtual processes. For instance, the diverse contributions from triangular diagrams to
the anomaly cancel, and therefore the contribution, described by Equation (??), to the Z

Õ

mass drops out too [? ]. The question is therefore which of the two equations (??) or (??)
is more appropriate to deduce approximately this value of the ultraviolet cut-o� from the
low-energy theory data.

In our framework, the heavy secluded fermion mass originates from the Yukawa coupling
to the scalar field S, thus:

Mf ƒ YijvS ƒ vS . (5.4)

The expression given by (??) is sometimes used as the expected UV cut-o� of the theory [?
]. We would like to investigate here when this can be the case in our models. In general, it is
significantly subdominant compared to (??). To prevent this from occurring, it is necessary
for gA not to be too small, and for the U(1)A charges to be su�ciently large so that t

(h)
AAA
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GAUGE ANOMALIES 333 

There is no constant term independent of p because of gauge invariance; hence, the 
diagram is quadratically divergent by power counting. When combined with the 
diagrams of Fig. 3, the diagram of Fig. 2 generates for 0 the gauge-invariant kinetic 
term 

“Yki” = ;F2(a,e-eA,)2, (2.11) 
where 

F,e2 IQ’1 n 
641.~’ ’ 

(2.12) 

In the unitary gauge (3(x) = 0, this kinetic term reduces to a mass term for the gauge 
field A, with 

p=eF, (2.13) 

and F may be interpreted as a symmetry-breaking mass scale. It is an old observa- 
tion [ 11, of course, that the anomaly through the diagram in Fig. 3b generates a 
photon mass. Naturally, if we introduce the gauge artifact 8, we can interpret the 
photon mass as arising because the 0 particle is “eaten” by the photon. 

Actually, the discussion of the preceding paragraph requires some clarification. In 
the anomalous gauge theory formulated as in Eq. (2.1), it is inappropriate to “fix 
the gauge,” because gauge invariance is broken by the anomaly. (Correspondingly, 
in the gauge-invariant formulation of the theory, Eq. (2.9) should suffice to fix the 
gauge completely.) But if we sum over all gauge field configurations in the path 
integral, without any gauge fixing, then the perturbative propagator for a massless 
gauge field is ill-defined. In order that the path integral make sense, we should 
consider the bare gauge field mass to be infinitesimal rather than zero. Then the 
loop corrections amplify the mass to the finite value given by Eqs. (2.12), (2.13). 

If the kinetic term for 0 is of the form Eq. (2.11), it is convenient to introduce a 
resealed field 

b=F& (2.14) 

that has a conventionally normalized kinetic term, 

Then the choice 

(b) 

(2.15) 

(2.16) 

FIG. 3. Diagrams that, when combined with the diagram in Fig. 2. form a gauge-invariant set. 

One-loop radiative contribution
Tree-level Higgs contribution

The EFT UV Cutoff: Preskill bound

We want to infer the value of the cut-off energy from this information 
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The EFT UV Cutoff: Preskill bound

⇤eff ⇠

�����
64⇡3MA

[g3At
(light)
AAA + 2g2AgY t

(light)
Y AA + gAg2Y t

(light)
AY Y + gAg22t

(light)
2 + gAg23t

(light)
3 ]

�����
<latexit sha1_base64="2avl2Ch8warcqd16/qJGIUQO4h8="></latexit>

Often quoted is the Preskill cutoff
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The EFT UV Cutoff: Preskill bound
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(light)
Y AA + gAg2Y t
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Often quoted is the Preskill cutoff

More precisely, the Preskill bound is
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• The tree-level mass for the gauge boson Z
Õ
A

arises from the Higgs mechanism when
the scalar field S acquires a vacuum expectation value. This contribution to the mass
is given by:

M
(0)
A

= gA|qS |vS (4.1)

where we chose vS to be a positive quantity.

• The predominant radiative contribution to the U(1)A gauge boson Z
Õ
A

mass originates
from the non-cancellation of anomalies in triangular loops. This contribution stems
from the diagram depicted in Figure 5 and was computed by Preskill in [2]. It is
quoted of order:
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We denoted denoted �eff the e�ective theory ultraviolet cut-o� scale. The superscript
(light) is employed to explicitly indicate that we are considering only contributions to the
anomaly coe�cients t2, t3, tAAA, . . . from the light fermions which lie in the reach of the
e�ective field theory. As the complete model is anomaly free, we can instead use the heavy
secluded fermions with an assumed common mass scale Mf , which lies beyond the reach of
the e�ective field theory. These fermions may constitute either part or the entirety of the
secluded sector. We will use then t
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2 , t

(h)
3 where the superscript (h) is

employed to explicitly indicate that we are considering only contributions to the anomaly
coe�cients that stem from the existence of secluded fermions with an assumed common
mass scale Mf , which lies beyond the reach of the e�ective field theory. These fermions
may constitute either part or the entirety of the secluded sector.

The e�ective theory cut-o� scale �eff will be approximately equal to the mass scale of the
heavy fermions, i.e.,

�eff ƒ Mf (4.3)

Above this scale, these additional fermions must be taken into account in all tree-level and
virtual processes. For instance, the diverse contributions from triangular diagrams to the
anomaly cancel, and therefore the contribution described by Equation (4.2), to the Z

Õ
A

mass drops out too.

In our framework, the heavy secluded fermion mass originates from the Yukawa coupling
to the scalar field S, thus:

Mf ƒ YijvS ƒ vS (4.4)

In general, the expression given by (4.2) is significantly subdominant compared to (4.1).
To prevent this from occurring, it is necessary for gA not to be too small, and for the
U(1)A charges to be su�ciently large so that t

(h)
AAA

provides a substantial contribution.
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More precisely, this requirement demands that gAqA be large. The other t coe�cients are
kept smaller because they involve Casimirs for the fundamental representations of SU(2)
and SU(3). This is a necessary but not su�cient condition. This is because for MA π Mf

to hold, gAqS must remain significantly smaller than one. Then, the Yukawa couplings at
origin of the chiral fermion masses requires that the two fermionic secluded fields, left and
right, have charges of similar absolute size but opposite signs. This results in compensating
contributions to t

(h)
AAA

.

The ratio of the loop-induced mass with respect of the tree-level one is now of order:
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Indeed, the dominance of the anomaly loop-induced mass for the Z
Õ
A

requires that gAzH
2
NQ ≥

103. To achieve a light Z
Õ
A

with a mass MA π Mf , it necessitates a coupling gA π 1. This,
in turn, implies significantly large charges and/or a large number of fields NQ, especially
if we assume qS = 1.

One potential resolution to this issue is that only some of the fermions are heavy enough
to lie outside the range of the e�ective field theory. In such a scenario, the expression
in Equation (4.5) needs to be reevaluated. Let’s consider, for instance, that only the NL
fermions Â

Li

L
with large charges qL ∫ qS are heavy and inaccessible. In this case:
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Now, it is g
2
A

q
2
LNL that needs to be of order ≥ 103. In this scenario, NL and qL are allowed

to be large and the latter could be arranged by choosing a suitably large value for zH and
not too small gA.

Let us first focus on the parameter space where the tree-level mass dominates in our models.
In this scenario, the ultraviolet cuto� of the theory can be approximated as:

�eff ƒ
MA

gAqS

(4.7)

n the case where gA is hierarchically the smallest coupling in the theory, the magnetic
Swampland Conjecture can be expressed as:

�eff ƒ gAMP ∆ MA
<
≥ g

2
AMp (4.8)

where we have taken qS = 1. This provides an upper bound on the mass MA in terms of
qS and gA so that the model doesn’t fall in the Swampland.

4.2 Running of the gauge couplings

The aim of this section is to analyse the running of the di�erent coupling constants in the
anomaly-free models presented in Section 3, in order to put some bounds on the number of
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with a mass MA π Mf , it necessitates a coupling gA π 1. This,
in turn, implies significantly large charges and/or a large number of fields NQ, especially
if we assume qS = 1.

One potential resolution to this issue is that only some of the fermions are heavy enough
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Now, it is g
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LNL that needs to be of order ≥ 103. In this scenario, NL and qL are allowed

to be large and the latter could be arranged by choosing a suitably large value for zH and
not too small gA.

Let us first focus on the parameter space where the tree-level mass dominates in our models.
In this scenario, the ultraviolet cuto� of the theory can be approximated as:
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n the case where gA is hierarchically the smallest coupling in the theory, the magnetic
Swampland Conjecture can be expressed as:
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where we have taken qS = 1. This provides an upper bound on the mass MA in terms of
qS and gA so that the model doesn’t fall in the Swampland.

4.2 Running of the gauge couplings

The aim of this section is to analyse the running of the di�erent coupling constants in the
anomaly-free models presented in Section 3, in order to put some bounds on the number of
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• The tree-level mass for the gauge boson Z
Õ
A

arises from the Higgs mechanism when
the scalar field S acquires a vacuum expectation value. This contribution to the mass
is given by:

M
(0)
A

= gA|qS |vS (4.1)

where we chose vS to be a positive quantity.

• The predominant radiative contribution to the U(1)A gauge boson Z
Õ
A

mass originates
from the non-cancellation of anomalies in triangular loops. This contribution stems
from the diagram depicted in Figure 5 and was computed by Preskill in [2]. It is
quoted of order:
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We denoted denoted �eff the e�ective theory ultraviolet cut-o� scale. The superscript
(light) is employed to explicitly indicate that we are considering only contributions to the
anomaly coe�cients t2, t3, tAAA, . . . from the light fermions which lie in the reach of the
e�ective field theory. As the complete model is anomaly free, we can instead use the heavy
secluded fermions with an assumed common mass scale Mf , which lies beyond the reach of
the e�ective field theory. These fermions may constitute either part or the entirety of the
secluded sector. We will use then t

(h)
AAA

, t
(h)
Y AA

, t
(h)
AY Y

, t
(h)
2 , t

(h)
3 where the superscript (h) is

employed to explicitly indicate that we are considering only contributions to the anomaly
coe�cients that stem from the existence of secluded fermions with an assumed common
mass scale Mf , which lies beyond the reach of the e�ective field theory. These fermions
may constitute either part or the entirety of the secluded sector.

The e�ective theory cut-o� scale �eff will be approximately equal to the mass scale of the
heavy fermions, i.e.,

�eff ƒ Mf (4.3)

Above this scale, these additional fermions must be taken into account in all tree-level and
virtual processes. For instance, the diverse contributions from triangular diagrams to the
anomaly cancel, and therefore the contribution described by Equation (4.2), to the Z

Õ
A

mass drops out too.

In our framework, the heavy secluded fermion mass originates from the Yukawa coupling
to the scalar field S, thus:

Mf ƒ YijvS ƒ vS (4.4)

In general, the expression given by (4.2) is significantly subdominant compared to (4.1).
To prevent this from occurring, it is necessary for gA not to be too small, and for the
U(1)A charges to be su�ciently large so that t

(h)
AAA

provides a substantial contribution.
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More precisely, this requirement demands that gAqA be large. The other t coe�cients are
kept smaller because they involve Casimirs for the fundamental representations of SU(2)
and SU(3). This is a necessary but not su�cient condition. This is because for MA π Mf

to hold, gAqS must remain significantly smaller than one. Then, the Yukawa couplings at
origin of the chiral fermion masses requires that the two fermionic secluded fields, left and
right, have charges of similar absolute size but opposite signs. This results in compensating
contributions to t

(h)
AAA

.

The ratio of the loop-induced mass with respect of the tree-level one is now of order:
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Indeed, the dominance of the anomaly loop-induced mass for the Z
Õ
A

requires that gAzH
2
NQ ≥

103. To achieve a light Z
Õ
A

with a mass MA π Mf , it necessitates a coupling gA π 1. This,
in turn, implies significantly large charges and/or a large number of fields NQ, especially
if we assume qS = 1.

One potential resolution to this issue is that only some of the fermions are heavy enough
to lie outside the range of the e�ective field theory. In such a scenario, the expression
in Equation (4.5) needs to be reevaluated. Let’s consider, for instance, that only the NL
fermions Â

Li

L
with large charges qL ∫ qS are heavy and inaccessible. In this case:
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Now, it is g
2
A

q
2
LNL that needs to be of order ≥ 103. In this scenario, NL and qL are allowed

to be large and the latter could be arranged by choosing a suitably large value for zH and
not too small gA.

Let us first focus on the parameter space where the tree-level mass dominates in our models.
In this scenario, the ultraviolet cuto� of the theory can be approximated as:

�eff ƒ
MA

gAqS

(4.7)

In the case where gA is hierarchically the smallest coupling in the theory, the magnetic
Swampland Conjecture can be used to put a bound as:

�eff
<
≥ �QG ƒ gAMP ∆ MA

<
≥ g

2
AMp (4.8)

where we have taken qS = 1. This provides an upper bound in our scenario on the mass
MA in terms of qS and gA so that the model doesn’t fall in the Swampland.

4.2 Running of the gauge couplings

The aim of this section is to analyse the running of the di�erent coupling constants in the
anomaly-free models presented in Section 3, in order to put some bounds on the number of
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Energy domain of validity


II: Above the new fermions scale: the UV model



A model which can be valid many orders of energy scales above the new fermions scale 
To make sense of our UV model description: a perturbative QFT, we request:
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A model which can be valid many orders of energy scales above the new fermions scale 
To make sense of our UV model description: a perturbative QFT, we request:

The hierarchy: 

  Mass of Z’         <<          Mass of new fermions 

Coupling of  Z’         <<          Yukawa coupling of new fermions 

The coupling of  Z’ must not be too small so that we can detect the Z’

implies: 

But: 

Which implies: 

   Yukawa couplings of new fermions are of  O(1)



A model which can be valid many orders of energy scales above the new fermions scale 

To make sense of our UV model description: a perturbative QFT, we request:

   Yukawa couplings of new fermions are of  O(1)

imply: 

and 

The RGE should make the Yukawa couplings not grow with increasing energy:

The contributions from gauge interactions to the RGE of the Yukawa couplings should dominate



A SUSY example

SUSY, as a bonus, allows easily to unify the couplings

SU(3) SU(2) U(1)Y U(1)A
Qf

L f = 1, 2, 3 3 2 1/6 �1/48
u
c,f
R 3̄ 1 �2/3 97/48

d
c,f
R 3̄ 1 1/3 �95/48

Lf
L 1 2 �1/2 �1/48

e
c,f
R 1 1 1 �95/48
⌫
c,f
R 1 1 0 97/48
H1 1 2 1/2 �2
H2 1 2 1/2 2

 
Li
L 1 2 �1/2 35/8

( Li
R )c i = 1, · · · , NL 1 2 +1/2 9/2

 
e
L 1 1 +1 0

( e
R)

c
j = 1, · · · , 2NL 1 1 �1 0

 
d
L 3 1 �2/3 5/4

( d
R)

c
k = 1, · · · , 2NL 3̄ 1 +2/3 �9/8

 
Qm

L 3 2 +1/6 2
( Qm

R )c m = 1, · · · , NL 3̄ 2 �1/6 �15/8
S 1 1 0 1/8
S
0 1 1 0 �1/8

S2 1 1 0 �3/2
S
0
2 1 1 0 11/8
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Conclusions

In summary, we have build models whith an anomalous Z’ in a range of energies and 
free of anomalies above a scale much below the Planck scale.


In a SUSY set-up, we can find models that allow to unify the couplings.


Work in progress …
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i, μ

j, ν

k, ρ
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      - dependent

i, μ
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k, ρ

the anomalous coupling

✤ always present                         
(anomalous/non-anomalous models)

Anastasopoulos Kaneta Kiritsis Mambrini

✤ depends on the mass                         
The heavier the fermion the smaller 
the contribution

✤ depends on individual charges of the 
fermion in the loop

✤ drops in anomaly free models

✤ does not depend on any mass

✤ depends on the full anomaly

The diagrams again


