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Introduction

Gauge fields and strings

Understanding the dynamics of gauge theories at strong coupling is one of the greatest challenges in theoretical
physics...

Owing to the seminal work of Wilson (1974), strongly coupled Yang-Mills theory can be reformulated as
an effective theory of color flux tubes between quark-antiquark pairs (responsible for quark confinement)...
This mechanism is inevitably reminiscent of relativistic string theory...

Yet another fascinating connection between gauge and string theory was uncovered by ’t Hooft (1974), who
noticed that the perturbative behavior of SU(Nc) Yang-Mills correlators in the planar (or large-Nc) limit
bears a striking resemblance to the topological expansion of string theory...

The first direct proof of concept for these ideas was provided by holography (Maldacena, 1997):

Type IIB String Theory
on AdS5 × S5

∼= N = 4 super Yang-Mills theory
with gauge group su (Nc)

At weak gauge theory coupling, Feynman perturbation theory can be used to calculate the basic observables
of the theory... At strong gauge theory coupling, string theory becomes weakly coupled and so it is suitable
for calculations in the nonperturbative region... however...

Weak/strong coupling dilemma: gauge and the string theory couplings are inversely proportional... the two
perturbative regimes are disconnected from each other... testing AdS/CFT is practically impossible!
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Introduction

Integrability!

Nonetheless, there still exists a large number of nontrivial tests from weak (λ → 0) to strong ’t Hooft
coupling (λ→∞) which confirms the validity of the AdS/CFT correspondence for large values of Nc .

The detailed check of AdS/CFT is facilitated by the fact that integrability structures have been found on
both sides of the duality (Minahan-Zarembo, 2002; Bena-Polchinski-Roiban, 2003)...

For example, the spectral problem of the duality has been completely solved... not of course in the sense of
a closed expression for the spectrum, such as e.g. for the harmonic oscillator or the hydrogen atom...

EHO = ℏω
(
n − 1

2

)
, EH = −EI

n2
, n = 1, 2, . . .

But in the sense that there exists a system of algebraic equations

f (∆, λ) = 0,

which contains, for all values of the coupling constant λ, the scaling dimensions ∆ of any local gauge
invariant operator of N = 4, SYM...

O (x) = tr [φn1
1 (x)φn2

2 (x) . . . φn3
3 (x)]

According to the dictionary of the AdS/CFT duality, the above operators of N = 4, SYM are dual to type
IIB string theory states in AdS5× S5...
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Introduction

Solvability?

... the energies of closed string states in AdS5× S5 are dual to the scaling dimensions of their dual gauge
theory operators...

The present understanding of the AdS5/CFT4 spectral problem is depicted in the following diagram:

Ideally, we would like to solve the theory... not only its spectrum... where by solve we mean the calculation
of the theory’s observables: spectrum, correlation functions, scattering amplitudes, Wilson loop expectation
values, etc...
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Introduction

Reducing the symmetry

The AdS/CFT is an exceptional laboratory for theoretical physics, a sort of harmonic oscillator...

The price to pay for entering the nonperturbative regime of gauge theories with holography is the high level
of symmetry... The involved theories are too (super-) symmetric and far removed from real-world systems...

The main characteristic of real-world systems is their finite size: impurities, domain walls, defects and
boundaries separate regions with different properties and break many of the underlying symmetries.

The real-world gauge theories we would like to study at strong coupling (such as QCD) are neither finite,
nor supersymmetric, nor integrable, (or holographic?)... In other words, we need less symmetry!
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Introduction

Integrable deformations of holographic dualities

We still keep holography because we are interested in probing the strongly coupled regime of gauge theories...

Starting from a holographic duality like AdS/CFT, we deform it towards a less symmetric duality...

We are also keen on keeping integrability because we want to be able to test the new holographic duality
from weak to strong coupling...

There exist many ways to deform AdS/CFT (while also preserving integrability)...

We focus on just one of them: inserting a probe D-brane on the string theory side of AdS/CFT...

This way the gauge CFT becomes a defect CFT and the holographic duality becomes AdS/dCFT duality!

Integrability may or may not be preserved... in this talk we will discuss both integrable and non-integrable
models...

Let us first see how AdS/dCFT is obtained from AdS/CFT...
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Integrability may or may not be preserved... in this talk we will discuss both integrable and non-integrable
models...

Let us first see how AdS/dCFT is obtained from AdS/CFT...
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Introduction

The AdS/CFT correspondence

The AdS5/CFT4 correspondence is formulated as follows:

N = 4, su(Nc) super Yang-Mills theory in 4d ⇔ Type IIB superstring theory on AdS5 × S5

Maldacena (1997)

On the lhs, N = 4, super Yang-Mills (SYM) theory is a 4-dimensional superconformal gauge theory:

LN=4 =
2

g 2
YM

· tr
{
− 1

4
FµνF

µν − 1

2
(Dµφi )

2+i ψ̄α /Dψα +
1

4
[φi , φj ]

2 +

+
3∑

i=1

G i
αβψ̄α [φi , ψβ ] +

6∑
i=4

G i
αβψ̄αγ5 [φi , ψβ ]

}
.

Beta function vanishes, β(N=4) = 0... exact superconformal symmetry PSU(2, 2|4)...
Dilatation operator (eigenvalues = scaling dimensions) is given by a quantum integrable spin chain in
the planar (’t Hooft/large-Nc) limit, Nc → ∞, λ ≡ g 2

YMNc = const. (Minahan-Zarembo, 2002; Beisert-
Kristjansen-Staudacher, 2003; Beisert, 2003)...

Spectral problem solved (Gromov-Kazakov-Leurent-Volin, 2013)... solution of full planar theory by comput-
ing all observables (correlators, scattering amplitudes, Wilson loops, etc) underway...

Half-BPS boundary conditions in N = 4 SYM were studied by Gaiotto-Witten (2008)...
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Introduction

The AdS/CFT correspondence

The AdS5/CFT4 correspondence states that:

N = 4, su(Nc) super Yang-Mills theory in 4d ⇔ Type IIB superstring theory on AdS5 × S5

Maldacena (1997)

Type IIB superstring theory on AdS5 × S5 is described by a nonlinear σ-model on a supercoset:

AdS5 × S5 =
SO(4, 2)

SO(4, 1)
× SO(6)

SO(5)
⊆ PSU(2, 2|4)

SO(4, 1)× SO(5)
.

Green-Schwarz superstring action on AdS5 × S5 is a WZW sigma model (Metsaev-Tseytlin, 1998):

S = −T2

2

∫
ℓ2str

[
J(2) ∧ ⋆J(2) + J(1) ∧ J(3)

]
, J ≡ g−1dg, T2 ≡

1

2πα′ =

√
λ

2πℓ2
.

The AdS5 × S5 supercoset is a semi-symmetric space, i.e. its elements afford a Z4 decomposition:

J = J(0) + J(1) + J(2) + J(3), Ω
[
J(n)
]
= inJ(n), Ω(M) = −KMstK−1, K =

[
γ13 0
0 γ13

]
.

Nonlinear sigma models on semi-symmetric spaces are classically integrable (Bena-Polchinski-Roiban, 2003)...
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Probe-brane defect systems The D3-D5 probe-brane system

The D3-D5 system: bulk geometry

Type IIB string theory on AdS5 × S5 is encountered very close to a system of Nc coincident D3-branes:

The D3-branes extend along x1, x2, x3...

t x1 x2 x3 x4 x5 x6 x7 x8 x9
D3 • • • •
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... its geometry will be AdS4 × S2 (Karch-Randall, 2001b)...
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Probe-brane defect systems The D3-D5 probe-brane system

The D3-D5 system: description

The defect reduces the total bosonic symmetry of the system
from SO(4, 2)×SO(6) to SO(3, 2)×SO(3)×SO(3). The cor-
responding superalgebra psu (2, 2|4) becomes osp (4|4). Su-
persymmetry studied by Domokos-Royston (2022)...

The D3-D5 system describes IIB string theory on AdS5 × S5

bisected by a D5 brane with worldvolume geometry AdS4×S2.

The D5-brane is stable... the tachyonic instability in the fluc-
tuations of ψ does not violate the BF bound (Karch-Randall,
2001b)...

The probe D5-brane is classically integrable... i.e. infinite
conserved charges for open strings with D5-brane BCs
(Dekel-Oz, 2011)...

The dual field theory is still SU(Nc ), N = 4 SYM
in 3 + 1 dimensions, that interacts with a CFT living
on the 2 + 1 dimensional defect: S = SN=4 + S2+1

(DeWolfe-Freedman-Ooguri, 2001).

N = 4 spin chain not modified by the presence of the de-
fect... open spin chain ending on defect fields remains inte-
grable (DeWolfe-Mann, 2004)...
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Probe-brane defect systems The D3-D5 probe-brane system

The (D3-D5)k dSCFT

Despite stability, add k ̸= 0 units of background
magnetic flux over S2... brane geometry AdS4×S2...

D5-brane with flux preserves classical integrability of
open strings (Zarembo-GL, 2021)...

The SCFT gauge group SU(Nc )×SU(Nc ) breaks to
SU(Nc − k)× SU(Nc )...

Equivalently, the fields of N = 4 SYM develop
nonzero vevs (Karch-Randall, 2001b)... dCFT corre-
lators = Higgs condensates of gauge-invariant oper-
ators of N = 4 SYM (Nagasaki-Yamaguchi, 2012)...

Matrix product states... overlaps with Bethe states...
Scalar one-point functions (de Leeuw, Kristjansen,
Zarembo, 2015)... closed-form det formulas... in-
tegrable quench criteria satisfied (Piroli, Pozsgay,
Vernier, 2017; de Leeuw-Kristjansen-GL, 2018)...

Two-point functions of (spin-2) stress tensor, dis-
placement operator, anomaly coefficients (de Leeuw-
Kristjansen-GL-Volk 2023)... More below!

Strong-coupling computations were recently set up
(Georgiou-GL-Zoakos, 2023)...
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The D3-D7 system: bulk geometry

IIB string theory on AdS5 × S5 is encountered very close to a system of Nc coincident D3-branes:

Now insert a single D7-brane at x3 = x9 = 0... its geometry will be either AdS4 × S4 or AdS4 × S2 × S2...

t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 • • • •
D7 • • • • • • • •

(Davis-Kraus-Shah, 2008; Myers-Wapler, 2008; Bergman-Jokela-Lifschytz-Lippert, 2010)...
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Probe-brane defect systems The D3-D7 probe-brane system

The D3-D7 system: description

The defect reduces the total bosonic symmetry of the sys-
tem from SO(4, 2) × SO(6) to either SO(3, 2) × SO(5) or
SO(3, 2)× SO(3)× SO(3)... All susy broken! (relative brane
codimension in flat space: #ND = 6 → no unbroken susy)...

The D3-D7 system describes IIB string theory on AdS5 × S5

bisected by a D7-brane with worldvolume geometry AdS4×S4

or S2 × S2... maximal S4 & S2 × S2 sit on the equator of S5...

The D7-branes are unstable: tachyonic instabilities in fluc-
tuations violate the BF bound (Davis-Kraus-Shah, 2008;
Bergman-Jokela-Lifschytz-Lippert, 2010)... S4 and S2 × S2

“slip-off” (either side of) the S5 equator, collapsing to points...

Various ways to lift the instability... embed D7 in full D3-
brane geometry instead of near-horizon (Davis-Kraus-Shah,
2008)... impose an AdS cutoff Λ (Kutasov-Lin-Parnachev,
2011; Mezzalira-Parnachev, 2015)... add instanton flux on
S4 (Myers-Wapler, 2008), and magnetic flux on S2 × S2

(Bergman-Jokela-Lifschytz-Lippert, 2010)...

The dual field theory is still SU(Nc ), N = 4 SYM in 3 + 1
dimensions, that interacts with a CFT living on the 2 + 1
dimensional defect: S = SN=4 + S2+1... boundary degrees of
freedom are fermions (Rey, 2009)...
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Probe-brane defect systems The D3-D7 probe-brane system

The (D3-D7)k system

To stabilize the D7-brane, we add a (non-abelian)
instanton bundle through its S4 component (Myers-
Wapler, 2008) and an (abelian) magnetic flux
through each S2 (Bergman-Jokela-Lifschytz-Lippert,
2010)...

This forces exactly k (flux units) of the Nc D3-branes
(Nc ≫ k) to end on the D7-brane...

The homogeneous instanton flux is non-abelian...
study of classical string integrability hard in the
SO(5) symmetric case... the SU(2) × SU(2) sym-
metric system is most probably not integrable...

On the gauge theory side, gauge group SU (Nc ) ×
SU (Nc ) breaks to SU (Nc )× SU (Nc − k)...

Equivalently, the fields of N = 4 SYM develop
nonzero vevs... dCFT correlators = Higgs conden-
sates of gauge-invariant operators of N = 4 SYM...

Matrix product states... overlaps with Bethe states...
scalar one-point functions (de Leeuw-Kristjansen-
GL, 2016)... integrable quench criteria satisfied in
the SO(5) symmetric case (Piroli, Pozsgay, Vernier,
2017; de Leeuw-Kristjansen-GL, 2018)...
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Probe-brane defect systems The D3-D7 probe-brane system

The (D3-D7)k system

Yet another sign of integrability of the SO(5)
symmetric system are closed-form determinant for-
mulas which have been found for all scalar on-
point functions (de Leeuw-Gombor-Kristjansen-GL-
Pozsgay, 2019)...

Weak-coupling analysis also provides evidence of
non-integrability for the SU(2) × SU(2) symmetric
system (de Leeuw-Kristjansen-Vardinghus, 2019)...

Two-point functions of the (spin-2) stress tensor,
displacement operator, anomalies... More below...

Strong-coupling computations were recently set up
(Georgiou-GL-Zoakos, 2023)...
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One-point functions
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Probe-brane defect systems One-point functions

The D3-D5 interface: SU(2)× SU(2) symmetry

An interface is a wall between two (different/same) QFTs...

It can be described by means of classical solutions that are known as ”fuzzy-
funnel” solutions (Constable-Myers-Tafjord, 1999 & 2001)...
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For no vectors/fermions, we want to solve the equations of motion for the
scalar fields of N = 4 SYM:

Aµ = ψa = 0,
d2φi

dz2
=
[
φj ,
[
φj , φi

]]
, i , j = 1, . . . , 6.

A manifestly SO(3) ≃ SU(2) symmetric solution is given by (z > 0):

φ2i−1 (z) =
1

z

[
(ti )k×k 0k×(Nc−k)

0(Nc−k)×k 0(Nc−k)×(Nc−k)

]
& φ2i = 0,

Diaconescu (1996), Giveon-Kutasov (1998)

where the matrices ti furnish a k-dimensional representation of su (2):[
ti , tj

]
= iϵijk tk .
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scalar fields of N = 4 SYM:

Aµ = ψa = 0,
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dz2
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φj ,
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]]
, i , j = 1, . . . , 6.

A manifestly SO(3) ≃ SU(2) symmetric solution is given by (z > 0):

φ2i−1 (z) =
1

z

[
(ti )k×k 0k×(Nc−k)

0(Nc−k)×k 0(Nc−k)×(Nc−k)

]
& φ2i = 0,

Diaconescu (1996), Giveon-Kutasov (1998)

The solution also satisfies the Nahm equations:

dφi

dz
=

i

2
ϵijk
[
φj , φk

]
,

as expected for a half-BPS interface (Gaiotto-Witten, 2008)...
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One-point functions

Following Nagasaki & Yamaguchi (2012), the one-point functions of local gauge-invariant scalar operators,

⟨O (z, x)⟩ = C
z∆
, z > 0,

can be calculated within the D3-D5 defect CFT from the corresponding fuzzy-funnel solution, for example:

O (z , x) = Ψµ1...µLtr [φ2µ1−1 . . . φ2µL−1]
SU(2)−−−−−→

interface

1

zL
·Ψµ1...µLtr [tµ1 . . . tµL ]

where Ψµ1...µL is an SO (6) symmetric tensor and the constant C is given by (MPS=“matrix product state”),

C =
1√
L

(
8π2

λ

)L/2

· ⟨MPS|Ψ⟩
⟨Ψ|Ψ⟩

1
2

,

{
⟨MPS|Ψ⟩ ≡ Ψµ1...µLtr [tµ1 . . . tµL ] (“overlap”)

⟨Ψ|Ψ⟩ ≡ Ψµ1...µLΨµ1...µL

}
,

which ensures that the 2-point function will be normalized to unity (O → (2π)L
(
LλL
)−1/2 · O):

⟨O (x1)O (x2)⟩ =
1

|x1 − x2|2∆
,

within SU(Nc), N = 4 SYM (i.e. without the defect). Once more, we set xi ≡ (zi, xi), where xi ≡ {x(0,1,2)
i }.
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Probe-brane defect systems One-point functions

The D3-D7 interface: SU(2)× SU(2) symmetry

To compute correlation functions in the dCFT that is dual to the SU(2)×
SU(2) symmetric D3-D7 system, we set up the corresponding interface...

The interface (placed at z = 0) separates the SU (Nc ) and SU (Nc − k1k2)
regions of the (D3-D7)k1k2 dCFT... It will be described by a fuzzy funnel
solution...

For no vectors/fermions, we want to solve the equations of motion for the
scalar fields of N = 4 SYM:

Aµ = ψa = 0,
d2φi

dz2
=
[
φj ,
[
φj , φi

]]
, i , j = 1, . . . , 6.

The wanted SU(2)× SU(2) ⊂ SU(3, 2)× SU(2)× SU(2) solution is:

φi (z) = −
1

z
×


[
(ti )k1 ⊗ 1k2

]
⊕ 0(Nc−k1k2), i = 1, 2, 3[

1k1 ⊗ (ti )k2

]
⊕ 0(Nc−k1k2), i = 4, 5, 6.

Kristjansen-Semenoff-Young (2012)

The defect CFT is not supersymmetric so that the interface does not satisfy
the Nahm equations...
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Probe-brane defect systems One-point functions

The D3-D7 interface: SO(5) symmetry

The interface for the dCFT that is dual to the SO(5) symmetric D3-D7
system (placed at z = 0) separates the SU (Nc ) and SU (Nc − dG ) regions
of the (D3-D7)dG dCFT... It will be described by a fuzzy funnel solution...

For no vectors/fermions, we solve the equations of motion for the scalar
fields of N = 4 SYM:

Aµ = ψa = 0,
d2φi

dz2
=
[
φj ,
[
φj , φi

]]
, i , j = 1, . . . , 6.

A manifestly SO(5) ⊂ SO(3, 2)× SO(5) symmetric solution is given by:

φi (z) =
Gi ⊕ 0(Nc−dG )×(Nc−dG )√

8 z
, i = 1, . . . , 5, φ6 = 0 .

Kristjansen-Semenoff-Young (2012)

Once more, the defect CFT is not supersymmetric so that the interface
does not satisfy the Nahm equations...

The five dG × dG matrices Gi are known as the “fuzzy” S4 matrices...
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Probe-brane defect systems One-point functions

The fuzzy S4 G -matrices

The five dG × dG fuzzy S4 matrices (G -matrices) Gi are given by:

Gi ≡

 n factors︷ ︸︸ ︷
γi ⊗ 14 ⊗ . . .⊗ 14 + 14 ⊗ γi ⊗ . . .⊗ 14 + . . .+ 14 ⊗ . . .⊗ 14 ⊗ γi︸ ︷︷ ︸

n terms


sym

(i = 1, . . . , 5),

Castelino-Lee-Taylor (1997)

where γi are the five 4× 4 Euclidean Dirac matrices:

γi =

(
0 −iσi

iσi 0

)
, i = 1, 2, 3, γ4 =

(
0 12

12 0

)
, γ5 =

(
12 0
0 −12

)
,

and σi are the three Pauli matrices. The ten commutators of the five G -matrices,

Gij ≡
1

2
[Gi ,Gj ] ,

furnish a dG -dimensional (anti-hermitian) irreducible representation of so (5) ≃ sp (4):

[Gij ,Gkl ] = 2 (δjkGil + δilGjk − δikGjl − δjlGik) .
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Probe-brane defect systems One-point functions

The fuzzy S4 G -matrices

The dimension of the G -matrices is equal to the instanton number dG = (n + 1) (n + 2) (n + 3) /6:

n 1 2 3 4 5 6 7 8 9 10 . . .

dG 4 10 20 35 56 84 120 165 220 286 . . .

E.g., for n = 2, here are the 10× 10 G -matrices:

G1 =



0 0 0 −i
√
2 0 0 0 0 0 0

0 0 −i 0 0 0 −i 0 0 0
0 i 0 0 0 0 0 0 −i 0

i
√
2 0 0 0 0 0 0 0 0 −i

√
2

0 0 0 0 0 −i
√
2 0 0 0 0

0 0 0 0 i
√

2 0 0 −i
√
2 0 0

0 i 0 0 0 0 0 0 −i 0
0 0 0 0 0 i

√
2 0 0 0 0

0 0 i 0 0 0 i 0 0 0
0 0 0 i

√
2 0 0 0 0 0 0


, G2 =



0 0 0 −
√
2 0 0 0 0 0 0

0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 −1 0

−
√
2 0 0 0 0 0 0 0 0 −

√
2

0 0 0 0 0
√
2 0 0 0 0

0 0 0 0
√
2 0 0

√
2 0 0

0 −1 0 0 0 0 0 0 1 0
0 0 0 0 0

√
2 0 0 0 0

0 0 −1 0 0 0 1 0 0 0
0 0 0 −

√
2 0 0 0 0 0 0


,

G3 =



0 0 −i
√
2 0 0 0 0 0 0 0

0 0 0 i 0 −i 0 0 0 0
i
√
2 0 0 0 0 0 0 −i

√
2 0 0

0 −i 0 0 0 0 0 0 −i 0
0 0 0 0 0 0 i

√
2 0 0 0

0 i 0 0 0 0 0 0 i 0
0 0 0 0 −i

√
2 0 0 0 0 i

√
2

0 0 i
√
2 0 0 0 0 0 0 0

0 0 0 i 0 −i 0 0 0 0
0 0 0 0 0 0 −i

√
2 0 0 0


, G4 =



0 0
√
2 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0√
2 0 0 0 0 0 0

√
2 0 0

0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0

√
2 0 0 0

0 1 0 0 0 0 0 0 1 0
0 0 0 0

√
2 0 0 0 0

√
2

0 0
√
2 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0

√
2 0 0 0


, G5 =



2 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0 0 −2


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One-point functions

One-point functions of local gauge-invariant scalar operators,

⟨O (z, x)⟩ = C
z∆
, z > 0,

can again be calculated within the D3-D7 defect CFT from the corresponding fuzzy funnel solution...

O (z, x) = Ψi1...iLtr [φi1 . . . φiL ]
SO(5), SO(3)×SO(3)−−−−−−−−−−−−−→

interface

1

zL
·Ψi1...iLtr [τi1 . . . τiL ] ,

where the matrices τi are defined in terms of the corresponding fuzzy funnel solution:

τi =


Gi/
√
8, i = 1, . . . , 5

0, i = 6

}
, SO(5) symmetric interface[

(ti )k1 ⊗ 1k2

]
⊕ 0(Nc−k1k2), i = 1, 2, 3[

1k1 ⊗ (ti )k2

]
⊕ 0(Nc−k1k2), i = 4, 5, 6

 , SO(3)× SO(3) symmetric interface.

Again, Ψi1...iL is an so (6)-symmetric tensor and the constant C is given by (MPS=“matrix product state”),

C =
1√
L

(
π2

λ

)L/2

· ⟨MPS|Ψ⟩
⟨Ψ|Ψ⟩

1
2

,

{
⟨MPS|Ψ⟩ ≡ Ψi1...iLtr [Gi1 . . .GiL ] (“overlap”)

⟨Ψ|Ψ⟩ ≡ Ψi1...iLΨi1...iL

}
.
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Section 3

Defect anomaly coefficients
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Defect anomaly coefficients Defect anomalies

Defect anomalies

Even dimensional CFTs (in curved spacetimes) are afflicted by conformal/Weyl anomalies: the trace of the energy-
momentum/stress tensor acquires non-vanishing expectation value that is given by (scheme-independent terms only)...

〈
Tµµ
〉d=2n

=
4

d! Vol[Sd ]
×
[∑

i

ci Ii − (−1)d/2ad Ed

]
, n = 1, 2, . . .
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Even dimensional CFTs (in curved spacetimes) are afflicted by conformal/Weyl anomalies: the trace of the energy-
momentum/stress tensor acquires non-vanishing expectation value that is given by (scheme-independent terms only)...

〈
Tµµ
〉d=2n

=
4

d! Vol[Sd ]
×
[∑

i

ci Ii + δ (z)
∑
j

bj Ij − (−1)d/2ad

(
Ed + δ (z)E (bry)

)]
, n = 1, 2, . . .

Odd dimensional (compact) spacetimes have no conformal/Weyl (trace) anomalies...

〈
Tµµ
〉d=2n+1

=
2δ (z)

(d − 1)! Vol[Sd−1]
×
[∑

j

bj Ij + (−1)(d−1)/2ad E̊d−1

]
, n = 1, 2, . . .

The presence of (codimension-1) boundaries gives rise to extra A & B anomaly coefficients (localized on the boundary)...
and extra central charges which can classify defect CFTs (much like central charges classify pure CFTs)...
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The presence of (codimension-1) boundaries gives rise to extra A & B anomaly coefficients (localized on the boundary)...
and extra central charges which can classify defect CFTs (much like central charges classify pure CFTs)... Examples:〈

Tµµ
〉d=2

=
a

2π
(R + 2δ (z)K)
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=
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Tµµ
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=
δ (z)
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a R̊ + b trK̂2

)
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Defect anomalies

Even dimensional CFTs (in curved spacetimes) are afflicted by conformal/Weyl anomalies: the trace of the energy-
momentum/stress tensor acquires non-vanishing expectation value that is given by (scheme-independent terms only)...

〈
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The presence of (codimension-1) boundaries gives rise to extra A & B anomaly coefficients (localized on the boundary)...
and extra central charges which can classify defect CFTs (much like central charges classify pure CFTs)... Examples:

〈
Tµµ
〉d=2

=
a

2π
(R + 2δ (z)K) ,

〈
Tµµ
〉d=3

=
δ (z)

4π

(
a R̊ + b trK̂2

)
〈
Tµµ
〉d=4

=
1

16π2

(
c W 2

µνρσ − a E4

)
+
δ (z)

16π2

(
a E

(bry)
4 − b1 trK̂

3 − b2 h
pqK̂ rsWpqrs

)
,

where Ed , E̊d−1 are the bulk/boundary Euler densities, and E (bry) the boundary term of the Euler characteristic... Kpq is the
boundary extrinsic curvature, and hpq is the induced metric on the boundary... dimensionalities d = 5, 6 not fully classified
as of now (no nontrivial CFTs in d > 6)...
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Defect anomalies

Even dimensional CFTs (in curved spacetimes) are afflicted by conformal/Weyl anomalies: the trace of the energy-
momentum/stress tensor acquires non-vanishing expectation value that is given by (scheme-independent terms only)...

〈
Tµµ
〉d=2n
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d! Vol[Sd ]
×
[∑

i

ci Ii + δ (z)
∑
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bj Ij − (−1)d/2ad

(
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)]
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Odd dimensional (compact) spacetimes have no conformal/Weyl (trace) anomalies...

〈
Tµµ
〉d=2n+1

=
2δ (z)

(d − 1)! Vol[Sd−1]
×
[∑

j

bj Ij + (−1)(d−1)/2ad E̊d−1

]
, n = 1, 2, . . .

where Ed , E̊d−1 are the bulk/boundary Euler densities, and E (bry) the boundary term of the Euler characteristic... Kpq is the
boundary extrinsic curvature, and hpq is the induced metric on the boundary... dimensionalities d = 5, 6 not fully classified
as of now (no nontrivial CFTs in d > 6)... We also define the traceless part of extrinsic curvature:

K̂pq ≡ Kpq −
hpq

d − 1
K , trK̂2 ≡ trK2 −

1

2
K2, trK̂3 ≡ trK3 − K trK2 +

2

9
K3

E4 =
1

4
δµνρσαβγδR

αβ
µν R

γδ
ρσ , E

(bry)
4 = −4δstwpqrK

p
s

(
1

2
Rqr
tw +

2

3
Kq
t K

r
w

)
hµν K̂ρσWµνρσ = Rνρσµ Kρµn

νnσ −
1

2
Rµν (n

µnνK + Kµν) +
1

6
KR, hµρK̂νσWµνρσ = −KpqWnpnq .
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and extra central charges which can classify defect CFTs (much like central charges classify pure CFTs)... Examples:

〈
Tµµ
〉d=2

=
a

2π
(R + 2δ (z)K) ,

〈
Tµµ
〉d=3

=
δ (z)

4π

(
a R̊ + b trK̂2

)
〈
Tµµ
〉d=4

=
1

16π2

(
c W 2

µνρσ − a E4

)
+
δ (z)

16π2

(
a E

(bry)
4 − b1 trK̂

3 − b2 h
pqK̂ rsWpqrs

)
,

where Ed , E̊d−1 are the bulk/boundary Euler densities, and E (bry) the boundary term of the Euler characteristic... Kpq is the
boundary extrinsic curvature, and hpq is the induced metric on the boundary... dimensionalities d = 5, 6 not fully classified
as of now (no nontrivial CFTs in d > 6)...
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Defect anomaly coefficients Defect anomalies

Anomaly coefficients in free theories

Before calculating the A & B anomaly coefficients for the D3-D5 dCFT, let us go through some results for codimension-1:

In d = 2 the relation of the anomaly coefficient a to the central charge is c = 12a... For free scalar & Dirac fields:

as=0 = as=1/2 =
1

12
(see e.g. Cardy, 2004).

In d = 3 there are two new central charges... for free scalars their value depends on the type of boundary conditions
Dirichlet (D) or Robin (R) (Neumann (N) boundary conditions are not consistent with the residual symmetries)...

as=0
∣∣
D
= −

1

96
, as=0

∣∣
R
=

1

96
, as=1/2 = 0, bs=0

∣∣
D/R

=
1

64
, bs=1/2 =

1

32
.

Nozaki-Takayanagi-Ugajin (2012), Jensen-O’Bannon (2015)

In d = 4 there are three new central charges... for free fields, bulk charges are independent of boundary conditions...

as=0 =
1

360
, as=1/2 =

11

360
, as=1 =

31

180
, cs=0 =

1

120
, cs=1/2 =

1

120
, cs=1 =

1

10
,

(see e.g. Birrell-Davies)... For the boundary charges of free fields, b1 generally depends on the boundary conditions...

bs=0
1

∣∣
D
=

2

35
, bs=0

1

∣∣
R
=

2

45
, b

s=1/2
1

∣∣
D/R

=
2

7
, bs=1

1

∣∣
D/R

=
16

35
,

Melmed (1988), Moss (1989)
whereas the (free field) boundary charge b2 is independent of the BCs and proportional to the bulk central charge c:

b2 = 8c. Dowker-Schofield (1990)
Fursaev (2015), Solodukhin (2015)
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Defect anomaly coefficients Defect anomalies

Anomalies as observables (bulk)

All types (A, B, C) of anomaly coefficients show up in CFT and dCFT data... For the bulk charges,

In d = 2, the central charge c = 12a shows up in the two and three-point function of the (traceless) stress tensor:

⟨T (z1)T (z2)⟩ =
c/2

(z1 − z2)
4
, ⟨T (z1)T (z2)T (z3)⟩ =

c

(z1 − z2)
2 (z2 − z3)

2 (z3 − z1)
2
,

where T ≡ Tzz, and z ≡ x1 + ix2, z̄ ≡ x1 − ix2 are the holomorphic/anti-holomorphic coordinates.

In d = 4, the central charge c may show up in the two-point function of the (improved!) stress tensor,

⟨Tµν (x1)Tρσ (x2)⟩ =
CT

x812
· Iµνρσ (x1 − x2) .

E.g. for free (scalar, Majorana-Weyl, and vector) fields and N = 4 SYM, the 2-point function coefficient is given by

CT =
N0 + 3N1/2 + 12N1

3π4
.

On the other hand, the (type A & C) conformal anomaly coefficients become:

c =
N0 + 3N1/2 + 12N1

120
=
π4CT

40
, a =

2N0 + 11N1/2 + 124N1

720
,

so that in the case of U(Nc ), N = 4 SYM, all three coefficients turn out to be equal:

a = c =
N2
c

4
=
π4CT

40
.
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Defect anomaly coefficients Defect anomalies

Anomalies as observables (boundary)

The boundary charges show up in two and three-point functions of the displacement operator D. In d dimensions,

⟨D (x1)D (x2)⟩ =
cnn

x2d12
, ⟨D (x1)D (x2)D (x3)⟩ =

cnnn

xd12x
d
23x

d
31

.

It can be shown that the single 3d B-type anomaly coefficient and the two 4d B-type anomaly coefficients are given by:

b =
π2

8
cnn, b1 =

2π3

35
cnnn, b2 =

2π4

15
cnn,

whereas there is no known relation for the 3d A-type anomaly coefficient a... Interestingly, the displacement operator
computations confirm the (old) heat kernel results...
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Defect anomaly coefficients D3-D5 anomaly coefficients

The D3-D5 stress tensor

Let us now compute the anomaly coefficients for the (codimension-1) dCFT that is dual to the D3-D5 probe-brane system...
Because we are in 4d, there are 4 of them: the bulk charges c & a and the boundary charges b1 & b2...

Start off from the Lagrangian of N = 4 SYM...

LN=4 =
2

g2
YM

· tr
{

−
1

4
FµνF

µν −
1

2
(Dµφi )

2+i ψ̄α /Dψα +
1

4

[
φi , φj

]2
+

+
3∑

i=1

G i
αβψ̄α

[
φi , ψβ

]
+

6∑
i=4

G i
αβψ̄αγ5

[
φi , ψβ

]}
.
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Let us now compute the anomaly coefficients for the (codimension-1) dCFT that is dual to the D3-D5 probe-brane system...
Because we are in 4d, there are 4 of them: the bulk charges c & a and the boundary charges b1 & b2...

Start off from the Lagrangian of N = 4 SYM... and obtain the corresponding stress tensor with the canonical recipe...

Tµν =
∂L

∂∂µAρ
∂νAρ +

∂L
∂∂µφi

∂νφi +
∂L

∂∂µψ̄α
∂ν ψ̄α +

∂L
∂∂µψα

∂νψα − gµνL.
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Let us now compute the anomaly coefficients for the (codimension-1) dCFT that is dual to the D3-D5 probe-brane system...
Because we are in 4d, there are 4 of them: the bulk charges c & a and the boundary charges b1 & b2...

Start off from the Lagrangian of N = 4 SYM... and obtain the corresponding stress tensor with the canonical recipe...

Θµν =
2

g2
YM

· tr
{

− Fµ
ϱFνϱ −

2

3
(Dµφi ) (Dνφi ) +

1

3
φi D(µDν)φi +

i

2
ψ̄αγ(µ

↔
Dν)ψα

}
− gµνΛ

Λ ≡
2

g2
YM

· tr
{
−
1

4
FµνF

µν −
1

6
(Dµφi )

2 −
1

12

[
φi , φj

]2}
, a(µν) ≡

1

2
(aµν + aνµ) .

which we have improved since it was neither traceless nor symmetric...
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which we have improved since it was neither traceless nor symmetric... The bulk charge c is read off the two-point function:

⟨Θµν (x1)Θρσ (x2)⟩ =
640c

π4x812
· Iµνρσ (x1 − x2) , c =

N2
c

4
,

which is found by Wick-contracting the perturbed fields with the N = 4 SYM Feynman rules (2 contractions for the LO)...
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which is found by Wick-contracting the perturbed fields with the N = 4 SYM Feynman rules (2 contractions for the LO)...

To compute the defect anomaly coefficients, we will need only the scalar part of the (improved) stress tensor (since only
scalars acquire vevs):

Θµν(scalars) =
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g2
YM

· tr
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−
2

3
(∂µφi ) (∂νφi ) +

1

3
φi (∂µ∂νφi ) +

1

6
gµν

[
(∂ϱφi )

2 +
1
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[
φi , φj
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Stress tensor two-point function

Plugging the fuzzy funnel solution for the D3-D5 interface, we find that the stress tensor one-point function vanishes:

⟨Θµν (x)⟩ = 0, de Leeuw-Kristjansen-GL-Volk (2023)

to lowest order in perturbation theory, as it should for a codimension-1 defect (McAvity-Osborn 1993 & 1995)...
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By expanding the N = 4 fields around the fuzzy funnel solution of the D3-D5 interface we find:

Θ
(1)
µν (x) =
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YM

4

3z2
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B (υ) + IµνρσC (υ)

}
,

contracting with the propagator of the D3-D5 dCFT (Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, Wilhelm, 2016)...

Xµ ≡ z1 ·
υ

ξ

∂ξ

∂xµ1
= υ

(
2z1

x212
(x1µ − x2µ)− nµ

)
, X ′

ρ ≡ z2 ·
υ

ξ

∂ξ

∂xρ2
= −υ

(
2z2

x212
(x1ρ − x2ρ) + nρ

)
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contracting with the propagator of the D3-D5 dCFT (Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, Wilhelm, 2016)...

A (υ) = 4γ
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6υ6 + 3υ4 + υ2

)
, B (υ) = −γ

(
3υ6 − υ4 − 2υ2
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, C (υ) = γυ2

(
υ2 − 1

)2
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de Leeuw-Kristjansen-GL-Volk (2023)
which is valid for k ≥ 2, while we have also defined,

γ ≡
32ckNc

9π2λ
, ck ≡

k
(
k2 − 1

)
4

, ξ ≡
x212
4z1z2
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ξ

1 + ξ
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b2 anomaly coefficient: D3-D5

As we have already mentioned, the b2 coefficient can be read off the two-point function of the displacement operator D:

⟨D (x1)D (x2)⟩ =
cnn

x812
, cnn =

15b2

2π4
.

The latter is defined from the divergence of the (improved) stress tensor as follows:

∂µΘµν = δ(z) ην D

Integrating over the transverse coordinate z from 0− to 0+ (and using the conformal invariance of the defect) we find:

D (x) = lim
z→0+

Θ33 (z, x)− lim
z→0−

Θ33 (z, x) .

The two-point function of the displacement operator then becomes:〈
D(1) (x1)D(1) (x2)

〉
= lim

z1,z2→0+

〈
Θ

(1)
33 (z1, x1)Θ

(1)
33 (z2, x2)

〉
=

cnn

x812
, cnn =

20k (k2 − 1)Nc

π2λ
,

and the b2 anomaly coefficient (one contraction) is given by

b2 =
8π2k (k2 − 1)Nc

3λ
̸= 8c = 0. de Leeuw-Kristjansen-GL-Volk (2023)

Despite not verifying the free-theory relation b2 = 8c (at the level of one Wick contraction), the value of b2 confirms

{α (0) , α (1)} = {CT , cnn}
d=4−→

{640c

π4
,
15b2

2π4

}
, α(υ) =

d − 1

d2
· [(d − 1)(A(υ) + 4B(υ)) + dC(υ)] ,

for d = 4 at the level of a single Wick contraction... These expressions appeared in Herzog-Huang (2017)...
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Defect anomaly coefficients D3-D7 anomaly coefficients

Subsection 3

D3-D7 anomaly coefficients
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Defect anomaly coefficients D3-D7 anomaly coefficients

b2 anomaly coefficient: D3-D7

To compute the anomaly coefficients for the D3-D7 system (both SO(5) and SO(3)× SO(3)), we plug the corresponding
fuzzy funnel solutions into the expression for the stress tensor... We find that the one-point function vanishes:

⟨Θµν (x)⟩ = 0, work in progress

to lowest order in perturbation theory, as it should for a codimension-1 defect (McAvity-Osborn 1993 & 1995)...
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By expanding the N = 4 fields around the fuzzy funnel solution of the D3-D7 interface we find:
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(
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)
, B (υ) = −γ
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)
, C (υ) = γυ2
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,
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32ckNc

9π2λ
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k1k2
(
k2
1 + k2

2 − 2
)
/4, SO(3)× SO(3)
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x212
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.
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fuzzy funnel solutions into the expression for the stress tensor... We find that the one-point function vanishes:

⟨Θµν (x)⟩ = 0, work in progress

to lowest order in perturbation theory, as it should for a codimension-1 defect (McAvity-Osborn 1993 & 1995)...

The LO contribution (order λ−1) to the (connected) stress tensor two-point function consists of a single Wick contraction:

λ−1
=
〈
Θ

(1)
µν (x1)Θ

(1)
ρσ (x2)

〉
=

1

x812
·
{(

XµXν −
gµν

4

)(
X ′
ρX

′
σ −

gρσ

4

)
A (υ) +

(
XµX

′
ρIνσ + XµX

′
σ Iνρ+

+XνX
′
σ Iµρ + XνX

′
ρIµσ − gµνX

′
ρX

′
σ − gρσXµXν +

1

4
gµνgρσ

)
B (υ) + IµνρσC (υ)

}
,

contracting with the propagator of the D3-D7 dCFT (Gimenez-Grau, Kristjansen, Volk, Wilhelm, 2019)... finding,

A (υ) = 4γ
(
6υ6 + 3υ4 + υ2

)
, B (υ) = −γ

(
3υ6 − υ4 − 2υ2

)
, C (υ) = γυ2

(
υ2 − 1

)2
.

The b2 anomaly coefficient (at the level of a single Wick contraction) is found to be:

b2 =
32π2ckNc

3λ
̸= 8c = 0. work in progress
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Defect anomaly coefficients D3-D7 anomaly coefficients

Summary & outlook

We can summarize our results for the (LO) anomaly coefficients of the D3-D5 and D3-D7 holographic defects as follows:

c = 0, b2 =
32π2ckNc

3λ
̸= 8c = 0, ck ≡


k
(
k2 − 1

)
/4, k ≥ 2 D3-D5

n(n + 1)(n + 2)(n + 3)(n + 4)/48, n ≥ 1 D3-D7 [SO(5)]

k1k2
(
k2
1 + k2

2 − 2
)
/4, k1,2 ≥ 2 D3-D7 [SO(3)× SO(3)].

More results are underway...

b1 anomaly coefficient related to the stress tensor/displacement operator 3-point function (b1 = 2π3cnnn/35)...

Crosscheck the D3-D5 results (analytically continued to k = 0) from the 3d SCFT point of view...

Strong coupling computations (based on Georgiou-GL-Zoakos, 2023)...

Ευχαριστώ!
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The D3-D5 probe-brane system

Section 4

The D3-D5 probe-brane system
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The D3-D5 probe-brane system AdS5/CFT4 duality

The AdS5/CFT4 correspondence

Let us briefly revisit Maldacena’s argument leading to the AdS/CFT correspondence.

We consider 2 different descriptions of a system of Nc coincident D3-branes...

The D3-branes are extended along the directions x1, x2, x3...

t x1 x2 x3 x4 x5 x6 x7 x8 x9
D3 • • • •
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The D3-D5 probe-brane system AdS5/CFT4 duality

The D3-brane system: open string description

In the open string description the system contains (1) open strings ending on the Nc D3-branes and (2) closed
strings propagating in the bulk:

S = Sbranes + Sbulk + Sinteractions

,

where Sbranes is the action of N = 4, su (Nc) SYM theory in 3 + 1 dimensions (plus α′ corrections) and Sbulk is
the action of type IIB supergravity in 10 dimensions (plus α′ corrections).

At low energies Sinteractions can be ignored and the system only contains free open & closed strings, or equivalently{
Open string description

low energy limit

}
⇒ N = 4, su (Nc) super Yang-Mills + Free type IIB supergravity.
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The D3-D5 probe-brane system AdS5/CFT4 duality

The D3-brane system: closed strings description

In the closed strings description the Nc D3-branes act as sources to the bulk fields:

ds2 = H−1/2
(
−dt2 + dx23

)
+ H1/2

(
dz2 + z2dΩ2

5

)
, H (z) ≡ 1 +

(
ℓ

z

)4

, ℓ4 = 4πgsNcℓ
4
s .
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Far from the horizon (z → ∞), the above metric describes 10-dimensional Minkowski spacetime. Close to the
horizon (z → 0) it reduces to the metric of AdS5 × S5 in Poincaré coordinates:

ds2 =
z2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

z2

(
dz2 + z2dΩ2

5

)
=

{
z2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

z2
dz2
}
+ ℓ2dΩ2

5.
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5.

At low energies, the excitations that live far from the horizon decouple from the excitations that are close to the
horizon and so again the system can be written as the sum of two non-interacting systems:{

Closed strings description
low energy limit

}
⇒ Type IIB string theory on AdS5 × S5 + Free type IIB supergravity.
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horizon and so again the system can be written as the sum of two non-interacting systems:{

Closed strings description
low energy limit

}
⇒Type IIB string theory on AdS5 × S5 + Free type IIB supergravity.

↕ ↕ ↕{
Open string description

low energy limit

}
⇒ N = 4, su (Nc) super Yang-Mills + Free type IIB supergravity.

Maldacena (1997)
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The D3-D5 probe-brane system AdS5/CFT4 duality

The AdS/CFT correspondence

This leads us to the AdS5/CFT4 correspondence:

N = 4, su(Nc) super Yang-Mills theory in 4d ⇔ Type IIB superstring theory on AdS5 × S5

Maldacena (1997)

On the lhs, N = 4, super Yang-Mills (SYM) theory is a 4-dimensional superconformal gauge theory:

LN=4 =
2

g 2
YM

· tr
{
− 1

4
FµνF

µν − 1

2
(Dµφi )

2+i ψ̄α /Dψα +
1

4
[φi , φj ]

2 +

+
3∑

i=1

G i
αβψ̄α [φi , ψβ ] +

6∑
i=4

G i
αβψ̄αγ5 [φi , ψβ ]

}
.

Beta function vanishes, β(N=4) = 0...

exact superconformal symmetry PSU(2, 2|4)...
Dilatation operator (eigenvalues = scaling dimensions) is given by a quantum integrable spin chain in
the planar (’t Hooft/large-Nc) limit, Nc → ∞, λ ≡ g 2

YMNc = const. (Minahan-Zarembo, 2002; Beisert-
Kristjansen-Staudacher, 2003; Beisert, 2003)...

Spectral problem solved (Gromov-Kazakov-Leurent-Volin, 2013)... solution of full planar theory by comput-
ing all observables (correlators, scattering amplitudes, Wilson loops, etc) underway...

Half-BPS boundary conditions in N = 4 SYM were studied by Gaiotto-Witten (2008)...
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The D3-D5 probe-brane system AdS5/CFT4 duality

The AdS/CFT correspondence

This leads us to the AdS5/CFT4 correspondence:

N = 4, su(Nc) super Yang-Mills theory in 4d ⇔ Type IIB superstring theory on AdS5 × S5

Maldacena (1997)

Type IIB superstring theory on AdS5 × S5 is described by a nonlinear σ-model on a supercoset:

AdS5 × S5 =
SO(4, 2)

SO(4, 1)
× SO(6)

SO(5)
⊆ PSU(2, 2|4)

SO(4, 1)× SO(5)
.

Green-Schwarz superstring action on AdS5 × S5 is a WZW sigma model (Metsaev-Tseytlin, 1998):

S = −T2

2

∫
ℓ2str

[
J(2) ∧ ⋆J(2) + J(1) ∧ J(3)

]
, J ≡ g−1dg, T2 ≡

1

2πα′ =

√
λ

2πℓ2
.

The AdS5 × S5 supercoset is a semi-symmetric space, i.e. its elements afford a Z4 decomposition:

J = J(0) + J(1) + J(2) + J(3), Ω
[
J(n)
]
= inJ(n), Ω(M) = −KMstK−1, K =

[
γ13 0
0 γ13

]
.

Nonlinear sigma models on semi-symmetric spaces are classically integrable (Bena-Polchinski-Roiban, 2003)...
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The D3-D5 probe-brane system Probe D5-brane

Subsection 2

Probe D5-brane
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The D3-D5 probe-brane system Probe D5-brane

The D3-D5 system: bulk geometry

Type IIB string theory on AdS5 × S5 is encountered very close to a system of Nc coincident D3-branes:

The D3-branes extend along x1, x2, x3...

t x1 x2 x3 x4 x5 x6 x7 x8 x9
D3 • • • •
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Now insert a single (probe) D5-brane at x3 = x7 = x8 = x9 = 0...
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... its geometry will be AdS4 × S2 (Karch-Randall, 2001b)...
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The D3-D5 probe-brane system Probe D5-brane

The D3-D5 system: bulk geometry (zero flux)

Here’s a quick way to figure out the geometry of the D3-brane. Write the AdS5 × S5 metric as follows:

ds2 =
r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

(
dr2 + r2dΩ2

5

)
=

r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

9∑
i=4

dx2i ,

where r 2 ≡ x2
4 + . . .+ x2

9 and

x4 = r cosψ sin θ cosφ, x5 = r cosψ sin θ sinφ, x6 = r cosψ cos θ,

x7 = r sinψ sinϑ cosχ, x8 = r sinψ sinϑ sinχ, x9 = r sinψ cosϑ.

The line element of AdS5 × S5 takes the following form:

ds2 =

{
r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2
dr2
}

+ ℓ2
(
dψ2 + cos2 ψdΩ2

2 + sin2 ψdΩ2
2

)
.
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To get the D3-D5 system, we insert a single D5 brane at x3 = ψ = 0 (i.e. at x3 = x7 = x8 = x9 = 0):

t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 • • • •
D5 • • • • • •

10 / 100



The D3-D5 probe-brane system Probe D5-brane

The D3-D5 system: bulk geometry (zero flux)

Here’s a quick way to figure out the geometry of the D3-brane. Write the AdS5 × S5 metric as follows:

ds2 =
r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

(
dr2 + r2dΩ2

5

)
=

r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

9∑
i=4

dx2i ,

where r 2 ≡ x2
4 + . . .+ x2

9 and

x4 = r cosψ sin θ cosφ, x5 = r cosψ sin θ sinφ, x6 = r cosψ cos θ,

x7 = r sinψ sinϑ cosχ, x8 = r sinψ sinϑ sinχ, x9 = r sinψ cosϑ.

The line element of AdS5 × S5 takes the following form:

ds2 =

{
r2

ℓ2

(
−dt2 + dx21 + dx22 +��dx

2
3

)
+
ℓ2

r2
dr2
}

+ ℓ2
(
��dψ

2 +���cos2 ψdΩ2
2 +���sin2 ψdΩ2

2

)
.

To get the D3-D5 system, we insert a single D5 brane at x3 = ψ = 0 (i.e. at x3 = x7 = x8 = x9 = 0):

t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 • • • •
D5 • • • • • •

10 / 100



The D3-D5 probe-brane system Probe D5-brane

The D3-D5 system: bulk geometry (zero flux)

Here’s a quick way to figure out the geometry of the D3-brane. Write the AdS5 × S5 metric as follows:

ds2 =
r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

(
dr2 + r2dΩ2

5

)
=

r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

9∑
i=4

dx2i ,

where r 2 ≡ x2
4 + . . .+ x2

9 and

x4 = r cosψ sin θ cosφ, x5 = r cosψ sin θ sinφ, x6 = r cosψ cos θ,

x7 = r sinψ sinϑ cosχ, x8 = r sinψ sinϑ sinχ, x9 = r sinψ cosϑ.

The line element of AdS5 × S5 takes the following form:

ds2 =

{
r2

ℓ2

(
−dt2 + dx21 + dx22 +��dx

2
3

)
+
ℓ2

r2
dr2
}

+ ℓ2
(
��dψ

2 +���cos2 ψdΩ2
2 +���sin2 ψdΩ2

2

)
.

To get the D3-D5 system, we insert a single D5 brane at x3 = ψ = 0 (i.e. at x3 = x7 = x8 = x9 = 0):

t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 • • • •
D5 • • • • • •

and its geometry is AdS4 × S2 (Karch-Randall, 2001b)... result confirmed from the DBI analysis...
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The D3-D5 system: description

The defect reduces the total bosonic symmetry of the system
from SO(4, 2)×SO(6) to SO(3, 2)×SO(3)×SO(3). The cor-
responding superalgebra psu (2, 2|4) becomes osp (4|4). Su-
persymmetry studied by Domokos-Royston (2022)...

The D3-D5 system describes IIB string theory on AdS5 × S5

bisected by a D5 brane with worldvolume geometry AdS4×S2.

The D5-brane is stable... the tachyonic instability in the fluc-
tuations of ψ does not violate the BF bound (Karch-Randall,
2001b)...

The probe D5-brane is classically integrable... i.e. infinite
conserved charges for open strings with D5-brane BCs
(Dekel-Oz, 2011)...

The dual field theory is still SU(Nc ), N = 4 SYM
in 3 + 1 dimensions, that interacts with a CFT living
on the 2 + 1 dimensional defect: S = SN=4 + S2+1

(DeWolfe-Freedman-Ooguri, 2001).

N = 4 spin chain not modified by the presence of the de-
fect... open spin chain ending on defect fields remains inte-
grable (DeWolfe-Mann, 2004)...
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The D3-D5 probe-brane system Probe D5-brane

The D3-D5 defect action

The action of the SU(2) symmetric D3-D5 dCFT consists of a 4d bulk theory coupled to a 3d boundary theory:

S = SN=4 + S2+1,
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where SN=4 is the action of N = 4 SYM in 4d and S2+1 is the action of a 3d theory (DeWolfe-Freedman-Ooguri, 2001):

L2+1 = Lkin + Lyuk + Lpot + Ldelta

Lkin =
1

g2
YM

·
{

− (Dµ̇qm)
†(Dµ̇qm) + i λ̄i /Dλi

}
, Lyuk = −

1

g2
YM

·
{
i λ̄iP+ψimqm − iq†mψ̄miP+λi + λ̄iσ

A
ij X

A
V λj

}
Lpot = −

1

g2
YM

·
{
q†mX

A
VXA

V qm + iϵABCq
†
mσ

A
mnX

B
H XC

H qn + q†mσ
A
mn(DzX

A
H )qn

}
, Ldelta = −

δ(0)

2g2
YM

·
{(

q†mσ
A
mnqn

)2 }
,

for {µ̇ = 0, 1, 2}, {m, n, i , j = 1, 2}, and {A,B,C = 1, 2, 3}. Moreover, σA denote the Pauli matrices and

Dµ̇f ≡ ∂µ̇f − iAµ̇f , λ̄i ≡ λ†i ρ
0, /D ≡ ρµ̇Dµ̇, P± ≡ (1± γ5γ

3)/2.
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Dµ̇f ≡ ∂µ̇f − iAµ̇f , λ̄i ≡ λ†i ρ
0, /D ≡ ρµ̇Dµ̇, P± ≡ (1± γ5γ

3)/2.

The bulk fields split into a vector multiplet
{
Aµ̇,P+ψα,XA

V ,DzXA
H

}
and a hypermultiplet

{
Az ,P−ψα,XA

H ,DzXA
V

}
, with

XH = {φ1, φ2, φ3} and XV = {φ4, φ5, φ6}. The 4d bulk spinors ψα are split into two pairs of 3d spinors by using the
projectors P±ψα. Their indices α = 1, . . . , 4 have been rearranged as follows:

ψim ≡ ψ4δim − iψασ
α
im, ψ̄mi ≡ ψ̄4δmi + iψ̄ασ

α
mi , i ,m = 1, 2, α = 1, 2, 3.
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The D3-D5 probe-brane system Probe D5-brane

The D3-D5 defect action

Because of the Yukawa terms in the defect action, the bulk 4d fermions ψα of N = 4 SYM (4-component spinors)
couple directly to defect 3d fermions λi (2-component spinors)...

We either express the bulk 4d fermions in terms of (two-component) 3d spinors (DeWolfe-Freedman-Ooguri, 2001)...
or express the 3d defect fermions in terms of (four-component) 4d spinors (DeWolfe-Mann, 2004)...

Here we adopt the latter approach... using the projectors P±, the (4-component) defect fermions λi should satisfy:

P+λ = λ, P−λ = 0,

which affords a unique solution

λt = (λ1, λ2,−λ1, λ2) .

Accordingly, the 3d Dirac matrices can be encoded into three 4× 4 matrices ρµ̇ which are defined as:

ρµ̇ ≡ γµ̇γ5γ
3.

They satisfy the Clifford algebra (for µ̇, ν̇ = 0, 1, 2),

ρµ̇ρν̇ + ρν̇ρµ̇ = −2gµ̇ν̇ = 2× diag (1,−1,−1) .

We also note that bulk fields carry adjoint u(Nc ) color indices, and defect fields qm, λi carry fundamental u(Nc ) color
indices. For simplicity we have also omitted the traces over the color degrees of freedom from the defect Lagrangian...
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The D3-D5 probe-brane system Probe D5-brane

The (D3-D5)k system: bulk geometry (nonzero flux)

Despite stability, we can still add k ̸= 0 units of background magnetic flux over the S2 part of the D5-brane... The D5-brane
geometry should be determined from the equations of motion of the DBI+WZ action:

SD5 = −
T5

gs

∫ [
d6ζ
√

det (Gab + 2πα′Fab) + 2πα′F ∧ C
]
, T5 ≡

1

(2π)5 α′3
, gs =

g2
YM

4π
.

Gab is the metric of AdS5 × S5 (in the conformal Poincaré frame):

ds2 =
ℓ2

z2

(
−dt2 + dx21 + dx22 + dx23 + dz2

)
+ ℓ2dΩ2

5, z ≡
1

r
,

where the line element of the unit 5-sphere has been written as:

dΩ2
5 = dψ2 + cos2 ψdΩ2

2 + sin2 ψdΩ̃2
2, dΩ2

2 = dθ2 + sin2 θ dφ2.

There are also Nc units of self-dual 5-form RR flux through AdS5 and S5... the 4-form potential is

Ĉ = ℓ4
[
−

1

z4
(dt ∧ dx1 ∧ dx2 ∧ dx3) +

1

8
(4ψ − sin 4ψ) d cos θ ∧ dφ ∧ d cosϑ ∧ dχ

]
,

while the components of the corresponding 5-form field strength f̂ ≡ dĈ are

f̂mnpqr = ϵmnpqr , f̂µνρστ = ϵµνρστ ,

where Latin and Greek indices, (m, n, p, q, r) and (µ, ν, ρ, σ, τ), refer to AdS5 and S5 respectively.
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The D3-D5 probe-brane system Probe D5-brane

D5-brane embedding

There are also k units of magnetic flux through the S2... forcing k out of Nc D3-branes to end on the D5-brane...

F = dA =
k

2
· d cos θ ∧ dφ, A =

k

2
cos θ · dφ,

∫
S2

F

2π
= k (first Chern class).
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The D3-D5 probe-brane system Probe D5-brane

The (D3-D5)k dSCFT

D5-brane with flux preserves classical integrability of
open strings (Zarembo-GL, 2021)...

The SCFT gauge group SU(Nc )×SU(Nc ) breaks to
SU(Nc − k)× SU(Nc )...

Equivalently, the fields of N = 4 SYM develop
nonzero vevs (Karch-Randall, 2001b)... dCFT corre-
lators = Higgs condensates of gauge-invariant oper-
ators of N = 4 SYM (Nagasaki-Yamaguchi, 2012)...

Matrix product states... overlaps with Bethe states...
Scalar one-point functions (de Leeuw, Kristjansen,
Zarembo, 2015)... closed-form det formulas... in-
tegrable quench criteria satisfied (Piroli, Pozsgay,
Vernier, 2017; de Leeuw-Kristjansen-GL, 2018)...

Two-point functions of (spin-2) stress tensor, dis-
placement operator, anomaly coefficients (de Leeuw-
Kristjansen-GL-Volk 2023)...

Strong-coupling computations were recently set up
(Georgiou-GL-Zoakos, 2023)...

Before going through the weak-coupling results, we
revisit CFT and dCFT correlation functions...
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The D3-D5 probe-brane system Gamma matrices

Subsection 3

Gamma matrices
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The D3-D5 probe-brane system Gamma matrices

Gamma matrices in 3 + 1 dimensions

In the Weyl (chiral) representation, the 4× 4 gamma matrices γµ (in 4-dimensional Minkowski spacetime) are given by

γ0 =

(
0 σ0
σ0 0

)
, γ i =

(
0 σi

−σi 0

)
, γ5 =

(
−σ0 0
0 σ0

)
= iγ0γ1γ2γ3,

where i = 1, 2, 3 and the Pauli matrices σµ are as usual defined as

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The gamma matrices obey the following Clifford algebra:

γµγν + γνγµ = −2gµν = 2× diag (1,−1,−1,−1) , γµγ5 + γ5γ
µ = 2 δµ5 .

We also define the gamma matrix commutators,

γµν ≡ γ[µν] =
1

2
[γµ, γν ] .

The charge conjugation matrix C is defined as:

C ≡ i σ3 ⊗ σ2 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 = iγ02.

It obeys among others the following properties

C t = C−1 = −C , γtµ = −CγµC
−1, γt5 = Cγ5C

−1.
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The D3-D5 probe-brane system Gamma matrices

The G -matrices of N = 4 SYM

The 4× 4 matrices G i that show up in the Lagrangian density of N = 4 SYM are given by:

G1 =

(
0 −iσ3
iσ3 0

)
, G2 =

(
0 iσ1

−iσ1 0

)
, G3 =

(
σ2 0
0 σ2

)

G4 =

(
0 −iσ2

−iσ2 0

)
, G5 =

(
0 −σ0
σ0 0

)
, G6 =

(
iσ2 0
0 −iσ2

)
.

These matrices are all antisymmetric. The first three are Hermitian, while the other three anti-Hermitian. One can work out
explicit expressions for the commutators and anticommutators of the N = 4 SYM G -matrices (see e.g. Buhl-Mortensen,
de Leeuw, Ipsen, Kristjansen, Wilhelm, 2016)...
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The D3-D5 probe-brane system One-point functions

Subsection 4

One-point functions
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The D3-D5 probe-brane system One-point functions

The D3-D5 interface

An interface is a wall between two (different/same) QFTs...

It can be described by means of classical solutions that are known as ”fuzzy-
funnel” solutions (Constable-Myers-Tafjord, 1999 & 2001)...
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For no vectors/fermions, we want to solve the equations of motion for the
scalar fields of N = 4 SYM:
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dz2
=
[
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[
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]]
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scalar fields of N = 4 SYM:

Aµ = ψa = 0,
d2φi

dz2
=
[
φj ,
[
φj , φi

]]
, i , j = 1, . . . , 6.

A manifestly SO(3) ≃ SU(2) symmetric solution is given by (z > 0):

φ2i−1 (z) =
1

z

[
(ti )k×k 0k×(Nc−k)

0(Nc−k)×k 0(Nc−k)×(Nc−k)

]
& φ2i = 0,

Diaconescu (1996), Giveon-Kutasov (1998)

where the matrices ti furnish a k-dimensional representation of su (2):[
ti , tj

]
= iϵijk tk .
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1

z

[
(ti )k×k 0k×(Nc−k)

0(Nc−k)×k 0(Nc−k)×(Nc−k)

]
& φ2i = 0,

Diaconescu (1996), Giveon-Kutasov (1998)

The solution also satisfies the Nahm equations:

dφi

dz
=

i

2
ϵijk
[
φj , φk

]
,

as expected for a half-BPS interface (Gaiotto-Witten, 2008)...
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The D3-D5 probe-brane system One-point functions

One-point functions

Following Nagasaki & Yamaguchi (2012), the one-point functions of local gauge-invariant scalar operators,

⟨O (z, x)⟩ = C
z∆
, z > 0,

can be calculated within the D3-D5 defect CFT from the corresponding fuzzy-funnel solution, for example:

O (z , x) = Ψµ1...µLtr [φ2µ1−1 . . . φ2µL−1]
SU(2)−−−−−→

interface

1

zL
·Ψµ1...µLtr [tµ1 . . . tµL ]

where Ψµ1...µL is an SO (6) symmetric tensor and the constant C is given by (MPS=“matrix product state”),

C =
1√
L

(
8π2

λ

)L/2

· ⟨MPS|Ψ⟩
⟨Ψ|Ψ⟩

1
2

,

{
⟨MPS|Ψ⟩ ≡ Ψµ1...µLtr [tµ1 . . . tµL ] (“overlap”)

⟨Ψ|Ψ⟩ ≡ Ψµ1...µLΨµ1...µL

}
,

which ensures that the 2-point function will be normalized to unity (O → (2π)L
(
LλL
)−1/2 · O):

⟨O (x1)O (x2)⟩ =
1

|x1 − x2|2∆
,

within SU(Nc), N = 4 SYM (i.e. without the defect). Once more, we set xi ≡ (zi, xi), where xi ≡ {x(0,1,2)
i }.
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The D3-D5 probe-brane system One-point functions

Chiral primary operators

The one-point functions of SO(3)× SO(3) ⊆ SO(6) invariant chiral primary operators (CPOs),

OCPO (x) =
1
√
L

(
8π2

λ

)L/2

· Kµ1...µL tr [φµ1 (x) . . . φµL (x)] ,

where Kµ1...µL are symmetric & traceless SO(3)× SO(3) ⊆ SO(6) tensors satisfying,

Kµ1...µLKµ1...µL = 1 & YL = Kµ1...µLxµ1 . . . xµL ,
6∑
µ=4

x2µ = cos2 ψ,
9∑
µ=7

x2µ = sin2 ψ,

and YL (ψ) is the SO(3)× SO(3) ⊆ SO(6) spherical harmonic, have been calculated at weak coupling:

⟨OCPO (x)⟩ =
1
√
L

(
2π2

λ

)L/2

k
(
k2 − 1

)L/2 YL (0)

zL
, k ≪ Nc → ∞,

Nagasaki-Yamaguchi (2012)

where L = 2j , j = 0, 1, . . . The large-k limit agrees with the supergravity calculation (details in Part III):

⟨OCPO (x)⟩ =
kL+1

√
L

(
2π2

λ

)L/2
YL (0)

zL
·
[
1 +

λ I1

π2k2
+ . . .

]
, I1 ≡

3

2
+

(L− 2) (L− 3)

4 (L− 1)
.

We can go beyond (bulk) CPOs... by computing the one-point functions of (scalar) gauge invariant operators of N = 4
SYM with definite scaling dimensions...
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The D3-D5 probe-brane system One-point functions

Dilatation operator

The mixing of single-trace operators O (x) is generally described by the integrable so (6) spin chain:

D = L · I+ λ

8π2
·H+

∞∑
n=2

λn · Dn, H =
L∑

j=1

(
Ij,j+1 − Pj,j+1 +

1

2
Kj,j+1

)
, λ = g 2

YMN,

Minahan-Zarembo (2002)
Beisert-Kristjansen-Staudacher (2003)

Beisert (2003)
up to one loop in N = 4 SYM, where

I · |. . . φaφb . . .⟩ = |. . . φaφb . . .⟩

P · |. . . φaφb . . .⟩ = |. . . φbφa . . .⟩

K · |. . . φaφb . . .⟩ = δab

6∑
c=1

|. . . φcφc . . .⟩ .

The above result is unaffected by the presence of a defect (DeWolfe-Mann, 2004; Ipsen-Vardinghus, 2019)...
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The D3-D5 probe-brane system One-point functions

Bethe eigenstates

In the following we will examine eigenstates of the so (6) spin chain which can be written as:

|Ψ⟩ ≡
∑
xi

ψi (u1, u2, u3) · | • . . . • ↑
x1

• . . . • ↓
x2

• . . . • ⇑
x3

• . . . • ⇓
x4

• . . .⟩,

where u1,2,3 are the rapidities of the excitations at xi . The corresponding single-trace operator is

| • . . . • ↑
x1

• . . . • ↓
x2

• . . . • ⇑
x3

• . . . • ⇓
x4

. . .⟩ ∼ tr
[
Zx1−1WZx2−x1−1YZx3−x2−1WZx4−x3−1Y . . .

]
,

where Z (ground state field), W, Y (excitations) are the following three complex scalars:

W = φ1 + iφ2 ∼ ↑ Y = φ3 + iφ4 ∼ ↓ Z = φ5 + iφ6 ∼ •

W = φ1 − iφ2 ∼ ⇑ Y = φ3 − iφ4 ∼ ⇓ Z = φ5 − iφ6 ∼ ◦

The wavefunction ψ (u1, u2, u3) can be constructed with the (nested) coordinate Bethe ansatz (details can
be found in Basso-Coronado-Komatsu-Lam-Vieira-Zhong, 2017)...
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The D3-D5 probe-brane system One-point functions

Nesting

Let us first construct the kets | • . . . • ↑
x1

• . . . • ↓
x2

• . . . • ⇑
x3

• . . . • ⇓
x4

• . . .⟩...

Because the excitations can have 5 different polarizations, we apply a procedure called “nesting”...

Start from a closed so (6) spin chain of length L
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Nesting

Let us first construct the kets | • . . . • ↑
x1

• . . . • ↓
x2

• . . . • ⇑
x3
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Because the excitations can have 5 different polarizations, we apply a procedure called “nesting”...

Start from a closed so (6) spin chain of length L. Excite exactly N1 sites of the chain:

Now take the N1 excitations to be the ground state.
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Because the excitations can have 5 different polarizations, we apply a procedure called “nesting”...

Start from a closed so (6) spin chain of length L. Excite exactly N1 sites of the chain:

Now take the N1 excitations to be the ground state. Excite N2 sites of the new chain... or N3 sites:

We end up with three sets/levels of rapidities, one rapidity for each excitation:

u1 = {u1,j}N1
j=1, u2 = {u2,j}N2

j=1, u3 = {u3,j}N3
j=1,

each set corresponds to a simple root α1,2,3 of so (6)...

26 / 100



The D3-D5 probe-brane system One-point functions

Nesting

Let us first construct the kets | • . . . • ↑
x1

• . . . • ↓
x2

• . . . • ⇑
x3

• . . . • ⇓
x4

• . . .⟩...

Because the excitations can have 5 different polarizations, we apply a procedure called “nesting”...

Start from a closed so (6) spin chain of length L. Excite exactly N1 sites of the chain:

Now take the N1 excitations to be the ground state. Excite N2 sites of the new chain... or N3 sites:

We end up with three sets/levels of rapidities, one rapidity for each excitation:

u1 = {u1,j}N1
j=1, u2 = {u2,j}N2

j=1, u3 = {u3,j}N3
j=1,

each set corresponds to a simple root α1,2,3 of so (6)...

To construct the kets, we must map the sets of rapidities to the available complex scalar fields...
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The D3-D5 probe-brane system One-point functions

Rapidities & fields

As we’ve just seen, each set of rapidities can be associated to a node of the so (6) Dynkin diagram:

N1

N2

N3

(0 ≤ N1 ≤ L, 0 ≤ N2 ≤ N1/2, 0 ≤ N3 ≤ N2) .

Setting q ≡ (1, 0, 0) as the highest weight of so (6), the total weight of the representation is given by:

w = Lq− N1α1 − N2α2 − N3α3,

where α1 ≡ (1,−1, 0), α2 ≡ (0, 1,−1), α3 ≡ (0, 1, 1) are the simple roots of so (6).
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The corresponding Cartan charges are given by:

w = (J1, J2, J3) = (L− N1,N1 − N2 − N3,N2 − N3) , J1 ≥ J2 ≥ J3 ≥ 0.

Here are the corresponding Dynkin indices:

[w ·α2,w ·α1,w ·α3] = [J2 − J3, J1 − J2, J2 + J3] = [N1 − 2N2, L− 2N1 + N2 + N3,N1 − 2N3] .
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w = Lq− N1α1 − N2α2 − N3α3,

where α1 ≡ (1,−1, 0), α2 ≡ (0, 1,−1), α3 ≡ (0, 1, 1) are the simple roots of so (6).

The so (6) Cartan matrix is

Mab =
2αa · αb

α2
b

=

 2 −1 −1
−1 2 0
−1 0 2

 , q =

 1
0
0

 .
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Rapidities & fields

As we’ve just seen, each set of rapidities can be associated to a node of the so (6) Dynkin diagram:

N1

N2

N3

(0 ≤ N1 ≤ L, 0 ≤ N2 ≤ N1/2, 0 ≤ N3 ≤ N2) .

Setting q ≡ (1, 0, 0) as the highest weight of so (6), the total weight of the representation is given by:

w = Lq− N1α1 − N2α2 − N3α3,

where α1 ≡ (1,−1, 0), α2 ≡ (0, 1,−1), α3 ≡ (0, 1, 1) are the simple roots of so (6).

Each complex scalar field is associated to the following set of weights:

Z ∼ q W ∼ q−α1 Y ∼ q−α1 −α2

Z ∼ q− 2α1 −α2 −α3 W ∼ q−α1 −α2 −α3 Y ∼ q−α1 −α3.
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The D3-D5 probe-brane system One-point functions

Coordinate Nested Bethe Ansatz

Here’s the nested so (6) wavefunction (in a somewhat simplified form):

ψi (u1, u2, u3) =
∑
P1

A1 (P1)

N1∏
j=1

1

u1,P1,j − i/2

(
u1,P1,j + i/2

u1,P1,j − i/2

)n1,j−1

· ψ(2,i) (u1, u2) · ψ(3,i) (u1, u3) ,

where

ψ(a,i) (u1, ua) =
∑
Pa

Aa (Pa)

Na∏
j=1

1

ua,Pa,j − u1,P1,na,j
− i/2

na,j−1∏
k=1

ua,Pa,j − u1,P1,k + i/2

ua,Pa,j − u1,P1,k − i/2
, a = 2, 3,

and

Aa (. . . , k, j , . . .) = Aa (. . . , j , k, . . .)Sa (ua,k , ua,j) , Sa (ua,k , ua,j) ≡
ua,k − ua,j + i

ua,k − ua,j − i
.
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The D3-D5 probe-brane system One-point functions

Bethe equations

The periodicity of the Bethe wavefunction ψ (at each nesting level) leads to the Bethe equations:(
u1,i + i/2

u1,i − i/2

)L

=

N1∏
j ̸=i

u1,i − u1,j + i

u1,i − u1,j − i

N2∏
k=1

u1,i − u2,k − i/2

u1,i − u2,k + i/2

N3∏
l=1

u1,i − u3,l − i/2

u1,i − u3,l + i/2
, i = 1, . . . ,N1 ≡ M

1 =

N2∏
l ̸=i

u2,i − u2,l + i

u2,i − u2,l − i

N1∏
k=1

u2,i − u1,k − i/2

u2,i − u1,k + i/2
, i = 1, . . . ,N2 ≡ N+

1 =

N3∏
l ̸=i

u3,i − u3,l + i

u3,i − u3,l − i

N3∏
k=1

u3,i − u1,k − i/2

u3,i − u1,k + i/2
, i = 1, . . . ,N3 ≡ N−,

which must be satisfied by the rapidities of the excitations/Bethe roots.

Because of the cyclicity of the trace, the momentum carrying roots obey the following relation:

N1∏
i=1

u1,i + i/2

u1,i − i/2
= 1 ⇔

N1∑
i=1

p1,i = 0 (momentum conservation) ,

where the relation of the rapidities to momenta is ua,i ≡ 1/2 cot(pa,i/2)...

Solving the Bethe system fast and efficiently is a hot topic... best method we will also use: fast Bethe solver (Marboe-
Volin, 2014 & 2017; Marboe, 2017), based on the QQ system (requiring the solutions to be polynomials)...
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The D3-D5 probe-brane system One-point functions

Bethe state overlaps

The matrix product state projects the 3 complex scalars on the SU(2) fuzzy funnel solution:

⟨MPS|Ψ⟩ = zL ·
∑

1≤xk≤L

ψ (xk) · tr
[
Zx1−1WZx2−x1−1YZx3−x2−1WZx4−x3−1Y . . .

]
,

where the complex scalar fields Z, W, Y are expressed in terms of the su (2) matrices as follows:

W =W =
t1
z
, Y = Y =

t2
z
, Z = Z =

t3
z
.

The corresponding matrix product state (MPS) is given by:

|MPS⟩ = tra

[
L∏

l=1

|Z⟩l ⊗ t3 + |W⟩l ⊗ t1 + |Y⟩l ⊗ t2 + c.c.

]
.
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The D3-D5 probe-brane system One-point functions

The su (2) subsector

For example, let us first consider the subsector that contains only two complex scalars:

W = φ1 + iφ2 ←→ |↑⟩ ∼ t1

Z = φ5 + iφ6 ←→ |•⟩ ∼ t3.

This is also known as the su (2) subsector of the dCFT. In the su (2) subsector, the trace operator Kj,j+1 does
not contribute to the mixing matrix D:

Hsu(2) =
L∑

j=1

(Ij,j+1 − Pj,j+1) .

This is just the Hamiltonian of the Heisenberg XXX1/2 spin chain. The MPS can be written as follows:

|MPS⟩ = tra

[
L∏

j=1

(
|↑j⟩ ⊗ t1 + |•j⟩ ⊗ t3

)]
,

and it corresponds to the above choice of fields.
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The D3-D5 probe-brane system One-point functions

su (2) Bethe states

In the su (2) subsector, |Ψ⟩ is just the coordinate Bethe state |p⟩:

|p⟩ = N ·
∑
σ∈SM

∑
1≤n1≤...≤nM≤L

exp

i∑
k

pσ(k)nk +
i

2

∑
j<k

θσ(j)σ(k)

 |x⟩, |p⟩ ≡ |p1, p2, . . . , pM⟩ .

where

|x⟩ ≡ |x1, x2, . . . , xM⟩ ≡ | • . . . • ↑
x1

• . . . • ↑
x2

• . . . • ↑
xM

• . . . •⟩ = S−
n1 . . .S

−
nM |0⟩ ,

and the vacuum state |0⟩ and the raising and lowering operators S± have been defined as

|0⟩ =
L⊗

i=1

|•⟩ , S+ |↑⟩ = |•⟩ & S− |•⟩ = |↑⟩ .

The matrix θjk and the normalization constant N are given by:

e iθjk =
uj − uk + i

uj − uk − i
≡ Sjk , uj ≡

1

2
cot

pj
2
, N ≡ exp

− i

2

∑
j<k

θjk

 .
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The D3-D5 probe-brane system One-point functions

The su (3) and so (6) subsectors

In the su (3) subsector all the three real complex scalars contribute:

W = φ1 + iφ2 ∼ t1, Y = φ3 + iφ4 ∼ t2, Z = φ5 + iφ6 ∼ t3.

The corresponding wavefunction is constructed by means of the nested coordinate Bethe ansatz:

ψ =
∑
P1,P2

A1 (P1)A2 (P2)

N1∏
j=1

N2∏
j=1

(
u1,P1,j + i/2

u1,P1,j − i/2

)n1,j n2,j∏
k=1

(
u2,P2,j − u1,P1,k + i/2

)δk ̸=n2,j

u2,P2,j − u1,P1,k − i/2

Aa (. . . , k, j , . . .) = Aa (. . . , j , k, . . .) Sa (ua,k , ua,j) , Sa (ua,k , ua,j) ≡
ua,k − ua,j + i

ua,k − ua,j − i
.

In the so (6) subsector all the three real complex scalars contribute:

W =W = φ1 + iφ2 ∼ t1, Y = Y = φ3 + iφ4 ∼ t2, Z = Z = φ5 + iφ6 ∼ t3,

and similarly the so (6) wavefunction can be constructed by the nested coordinate Bethe ansatz.
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The D3-D5 probe-brane system su (2)k representations

Subsection 5

su (2)k representations
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The D3-D5 probe-brane system su (2)k representations

k-dimensional Representation of su (2)

We use the following k × k dimensional representation of su (2):

t+ =
k−1∑
i=1

ck,iE
i
i+1, t− =

k−1∑
i=1

ck,iE
i+1
i , t3 =

k∑
i=1

dk,iE
i
i

t1 =
t+ + t−

2
, t2 =

t+ − t−
2i

ck,i =
√

i (k − i), dk,i =
1

2
(k − 2i + 1) ,

where E i
j are the standard matrix unities that are zero everywhere except (i , j) where they’re 1.
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The D3-D7 defect

Section 5

The D3-D7 defect
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The D3-D7 defect The D3-D7 geometries

S4 geometry

Start again from the near-horizon geometry (r → 0) of a system of Nc coincident D3-branes,

ds2 = H−1/2
(
−dt2 + dx23

)
+ H1/2

(
dr2 + r2dΩ2

5

)
, H (r) ≡ 1 +

(
ℓ

r

)4

, ℓ4 = 4πgsNcℓ
4
s ,

that is AdS5 × S5 in the so-called Poincaré coordinates:

ds2 =
r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

(
dr2 + r2dΩ2

5

)
=

r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

9∑
i=4

dx2i ,

where x23 = x21 + x22 + x23 and r2 = x24 + . . .+ x29 .

If we set , the metric becomes:

.
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Now insert a single D7-brane at x3 = x9 = 0:

t x1 x2 x3 x4 x5 x6 x7 x8 x9
D3 • • • •
D7 • • • • • • • •
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t x1 x2 x3 x4 x5 x6 x7 x8 x9
D3 • • • •
D7 • • • • • • • •

The same result is of course obtained from the DBI analysis (Davis-Kraus-Shah, 2008; Myers-Wapler, 2008)...
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The D3-D7 defect The D3-D7 geometries

S2 × S2 geometry

Start from the metric of AdS5 × S5:

ds2 =
r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

(
dr2 + r2dΩ2

5

)
=

r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

9∑
i=4

dx2i ,

where r2 = x24 + . . .+ x29 and

x4 = r cosψ sin θ cosφ, x5 = r cosψ sin θ sinφ, x6 = r cosψ cos θ,

x7 = r sinψ sinϑ cosχ, x8 = r sinψ sinϑ sinχ, x9 = r sinψ cosϑ.

Then the metric of AdS5 × S5 is written as:

ds2 =

{
r2

ℓ2

(
−dt2 + dx21 + dx22 + dx23

)
+
ℓ2

r2
dr2
}

+ ℓ2
(
dψ2 + cos2 ψdΩ2

2 + sin2 ψdΩ̃2
2

)
.
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Now insert a single D7 brane at x3 = 0, ψ = π/4...
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Now insert a single D7 brane at x3 = 0, ψ = π/4... The D7-brane geometry is AdS4 × S2 × S2...
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Now insert a single D7 brane at x3 = 0, ψ = π/4... The D7-brane geometry is AdS4 × S2 × S2... Same result follows from
the DBI analysis (Bergman-Jokela-Lifschytz-Lippert, 2010)...

38 / 100

https://arxiv.org/abs/1003.4965


The D3-D7 defect The D3-D7 geometries

S2 × S2 geometry

Start from the metric of AdS5 × S5:

ds2 =
r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

(
dr2 + r2dΩ2

5

)
=

r2

ℓ2

(
−dt2 + dx23

)
+
ℓ2

r2

9∑
i=4

dx2i ,

where r2 = x24 + . . .+ x29 and

x4 = r cosψ sin θ cosφ, x5 = r cosψ sin θ sinφ, x6 = r cosψ cos θ,

x7 = r sinψ sinϑ cosχ, x8 = r sinψ sinϑ sinχ, x9 = r sinψ cosϑ.

Then the metric of AdS5 × S5 is written as:

ds2 =

{
r2

ℓ2

(
−dt2 + dx21 + dx22 +��dx

2
3

)
+
ℓ2

r2
dr2
}

+
ℓ2

2

{
��dψ

2 +���cos2 ψdΩ2
2 +�

��sin2 ψdΩ̃2
2

}
.

Now insert a single D7 brane at x3 = 0, ψ = π/4... The D7-brane geometry is AdS4 × S2 × S2... Same result follows from
the DBI analysis (Bergman-Jokela-Lifschytz-Lippert, 2010)...

The two S2’s have equal sizes and sit on the equator of S5...
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the DBI analysis (Bergman-Jokela-Lifschytz-Lippert, 2010)...

The two S2’s have equal sizes and sit on the equator of S5...

The configuration is again unstable towards slipping off each side of the equator...
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Now insert a single D7 brane at x3 = 0, ψ = π/4... The D7-brane geometry is AdS4 × S2 × S2... Same result follows from
the DBI analysis (Bergman-Jokela-Lifschytz-Lippert, 2010)...

The two S2’s have equal sizes and sit on the equator of S5...

The configuration is again unstable towards slipping off each side of the equator...

The D7-brane can be stabilized by adding k units of abelian flux on each S2...
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The D3-D7 system

The probe D7-brane geometry is either AdS4 × S2 × S2 or AdS4 × S4. The brane sits at x3 = x9 = 0:

t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 • • • •
D7 • • • • • • • •

Again there’s a tachyonic instability... this time it violates the BF bound and the brane is unstable (Davis-Kraus-
Shah, 2008; Myers-Wapler, 2008; Bergman-Jokela-Lifschytz-Lippert, 2010)...

To stabilize it we add:

An instanton bundle on the S4 component of the AdS4 × S4 probe D7-brane, with instanton number dG :

dG =
1

6
(n + 1) (n + 2) (n + 3) .

Myers-Wapler (2008)

k1,2 units of U(1) flux on each of the S2 components of the AdS4 × S2 × S2 probe D7-brane...
Bergman-Jokela-Lifschytz-Lippert (2010)
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The D3-D7 defect The D3-D7 geometries

The (D3-D7)k system

Same picture as before: begin with SU(Nc)× SU(Nc), N = 4 SYM,
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The D3-D7 defect The D3-D7 geometries

The (D3-D7)k system

End up with SU(Nc − k)× SU(Nc), k = k1 · k2 or k = dG = (n + 1) (n + 2) (n + 3) /6 (k ≪ Nc →∞):
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(D3-D7)k solutions

For no vectors/fermions, we want to solve the equations of motion for the scalar fields of N = 4 SYM:

Aµ = ψa = 0,
d2φi

dz2
= [φj , [φj , φi ]] , i , j = 1, . . . , 6.

We find two solutions (Kristjansen-Semenoff-Young, 2012):

SU(2)× SU(2) : φi =

 −
1
z

[
(ti )k1 ⊗ 1k2

]
⊕ 0(Nc−k1k2), i = 1, 2, 3

− 1
z

[
1k1 ⊗ (ti )k2

]
⊕ 0(Nc−k1k2), i = 4, 5, 6

SO(5) : φi =
Gi√
8z
, i = 1, . . . , 5, φ6 = 0,

where the matrices ti furnish a ki -dimensional (i = 1, 2) representation of su (2)...

[ti , tj ] = iϵijktk ,

and the five dG × dG matrices Gi are known as “fuzzy” S4 matrices...
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The D3-D7 defect Symmetrized direct products & fuzzy S4 matrices

Subsection 2

Symmetrized direct products & fuzzy S4 matrices
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Symmetrized direct products

Consider the following symmetrized matrix direct product[
A(1) ⊗ A(2) ⊗ A(3) ⊗ . . .⊗ A(n)

]
sym

,

where the A’s are k × k matrices. In Dirac’s notation this can be written as follows:

sym ⟨i1, i2, . . . , in|A(1) ⊗ A(2) ⊗ . . .⊗ A(n) |j1, j2, . . . , jn⟩sym , i1, . . . , in, j1, . . . , jn = 1, 2, . . . , k,

with

|j1, j2, . . . , jn⟩sym =
1√
∥σ (j)∥

∑
σ

|σ (j1) , σ (j2) , . . . , σ (jn)⟩ ,

where ∥σ (j)∥ gives the number of permutations of (j1, j2, . . . , jn). For n = k = 2,
A

(1)
11 A

(2)
11

A
(1)
12 A

(2)
11 +A

(1)
11 A

(2)
12√

2
A

(1)
12 A

(2)
12

A
(1)
21 A

(2)
11 +A

(1)
11 A

(2)
21√

2

1
2
(A

(1)
22 A

(2)
11 + A

(1)
21 A

(2)
12 + A

(1)
12 A

(2)
21 + A

(1)
11 A

(2)
22 )

A
(1)
22 A

(2)
12 +A

(1)
12 A

(2)
22√

2

A
(1)
21 A

(2)
21

A
(1)
22 A

(2)
21 +A

(1)
21 A

(2)
22√

2
A

(1)
22 A

(2)
22

 .
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Symmetrized direct products

The dimension equals the # of different arrangements of n stars and k − 1 bars (k multichoose n):((
k

n

))
=

(
n + k − 1

n

)
k=4−−−→

((
4

n

))
=

(
n + 4− 1

n

)
=

1

6
(n + 1) (n + 2) (n + 3) = dG .

Here’s the dimensionality of the symmetrized matrix product for various k’s and n’s:

k/n 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9 10 11
3 3 6 10 15 21 28 36 45 55 66
4 4 10 20 35 56 84 120 165 220 286
5 5 15 35 70 126 210 330 495 715 1001
6 6 21 56 126 252 462 792 1287 2002 3003
7 7 28 84 210 462 924 1716 3003 5005 8008
8 8 36 120 330 792 1716 3432 6435 11440 19448
9 9 45 165 495 1287 3003 6435 12870 24310 43758
10 10 55 220 715 2002 5005 11440 24310 48620 92378
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The fuzzy S4 matrices: construction

The five fuzzy dG × dG dimensional S4 matrices Gi = nXi/r obey the following properties:

Castelino-Lee-Taylor (1997)

Spherical locus: X 2
1 + X 2

2 + X 2
3 + X 2

4 + X 2
5 = r I.

Longitudinal 5-brane charge: ϵijklmXiXjXkXl = αXm.

Local flatness . . .

Rotational invariance: RijXj = U (R) · Xi · U
(
R−1

)
,

where Rij is an element of SO(5) and U (R) is a dG dimensional unitary representation of SO(5).

Spectrum . . .
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The fuzzy S4 G -matrices

Here’s the definition of the five dG × dG fuzzy S4 matrices (G -matrices) Gi :

Gi ≡

 n factors︷ ︸︸ ︷
γi ⊗ 14 ⊗ . . .⊗ 14 + 14 ⊗ γi ⊗ . . .⊗ 14 + . . .+ 14 ⊗ . . .⊗ 14 ⊗ γi︸ ︷︷ ︸

n terms


sym

(i = 1, . . . , 5),

Castelino-Lee-Taylor (1997)

where γi are the five 4× 4 Euclidean Dirac matrices:

γi =

(
0 −iσi

iσi 0

)
, i = 1, 2, 3, γ4 =

(
0 12

12 0

)
, γ5 =

(
12 0
0 −12

)
,

and σi are the three 2× 2 Pauli matrices. The ten commutators of the five G -matrices,

Gij ≡
1

2
[Gi ,Gj ] ,

furnish a dG -dimensional (anti-hermitian) irreducible representation of so (5) ≃ sp (4):

[Gij ,Gkl ] = 2 (δjkGil + δilGjk − δikGjl − δjlGik) .

46 / 100

https://arxiv.org/abs/hep-th/9712105


The D3-D7 defect Symmetrized direct products & fuzzy S4 matrices

The fuzzy S4 G -matrices

The dimension of the G -matrices is equal to the instanton number dG = (n + 1) (n + 2) (n + 3) /6:

n 1 2 3 4 5 6 7 8 9 10 . . .

dG 4 10 20 35 56 84 120 165 220 286 . . .

E.g., for n = 2, here are the 10× 10 G -matrices:

G1 =



0 0 0 −i
√
2 0 0 0 0 0 0

0 0 −i 0 0 0 −i 0 0 0
0 i 0 0 0 0 0 0 −i 0

i
√
2 0 0 0 0 0 0 0 0 −i

√
2

0 0 0 0 0 −i
√
2 0 0 0 0

0 0 0 0 i
√

2 0 0 −i
√
2 0 0

0 i 0 0 0 0 0 0 −i 0
0 0 0 0 0 i

√
2 0 0 0 0

0 0 i 0 0 0 i 0 0 0
0 0 0 i

√
2 0 0 0 0 0 0


, G2 =



0 0 0 −
√
2 0 0 0 0 0 0

0 0 1 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 −1 0

−
√
2 0 0 0 0 0 0 0 0 −

√
2

0 0 0 0 0
√
2 0 0 0 0

0 0 0 0
√
2 0 0

√
2 0 0

0 −1 0 0 0 0 0 0 1 0
0 0 0 0 0

√
2 0 0 0 0

0 0 −1 0 0 0 1 0 0 0
0 0 0 −

√
2 0 0 0 0 0 0


,

G3 =



0 0 −i
√
2 0 0 0 0 0 0 0

0 0 0 i 0 −i 0 0 0 0
i
√
2 0 0 0 0 0 0 −i

√
2 0 0

0 −i 0 0 0 0 0 0 −i 0
0 0 0 0 0 0 i

√
2 0 0 0

0 i 0 0 0 0 0 0 i 0
0 0 0 0 −i

√
2 0 0 0 0 i

√
2

0 0 i
√
2 0 0 0 0 0 0 0

0 0 0 i 0 −i 0 0 0 0
0 0 0 0 0 0 −i

√
2 0 0 0


, G4 =



0 0
√
2 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0√
2 0 0 0 0 0 0

√
2 0 0

0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0

√
2 0 0 0

0 1 0 0 0 0 0 0 1 0
0 0 0 0

√
2 0 0 0 0

√
2

0 0
√
2 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0

√
2 0 0 0


, G5 =



2 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0 0 −2


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The real diagonal matrices G5(n)

The elements the diagonal matrices G5(n) are:

n dG G
5(n)

1 4 {−1,−1, 1, 1}

2 10 {−2,−2,−2, 0, 0, 0, 0, 2, 2, 2, 2}

3 20 {−3,−3,−3,−3,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3}

4 35 {−4,−4,−4,−4,−4,−2,−2,−2,−2,−2,−2,−2,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4}
.
.
.

Therefore the general form of the matrices G5(n) is the following (for j = 1, 2, . . . , n + 1):

G5(n) = 2
{{
−n

2
, . . .

}
︸ ︷︷ ︸
(n+1) terms

,
{
−n

2
+ 1, . . .

}
︸ ︷︷ ︸

2n terms

, . . . ,
{
−n

2
+ j − 1, . . .

}
︸ ︷︷ ︸

j·(n−j+2) terms

, . . . ,
{n
2
− 1, . . .

}
︸ ︷︷ ︸

2n terms

,
{n
2
, . . .

}
︸ ︷︷ ︸
(n+1) terms

}
.
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Subsection 3

One-point functions
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The D3-D7 defect One-point functions

The D3-D7 interface: SU(2)× SU(2) symmetry

To compute correlation functions in the dCFT that is dual to the SU(2)×
SU(2) symmetric D3-D7 system, we set up the corresponding interface...

The interface (placed at z = 0) separates the SU (Nc ) and SU (Nc − k1k2)
regions of the (D3-D7)k1k2 dCFT... It will be described by a fuzzy funnel
solution...

For no vectors/fermions, we want to solve the equations of motion for the
scalar fields of N = 4 SYM:

Aµ = ψa = 0,
d2φi

dz2
=
[
φj ,
[
φj , φi

]]
, i , j = 1, . . . , 6.

The wanted SU(2)× SU(2) ⊂ SU(3, 2)× SU(2)× SU(2) solution is:

φi (z) = −
1

z
×


[
(ti )k1 ⊗ 1k2

]
⊕ 0(Nc−k1k2), i = 1, 2, 3[

1k1 ⊗ (ti )k2

]
⊕ 0(Nc−k1k2), i = 4, 5, 6.

Kristjansen-Semenoff-Young (2012)

The defect CFT is not supersymmetric so that the interface does not satisfy
the Nahm equations...
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The D3-D7 interface: SO(5) symmetry

The interface for the dCFT that is dual to the SO(5) symmetric D3-D7
system (placed at z = 0) separates the SU (Nc ) and SU (Nc − dG ) regions
of the (D3-D7)dG dCFT... It will be described by a fuzzy funnel solution...

For no vectors/fermions, we solve the equations of motion for the scalar
fields of N = 4 SYM:

Aµ = ψa = 0,
d2φi

dz2
=
[
φj ,
[
φj , φi

]]
, i , j = 1, . . . , 6.

A manifestly SO(5) ⊂ SO(3, 2)× SO(5) symmetric solution is given by:

φi (z) =
Gi ⊕ 0(Nc−dG )×(Nc−dG )√

8 z
, i = 1, . . . , 5, φ6 = 0 .

Kristjansen-Semenoff-Young (2012)

Once more, the defect CFT is not supersymmetric so that the interface
does not satisfy the Nahm equations...

The five dG × dG matrices Gi are known as the “fuzzy” S4 matrices...
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One-point functions

One-point functions of local gauge-invariant scalar operators,

⟨O (z, x)⟩ = C
z∆
, z > 0,

can again be calculated within the D3-D7 defect CFT from the corresponding fuzzy funnel solution...

O (z, x) = Ψi1...iLtr [φi1 . . . φiL ]
SO(5), SO(3)×SO(3)−−−−−−−−−−−−−→

interface

1

zL
·Ψi1...iLtr [τi1 . . . τiL ] ,

where the matrices τi are defined in terms of the corresponding fuzzy funnel solution:

τi =


Gi/
√
8, i = 1, . . . , 5

0, i = 6

}
, SO(5) symmetric interface[

(ti )k1 ⊗ 1k2

]
⊕ 0(Nc−k1k2), i = 1, 2, 3[

1k1 ⊗ (ti )k2

]
⊕ 0(Nc−k1k2), i = 4, 5, 6

 , SO(3)× SO(3) symmetric interface.

Again, Ψi1...iL is an so (6)-symmetric tensor and the constant C is given by (MPS=“matrix product state”),

C =
1√
L

(
π2

λ

)L/2

· ⟨MPS|Ψ⟩
⟨Ψ|Ψ⟩

1
2

,

{
⟨MPS|Ψ⟩ ≡ Ψi1...iLtr [Gi1 . . .GiL ] (“overlap”)

⟨Ψ|Ψ⟩ ≡ Ψi1...iLΨi1...iL

}
.

52 / 100
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Chiral primary operators

The one-point functions of SO(5) ⊆ SO(6) invariant chiral primary operators (CPOs),

OCPO (x) =
1
√
L

(
8π2

λ

)L/2

· Kµ1...µL tr [φµ1 (x) . . . φµL (x)] ,

where Kµ1...µL are symmetric & traceless SO(5) ⊆ SO(6) tensors satisfying,

Kµ1...µLKµ1...µL = 1 & YL = Kµ1...µLxµ1 . . . xµL ,
9∑
µ=4

x2µ = 1,

and YL (ψ) is the SO(5) ⊆ SO(6) spherical harmonic, have been calculated at weak coupling:

⟨OCPO (x)⟩ =
dG√
L

(
π2cG

λ

)L/2
YL (0)

zL
, cG ≡ n (n + 4) , dG ≡

1

6
· (n + 1)(n + 2)(n + 3) ≪ Nc → ∞,

Kristjansen-Semenoff-Young (2012)

where n = 1, 2, . . ., L = 2j , j = 0, 1, . . . The large-n limit agrees with the supergravity calculation:

⟨OCPO (x)⟩ n→∞−−−−−→
YL (0)√

L

(
π2n2

λ

)L/2
n3

zL
.

Once more, we can go beyond CPOs (de Leeuw-Kristjansen-GL, 2016)...
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The D3-D7 defect One-point functions

Chiral primary operators

The one-point functions of SU(2)× SU(2) ⊆ SO(6) invariant chiral primary operators (CPOs),

OCPO (x) =
1
√
L

(
8π2

λ

)L/2

· Kµ1...µL tr [φµ1 (x) . . . φµL (x)] ,

where Kµ1...µL are symmetric & traceless SO(3)× SO(3) ⊆ SO(6) tensors satisfying,

Kµ1...µLKµ1...µL = 1 & YL = Kµ1...µLxµ1 . . . xµL ,
6∑
µ=4

x2µ = cos2 ψ,
9∑
µ=7

x2µ = sin2 ψ,

and YL (ψ) is the SO(3)× SO(3) ⊆ SO(6) spherical harmonic, have been calculated at weak coupling:

⟨OCPO (x)⟩ =
k1k2√

L

(
2π2

(
k2
1 + k2

2

)
λ

)L/2
YL (arctan (k2/k1))

zL
, k ≡ k1k2 ≪ Nc → ∞,

Kristjansen-Semenoff-Young (2012)

where L = 2j , j = 0, 1, . . . The large-n limit completely agrees with the supergravity calculation...
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Section 6

The D2-D4 defect
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The D2-D4 defect AdS4/CFT3 duality

The AdS/CFT correspondence

We are interested in defect CFTs which are holographic, i.e. avatars of higher-dimensional gravitational theories that live
in curved spacetimes...

The prototype of holographic dualities is the AdS5/CFT4 correspondence:

N = 4, su(Nc ) super Yang-Mills theory in 4d ⇔ Type IIB superstring theory on AdS5 × S5

Maldacena (1997)

the spectrum of which is quantum integrable in the planar (’t Hooft/large-Nc ) limit Nc → ∞, λ ≡ g2
YMNc = const.

Minahan-Zarembo (2002), Beisert-Kristjansen-Staudacher (2003), Beisert (2003)

There also exists an AdS4/CFT3 duality... reading, for k5 ≫ Nc :

N = 6, U (Nc )k × Û (Nc )−k super Chern-Simons
theory in 3d with Chern-Simons levels ± k ∈ Z ⇔ Type IIA string theory on AdS4 × CP3 with Nc

units of flux in AdS4 and k units in CP3

Aharony-Bergman-Jafferis-Maldacena (2008)

the spectrum of IIA/ABJM is also quantum integrable in the planar limit k,Nc → ∞, λ ≡ g2
CSNc = const. (g2

CS ≡ 1/k).

Minahan-Zarembo (2008), Gaiotto-Giombi-Yin (2008), Bak-Rey (2008)

56 / 100

https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/0212208
https://arxiv.org/abs/hep-th/0303060
https://arxiv.org/abs/hep-th/0307015
https://arxiv.org/abs/0806.1218
https://arxiv.org/abs/0806.3951
https://arxiv.org/abs/0806.4589
https://arxiv.org/abs/0807.2063


The D2-D4 defect AdS4/CFT3 duality

The AdS/CFT correspondence

We are interested in defect CFTs which are holographic, i.e. avatars of higher-dimensional gravitational theories that live
in curved spacetimes...

The prototype of holographic dualities is the AdS5/CFT4 correspondence:

N = 4, su(Nc ) super Yang-Mills theory in 4d ⇔ Type IIB superstring theory on AdS5 × S5

Maldacena (1997)

the spectrum of which is quantum integrable in the planar (’t Hooft/large-Nc ) limit Nc → ∞, λ ≡ g2
YMNc = const.

Minahan-Zarembo (2002), Beisert-Kristjansen-Staudacher (2003), Beisert (2003)

There also exists an AdS4/CFT3 duality... reading, for k5 ≫ Nc :
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The D2-D4 defect AdS4/CFT3 duality

M/ABJM correspondence

In its full version, the AdS4/CFT3 duality takes the form of the M/ABJM correspondence:

N = 6, U (Nc)k × Û (Nc)−k super Chern-Simons
theory in 3d with Chern-Simons levels ± k ∈ Z ⇔ M-theory on AdS4 × S7/Zk

with Nc units of flux in AdS4

Aharony-Bergman-Jafferis-Maldacena (2008)

The duality emerges in the low-energy limit of Nc coincident M2-branes... the M2-branes live in an 8d
transverse toric hyper-Kähler manifold with an R8/Zk = C4/Zk singularity...

Gauntlett-Gibbons-Papadopoulos-Townsend (1997)

For Nc →∞ the system becomes M-theory on AdS4 × S7/Zk with Nc units of flux on AdS4...

For k = 1 the duality implies:

N = 8 superconformal field theory (SCFT) ⇔ M-theory on AdS4 × S7 (Maldacena, 1998)

For k = 2, the dual gauge theory becomes the so-called BLG theory:

N = 8, su (2)× su (2) Bagger-Lambert-Gustavsson theory ⇔ M-theory on AdS4 × S7/Z2

Bagger-Lambert (2007) & Gustavsson (2007)
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The D2-D4 defect AdS4/CFT3 duality

D2-branes

String theory limit: for k5 ≫ Nc , M-theory on the rhs of the duality becomes weakly coupled...

gs ≡
(
Nc

k5

)1/4

→ 0

so that M/ABJM duality becomes IIA/ABJM... M2-branes get replaced by D2-branes...

The D2-branes curve the spacetime around them and the resulting geometry becomes singular at the origin
where the branes are located...

Close to the horizon the spacetime becomes AdS4 × CP3, the metric of which is given by:

ds2 =
ℓ2

z2

(
−dx20 + dx21 + dx22 + dz2

)
+ 4ℓ2

[
dξ2 + cos2 ξ sin2 ξ

(
dψ +

1

2
cos θ1 dϕ1 −

1

2
cos θ2 dϕ2

)2

+

+
1

4
cos2 ξ

(
dθ21 + sin2 θ1 dϕ

2
1

)
+

1

4
sin2 ξ

(
dθ22 + sin2 θ2 dϕ

2
2

) ]
,

where ξ ∈ [0, π/2), θ1,2 ∈ [0, π], ϕ1,2 ∈ [0, 2π) and ψ ∈ [−2π, 2π].
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The D2-D4 defect AdS4/CFT3 duality

ABJM theory

Consider the IIA/ABJM correspondence we have just mentioned in its integrable limit:

N = 6, U (Nc)k × Û (Nc)−k super Chern-Simons
theory with k,Nc →∞ & λ ≡ Nc/k = const.

⇔ Type IIA string theory on AdS4 × CP3 with Nc

units of flux in AdS4 and k units in CP3

Aharony-Bergman-Jafferis-Maldacena (2008)

On the one side of the duality lies a 3-dimensional superconformal gauge theory:

LABJM =
k

4π
·
[
ϵµνρtr

{
Aµ∂νAρ +

2i

3
AµAνAρ − Âµ∂νÂρ −

2i

3
ÂµÂνÂρ

}
− tr

{
(DµYB)

† DµYB+

+iψ†
B
/DψB

}
− Vferm − Vbos

]
, where B = 1, . . . , 4, DµY ≡ ∂µY + iAµY − iY Âµ,

and the potential contains mixed quartic and sextic bosonic terms which read

Vferm=
i

2
tr

{
Y †
AYAψ

†
BψB − YAY

†
AψBψ

†
B + 2YAY

†
BψAψ

†
B − 2Y †

AYBψ
†
AψB − ϵABCDY †

AψBY
†
CψD + ϵABCDYAψ

†
BYCψ

†
D

}

Vbos = −
1

12
tr

{
YAY

†
AYBY

†
BYCY

†
C + Y †

AYAY
†
BYBY

†
CYC + 4YAY

†
BYCY

†
AYBY

†
C − 6YAY

†
BYBY

†
AYCY

†
C

}
.
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(DµYB)

† DµYB+

+iψ†
B
/DψB

}
− Vferm − Vbos

]
, where B = 1, . . . , 4, DµY ≡ ∂µY + iAµY − iY Âµ,

and the potential contains mixed quartic and sextic bosonic terms which read

Vferm=
i

2
tr

{
Y †
AYAψ

†
BψB − YAY

†
AψBψ

†
B + 2YAY

†
BψAψ

†
B − 2Y †

AYBψ
†
AψB − ϵABCDY †

AψBY
†
CψD + ϵABCDYAψ

†
BYCψ

†
D

}

Vbos = −
1

12
tr

{
YAY

†
AYBY

†
BYCY

†
C + Y †

AYAY
†
BYBY

†
CYC + 4YAY

†
BYCY

†
AYBY

†
C − 6YAY

†
BYBY

†
AYCY

†
C

}
.

59 / 100

https://arxiv.org/abs/0806.1218


The D2-D4 defect AdS4/CFT3 duality

IIA/ABJM correspondence

String theory limit: for k5 ≫ Nc , M-theory on the rhs of the duality becomes weakly coupled...

gs ≡
(
Nc

k5

)1/4

→ 0

so that M/ABJM duality becomes IIA/ABJM... M2-branes get replaced by D2-branes...

Field content: 2 gauge fields Aµ, Âµ, 4 complex scalars YA and 4 Weyl spinors ψA.

Global symmetry group is OSP(2, 2|6) for k > 2, enhanced to OSP(2, 2|8) for k = 1, 2.

Bosonic subgroup: SP(2, 2)× SO(6), where SP(2, 2) ≃ SO(3, 2) and SO(6) ≃ SU(4).

Absorbing the CS level k into quadratic terms, interaction terms of order n are multiplied by k−(n/2−1)...
g 2
YM ≡ 1/k is the ABJM coupling and λ ≡ g 2

YMNc = Nc/k is the ABJM ’t Hooft coupling...

ABJ theory: gauge group U (Mc)k × Û (Nc)−k with two ’t Hooft couplings λ ≡ Mc/k and λ̂ ≡ Nc/k.

Deformed ABJM: CS levels k and k̂ do not sum to zero... less supersymmetry... no integrability...
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ABJ theory: gauge group U (Mc)k × Û (Nc)−k with two ’t Hooft couplings λ ≡ Mc/k and λ̂ ≡ Nc/k.

Deformed ABJM: CS levels k and k̂ do not sum to zero... less supersymmetry... no integrability...

60 / 100



The D2-D4 defect The D2-D4 geometries

Subsection 2

The D2-D4 geometries
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The D2-D4 defect The D2-D4 geometries

The D2-D4 probe-brane system

Type IIA string theory on AdS4 × CP3 is encountered very close to a system of Nc coincident D2-branes:

The D2-branes extend along x1, x2...

t x1 x2 z ξ θ1 ϕ1 θ2 ϕ2 ψ
D2 • • •
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The D2-D4 probe-brane system

Type IIA string theory on AdS4 × CP3 is encountered very close to a system of Nc coincident D2-branes:

Now insert a single D4-brane at x1 = ξ = θ2 = ϕ2 = ψ = 0...
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The D2-D4 probe-brane system

Type IIA string theory on AdS4 × CP3 is encountered very close to a system of Nc coincident D2-branes:

The probe D4-brane lies at x1 = ξ = θ2 = ϕ2 = ψ = 0... its geometry will be AdS3 × CP1...

ds2 =
ℓ2

z2

(
−dx20 + dx21 + dx22 + dz2

)
+ 4ℓ2

[
dξ2 + cos2 ξ sin2 ξ

(
dψ +

1

2
cos θ1 dϕ1 −

1

2
cos θ2 dϕ2

)2

+

+
1

4
cos2 ξ

(
dθ21 + sin2 θ1 dϕ

2
1

)
+

1

4
sin2 ξ

(
dθ22 + sin2 θ2 dϕ

2
2

) ]
,

where ξ ∈ [0, π/2) , θ1,2 ∈ [0, π] , ϕ1,2 ∈ [0, 2π) , ψ ∈ [−2π, 2π].
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Type IIA string theory on AdS4 × CP3 is encountered very close to a system of Nc coincident D2-branes:

The probe D4-brane lies at x1 = ξ = θ2 = ϕ2 = ψ = 0... its geometry will be AdS3 × CP1...

ds2 =
ℓ2

z2

(
−dx20 + dx22 + dz2

)
+ ℓ2

(
dθ21 + sin2 θ1 dϕ

2
1

)
.

Note that CP1 is just a 2-sphere: ds2CP1 = ℓ2
(
dθ21 + sin2 θ1 dϕ

2
1

)
=
∑6

i=4 dxi dxi ,
∑6

i=4 xi xi = ℓ2.
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The D2-D4 defect The D2-D4 geometries

D4-brane embedding

The brane geometry is also supported by Q units of magnetic flux through CP1...

F = ℓ2 Q d cos θ1 ∧ dϕ1 = −ℓ2 Q sin θ1 dθ1 dϕ1 = dA.

The flux forces exactly q ≡
√
2λQ of the D2-branes to terminate on one side of the D4-brane...
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The AdS3 × CP1⊂ AdS4 × CP3 embedding of the probe D4-brane is described by the set of equations:

x2 = Q · z & ξ = 0, θ2, ϕ2, ψ = constant.
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The D2-D4 defect The D2-D4 geometries

The (D2-D4)q dSCFT

The defect reduces the total bosonic symmetry of
the system from SO(3, 2) × SO(6) to SO(2, 2) ×
SU(2)× SU(2)× U(1)...

The D2-D4 system describes IIA string theory on
AdS4×CP3 bisected by a D4 brane with worldvolume
geometry AdS4 × CP1...

The D4-brane is classically integrable... i.e. infinite
conserved charges for open strings with D4-brane
BCs (Dekel-Oz, 2011; GL, 2022)...

The SCFT gauge group U(Nc ) × Û(Nc ) breaks to

U(Nc − q + 1)× Û(Nc − q)...

Equivalently, the fields of ABJM develop nonzero
vevs... dCFT correlators = Higgs condensates of
gauge-invariant operators of ABJM (Kristjansen-Vu-
Zarembo, 2021)...

Matrix product states... overlaps with Bethe states...
Scalar one-point functions... closed-form det formu-
las (Gombor-Kristjansen, 2022)...

Strong-coupling computations were recently set up
(Georgiou-GL-Zoakos, 2023)...
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T and R-matrices
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The D2-D4 defect T and R-matrices

T and R-matrices

The Lie algebra of so (6) is generated by 15 matrices Mij ,

[Mij ,Mkl ] = δilMjk + δjkMil − δikMjl − δjlMik , i , j = 1, . . . 6.

The u (3) subalgebra of so (6) is generated by the 9 antisymmetric R-matrices (graded-0 generators):

R1 =
1

2
(M13 +M24) , R2 =

1

2
(M23 −M14) , R3 =

1

2
(M15 +M26) , R4 =

1

2
(M25 −M16)

R5 =
1

2
(M35 +M46) , R6 =

1

2
(M45 −M36) , R7 = M12, R8 = M34, R9 = M56.

The graded-2 generators belong to the orthogonal space of u (3) inside so (6):

T1 =
1

2
(M13 −M24) , T2 =

1

2
(M14 +M23) , T3 =

1

2
(M15 −M26)

T4 =
1

2
(M16 +M25) , T5 =

1

2
(M35 −M46) , T6 =

1

2
(M36 +M45) .

The T-matrices anticommute, while the R-matrices commute with K6.
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Conformal field theory: scalars

A well-known result in CFT is that the form of 2 and 3-point functions of scalar operators is completely
determined by conformal symmetry, while 1-point functions are generally zero (Polyakov, 1970):

⟨O1 (x1)⟩ = 0 (except ⟨c⟩ = c)

⟨O1 (x1)O2 (x2)⟩ =
δ∆1,∆2

x∆1+∆2
12

, xij ≡ |xi − xj|

⟨O1 (x1)O2 (x2)O3 (x3)⟩ =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

.

If we have more than 3 points we may construct conformally invariant cross/anharmonic ratios, as e.g. in
the case of 4 points:

x12x34

x13x24
&

x12x34

x14x23
.

The corresponding n-point function (n ≥ 4) has an arbitrary dependence on them, e.g. for n = 4:

⟨O1 (x1)O2 (x2)O3 (x3)O4 (x4)⟩ = f

(
x12x34

x13x24
,
x12x34

x14x23

)
·

4∏
i<j

x
∆/3−∆i−∆j
ij , ∆ ≡

4∑
i=1

∆i.
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Conformal field theory: fields with spin

For fields with spin, such as conserved currents Vµ and the (improved!) stress (aka energy-momentum)
tensor Tµν , similar results apply. These fields generally obey,

∂µVµ = 0, ∂µTµν = 0, Tµν = Tνµ, gµνTµν = 0.

In d dimensions the corresponding two-point functions take the following forms (case d = 2 is included):

⟨Vµ (x1)Vν (x2)⟩ =
CV

x
2(d−1)
12

· Iµν (x1 − x2)

⟨Tµν (x1)Tρσ (x2)⟩ =
CT

x2d
12

· Iµνρσ (x1 − x2) .

Osborn-Petkou (1993)

Sometimes (e.g. in the case of free theories) the structure constants CT can be related to the anomaly
coefficients (or central charges) of CFTs... The inversion tensors Iµν , Iµνρσ are defined as:

Iµν (x) ≡ gµν −
2 xµxν
x2

Iµνρσ (x) ≡
1

2
(Iµρ (x) Iνσ (x) + Iµσ (x) Iνρ (x))−

1

d
gµνgρσ.
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Operator product expansion (OPE)

Generally, we don’t need a Lagrangian to define a QFT. As shown by Wightman (1956), any QFT can be
reconstructed (or solved) from its local operators and their n-point correlation functions:

{Oi (x)} ⟨O1 (x1)O2 (x2) . . .On (xn)⟩ .

In CFTs, the latter can always be determined by means of a convergent operator product expansion (OPE)
(Ferrara-Grillo-Gatto, 1973; Polyakov, 1974). E.g. for scalars:

O1 (x1)O2 (x2) =
δ12

x∆1+∆2
12

+
∑
j

Cj12
x
∆1+∆2−∆j
12

· Pj (x12, ∂2)Oj (x2) ,

where the sum is over all the primary operators of the CFT (normalizing Pj = 1 +O (x12)).

In general, the (n + 2)-point function can be computed recursively:

〈
O1 (x1)O2 (x2)

n∏
i=3

Oi (xi)
〉
=
∑
j

Cj12 · P̃j (x12, ∂2)
〈
Oj (x2)

n∏
i=3

Oi (xi)
〉
.

CFTs are fully specified by the CFT data: {∆i, ℓi, fi, Cij = 1, Cijl}... Conformal bootstrap program...
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Defect conformal field theory

Now consider a CFTd and introduce a boundary at z = 0, where xµ = (z , x)... (Cardy, 1984)
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Defect conformal field theory

Now consider a CFTd and introduce a boundary at z = 0, where xµ = (z , x)... (Cardy, 1984)

The subgroup of the d-dimensional (Euclidean) conformal group SO(d+1, 1) that leaves the plane z = 0 invariant
contains:

(d − 1) dimensional translations: x′ = x+ a

(d − 1) dimensional rotations SO(d − 1)

d dimensional rescalings x ′
µ = α xµ & inversions x ′

µ = xµ/x
2

This is just the conformal group in d − 1 dimensions, SO(d , 1)...

The resulting setup that contains a CFTd and a codimension-1 boundary/interface/domain wall/defect upon
which a CFTd−1 lives, is a defect Conformal Field Theory (dCFT).
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This is just the conformal group in d − 1 dimensions, SO(d , 1)...

The resulting setup that contains a CFTd and a codimension-1 boundary/interface/domain wall/defect upon
which a CFTd−1 lives, is a defect Conformal Field Theory (dCFT).

Boundaries of higher dimensionalities p and codimensionalities q (with p + q = d) are of course possible... In
what follows, we will just focus on codimension-1 dCFTs for which q = 1...
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dCFT correlators: bulk scalars

Due to the presence of the z = 0 boundary we may form invariant ratios from only 2 bulk points:

ξ =
x2
12

4 |z1| |z2|
& υ2 =

ξ

ξ + 1
=

x2
12

x2
12 + 4 |z1| |z2|

, xi ≡ (zi, xi) , i = 1, 2.

This means that 1-point bulk functions are nonzero and the only ones fully determined by symmetry:

⟨O1 (z1, x1)⟩ =
C1
|z1|∆1

.

n-point bulk functions (n ≥ 2) will contain an arbitrary dependence on the invariant ratio ξ. For instance, the
bulk-bulk 2-point function of two scalars will be:

⟨O1 (z1, x1)O2 (z2, x2)⟩ =
f12 (ξ)

|z1|∆1 |z2|∆2
,

McAvity-Osborn (1995)

i.e. it will not vanish if ∆1 ̸= ∆2. In principle, all correlation functions can be determined recursively...

1-point functions are the fundamental building blocks of dCFTs (along with bulk/boundary CFT data)...

Boundary conformal bootstrap program (Liendo-Rastelli-van Rees, 2012)...
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dCFT correlators: bulk fields with spin

One-point functions of fields with spin generally vanish (McAvity-Osborn 1993 & 1995),

⟨Vµ (x1)⟩ = ⟨Tµν (x1)⟩ = 0, xi ≡ (zi, xi)

,

whereas two-point functions are given by:

⟨Vµ (x1)Vν (x2)⟩ =
1

x
2(d−1)
12

[
IµνC (υ)− XµX

′
νD (υ)

]
⟨Tµν (x1)Tρσ (x2)⟩ =

1

x2d12
·
{(

XµXν −
gµν

d

)(
X ′
ρX

′
σ −

gρσ

d

)
A (υ) +

(
XµX

′
ρIνσ + XµX

′
σ Iνρ+

+XνX
′
σ Iµρ + XνX

′
ρIµσ −

4

d
gµνX

′
ρX

′
σ −

4

d
gρσXµXν +

4

d2
gµνgρσ

)
B (υ) + IµνρσC (υ)

}
,

where A (υ), B (υ), C (υ) are functions of the dCFT invariant υ. We have set,

Xµ ≡ z1 ·
υ

ξ

∂ξ

∂xµ1
= υ

(
2z1
x2
12

(x1µ − x2µ)− nµ

)
, X ′

ρ ≡ z2 ·
υ

ξ

∂ξ

∂xρ2
= −υ

(
2z2
x2
12

(x1ρ − x2ρ) + nρ

)
,

where n ≡ (1, 0) is the unit normal to the z = 0 boundary. X , X ′ obey

XµXµ = X ′
ρX

′
ρ = 1, X ′

ρ = IρµXµ.
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dCFT correlators: boundary scalars

Now suppose that we insert a boundary scalar operator Ô (x). We find:〈
O1 (z1, x1) Ô2 (x2)

〉
=

B12

|z1|∆1−∆2 x2∆2
12

, x2
12 = z21 + (x1 − x2)

2 .

McAvity-Osborn (1995)

Since the conformal symmetry is intact on the z = 0 defect, the n-point correlators of boundary operators satisfy
the usual relations of CFT(d−1):

〈
Ô1 (x1) Ô2 (x2)

〉
=
B̂12

x2∆12
, ∆ ≡ ∆1 = ∆2, x12 ≡ |x1 − x2|

〈
Ô1 (x1) Ô2 (x2) Ô3 (x3)

〉
=

B̂123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

.
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while all the higher correlators will have an explicit dependence on the boundary CFTd−1 cross ratios...
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.

There is also a boundary operator expansion (BOE) which reads (normalizing P̂j = 1 +O
(
z2
)
):

O1 (x1) =
C1
|z1|∆1

+
∑
j

B1j

|z1|∆1−∆j
· P̂j

(
z1, ∂x1

)
Ôj (x1) .
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Defect two-point functions (bulk channel)

Let us now compute the bulk-bulk two-point function from the CFT+dCFT data and the bulk OPE,

⟨O1 (x1)O2 (x2)⟩ =
δ12

x∆1+∆2
12

+
∑
j

Cj12
x
∆1+∆2−∆j
12

· Pj (x12, ∂2) ⟨Oj (x2)⟩ ,

which is valid independently of the presence of defects.

Plugging the one and two-point functions

⟨O1 (z1, x1)O2 (z2, x2)⟩ =
f12 (ξ)

|z1|∆1 |z2|∆2
, ⟨Oj (z2, x2)⟩ =

Cj
|z2|∆j

,

into the OPE we obtain (the factor 2∆k accounts for having |zi| instead of 2 |zi| in the denominators):

f12 (ξ) = (4ξ)−
∆1+∆2

2

[
δ12 +

∑
j

2∆jCj12 Cj · Fbulk (∆j, δ∆, ξ)

]
, δ∆ ≡ ∆1 −∆2.

The bulk conformal blocks Fbulk can be determined from the expression Pj (x12, ∂2) |z2|−∆j :

Fbulk (∆j, δ∆, ξ) = ξ
∆j
2 2F1

(∆j + δ∆

2
,
∆j + δ∆

2
,∆j − 1;−ξ

)
.
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Defect two-point functions (bulk channel)

Let us now compute the bulk-bulk two-point function from the CFT+dCFT data and the bulk OPE,
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δ12
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12

+
∑
j

Cj12
x
∆1+∆2−∆j
12

· Pj (x12, ∂2) ⟨Oj (x2)⟩ ,

which is valid independently of the presence of defects. Plugging the one and two-point functions

⟨O1 (z1, x1)O2 (z2, x2)⟩ =
f12 (ξ)

|z1|∆1 |z2|∆2
, ⟨Oj (z2, x2)⟩ =

Cj
|z2|∆j

,

into the OPE we obtain (the factor 2∆k accounts for having |zi| instead of 2 |zi| in the denominators):

f12 (ξ) = (4ξ)−
∆1+∆2

2
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Defect two-point functions (boundary channel)

We now compute the bulk-bulk two-point function from the boundary operator expansion (BOE),

⟨O1 (x1)O2 (x2)⟩ =
C1C2

|z1|∆1 |z2|∆2
+
∑
i,j

B1iB2j

|z1|∆1−∆i |z2|∆2−∆j
· P̂i

(
z1, ∂x1

)
P̂j

(
z2, ∂x2

)〈
Ôi (x1) Ôj (x2)

〉
.

Plugging the two-point functions

⟨O1 (z1, x1)O2 (z2, x2)⟩ =
f12 (ξ)

|z1|∆1 |z2|∆2
,

〈
Ôi (x1) Ôj (x2)

〉
=

B̂ij

x∆i+∆j
12

,

and contracting the indices i, j inside the sum by B̂ij we find

f12 (ξ) = C1C2 +
∑
j

B1jBj
2 · Fboundary (∆j, ξ) .

The boundary conformal blocks Fboundary are determined from P̂i

(
z1, ∂x1

)
P̂j

(
z2, ∂x2

)
x−(∆i+∆j)
12 :

Fboundary (∆j, ξ) = ξ−∆j
2F1

(
∆j,∆j − 1, 2∆j − 2;−ξ−1

)
.
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Defect two-point functions (boundary channel)
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Ôi (x1) Ôj (x2)
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Correlation functions in CFTs and dCFTs Boundary conformal bootstrap

Boundary conformal bootstrap program

Equating the two expressions for f12 (ξ) we have found in the bulk and the boundary channel,

f12 (ξ)= (4ξ)−
∆1+∆2

2

[
δ12 +

∑
j

2∆jCj12 Cj · ξ
∆j
2 2F1

(∆j + δ∆

2
,
∆j + δ∆

2
,∆j − 1;−ξ

)]
=

= C1C2 +
∑
j

B1jBj
2 · ξ−∆

2F1

(
∆j,∆j − 1, 2∆j − 2;−ξ−1

)
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Boundary conformal bootstrap program

Equating the two expressions for f12 (ξ) we have found in the bulk and the boundary channel,

f12 (ξ)= (4ξ)−
∆1+∆2

2

[
δ12 +

∑
j

2∆jCj12 Cj · ξ
∆j
2 2F1

(∆j + δ∆

2
,
∆j + δ∆

2
,∆j − 1;−ξ

)]
=

= C1C2 +
∑
j

B1jBj
2 · ξ−∆

2F1

(
∆j,∆j − 1, 2∆j − 2;−ξ−1

)
,

we may extract a set of defect bootstrap equations for the conformal data (Liendo-Rastelli-van Rees, 2012;
Gliozzi-Liendo-Meineri-Rago, 2015; Billò-Gonçalves-Lauria-Meineri, 2016; Liendo-Meneghelli, 2016; Hogervorst,
2017)...

O1 O2

Oj

∑
j

⟨O1O2⟩ = =

O1 O2

Ôj

∑
j
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Boundary conformal bootstrap program

Equating the two expressions for f12 (ξ) we have found in the bulk and the boundary channel,

f12 (ξ)= (4ξ)−
∆1+∆2

2

[
δ12 +

∑
j

2∆jCj12 Cj · ξ
∆j
2 2F1

(∆j + δ∆

2
,
∆j + δ∆

2
,∆j − 1;−ξ

)]
=

= C1C2 +
∑
j

B1jBj
2 · ξ−∆

2F1

(
∆j,∆j − 1, 2∆j − 2;−ξ−1

)
.

For the dCFT that is dual to the D3-D5 intersection, de Leeuw-Ipsen-Kristjansen-Vardinghus-Wilhelm (2017) have
used its domain wall description to compute various bulk-bulk two-point functions at weak ’t Hooft coupling,
then used the bootstrap equations to mine for (unknown) conformal data...

O1 O2

Oj

∑
j

⟨O1O2⟩ = =

O1 O2

Ôj

∑
j
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Correlation functions in CFTs and dCFTs Boundary conformal bootstrap

Bulk-bulk two-point functions in the bulk channel

Let us form the ratio of the (bulk-bulk) dCFT two-point function over the CFT two-point function

⟨O1 (x1)O2 (x2)⟩dCFT =
f12 (ξ)

|z1|∆1 |z2|∆2
, ⟨O1 (x1)O2 (x2)⟩CFT =

δ12

x∆1+∆2
12

, ξ ≡ x2
12

4 |z1| |z2|
,
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Bulk-bulk two-point functions in the bulk channel

Let us form the ratio of the (bulk-bulk) dCFT two-point function over the CFT two-point function

⟨O1 (x1)O2 (x2)⟩dCFT =
f12 (ξ)

|z1|∆1 |z2|∆2
, ⟨O1 (x1)O2 (x2)⟩CFT =

δ12

x∆1+∆2
12

, ξ ≡ x2
12

4 |z1| |z2|
,

getting, in the general case...

⟨O1 (x1)O2 (x2)⟩dCFT
⟨O1 (x1)O2 (x2)⟩CFT

= (4ξ)
∆1+∆2

2 · f12 (ξ)
δ12

.
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Bulk-bulk two-point functions in the bulk channel

Let us form the ratio of the (bulk-bulk) dCFT two-point function over the CFT two-point function

⟨O1 (x1)O2 (x2)⟩dCFT =
f12 (ξ)

|z1|∆1 |z2|∆2
, ⟨O1 (x1)O2 (x2)⟩CFT =

δ12

x∆1+∆2
12

, ξ ≡ x2
12

4 |z1| |z2|
,

in the bulk channel and in the case of a single scalar operator OI of dimension ∆I = L = 2j :

⟨O1 (x1)O2 (x2)⟩dCFT
⟨O1 (x1)O2 (x2)⟩CFT

= 1 + 2LCI12 CI ξ
L
2 · 2F1

(L
2
,
L

2
, L− 1;−ξ

)
.
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Bulk-bulk two-point functions in the bulk channel

Let us form the ratio of the (bulk-bulk) dCFT two-point function over the CFT two-point function
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12

, ξ ≡ x2
12

4 |z1| |z2|
,

in the bulk channel and in the case of a single scalar operator OI of dimension ∆I = L = 2j :

⟨O1 (x1)O2 (x2)⟩dCFT
⟨O1 (x1)O2 (x2)⟩CFT

= 1 + 2LCI12 CI ξ
L
2 · 2F1

(L
2
,
L

2
, L− 1;−ξ

)
.

Expanding around ξ = 0, we obtain

⟨O1 (x1)O2 (x2)⟩dCFT
⟨O1 (x1)O2 (x2)⟩CFT

= 1 + 2LCI12 CI ξj ·

{
1− j2

2j − 1
· ξ + j(j + 1)2

4(2j − 1)
· ξ2 + . . .

}
.
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Bulk-bulk two-point functions in the bulk channel

Let us form the ratio of the (bulk-bulk) dCFT two-point function over the CFT two-point function
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, ⟨O1 (x1)O2 (x2)⟩CFT =

δ12
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4 |z1| |z2|
,

in the bulk channel and in the case of a single scalar operator OI of dimension ∆I = L = 2j :

⟨O1 (x1)O2 (x2)⟩dCFT
⟨O1 (x1)O2 (x2)⟩CFT
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.

Expanding around ξ = 0, we obtain
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⟨O1 (x1)O2 (x2)⟩CFT

= 1 + 2LCI12 CI ξj ·

{
1− j2

2j − 1
· ξ + j(j + 1)2

4(2j − 1)
· ξ2 + . . .

}
.

For the dCFT that is dual to the D3-D5 intersection, we will now verify that this relation holds at strong ’t
Hooft coupling, in the case of two heavy BMN operators (Georgiou-GL-Zoakos, 2023)...
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Bulk-bulk two-point functions in the bulk channel

Let us form the ratio of the (bulk-bulk) dCFT two-point function over the CFT two-point function

⟨O1 (x1)O2 (x2)⟩dCFT =
f12 (ξ)
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δ12
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12

, ξ ≡ x2
12

4 |z1| |z2|
,

in the bulk channel and in the case of a single scalar operator OI of dimension ∆I = L = 2j :

⟨O1 (x1)O2 (x2)⟩dCFT
⟨O1 (x1)O2 (x2)⟩CFT

= 1 + 2LCI12 CI ξ
L
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)
.

Expanding around ξ = 0, we obtain

⟨O1 (x1)O2 (x2)⟩dCFT
⟨O1 (x1)O2 (x2)⟩CFT

= 1 + 2LCI12 CI ξj ·

{
1− j2

2j − 1
· ξ + j(j + 1)2

4(2j − 1)
· ξ2 + . . .

}
.

For the dCFT that is dual to the D3-D5 intersection, we will now verify that this relation holds at strong ’t
Hooft coupling, in the case of two heavy BMN operators (Georgiou-GL-Zoakos, 2023)...

Working in the holographic description of the the dCFT, we need to set up the computation of generic
dCFT correlation functions with semiclassical strings...
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Subsection 4

Conformal anomalies
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Defect anomalies

Even dimensional CFTs (in curved spacetimes) are afflicted by conformal/Weyl anomalies: the trace of the energy-
momentum/stress tensor acquires non-vanishing expectation value that is given by (scheme-independent terms only)...

〈
Tµµ
〉d=2n

=
4

d! Vol[Sd ]
×
[∑

i

ci Ii − (−1)d/2ad Ed

]
, n = 1, 2, . . .

82 / 100



Correlation functions in CFTs and dCFTs Conformal anomalies

Defect anomalies

Even dimensional CFTs (in curved spacetimes) are afflicted by conformal/Weyl anomalies: the trace of the energy-
momentum/stress tensor acquires non-vanishing expectation value that is given by (scheme-independent terms only)...

〈
Tµµ
〉d=2n

=
4

d! Vol[Sd ]
×
[∑

i

ci Ii − (−1)d/2ad Ed

]
, n = 1, 2, . . .

Odd dimensional (compact) spacetimes have no conformal/Weyl (trace) anomalies...〈
Tµµ
〉d=2n+1

= 0, n = 1, 2, . . .
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Defect anomalies

Even dimensional CFTs (in curved spacetimes) are afflicted by conformal/Weyl anomalies: the trace of the energy-
momentum/stress tensor acquires non-vanishing expectation value that is given by (scheme-independent terms only)...

〈
Tµµ
〉d=2n

=
4

d! Vol[Sd ]
×
[∑

i

ci Ii + δ (z)
∑
j

bj Ij − (−1)d/2ad

(
Ed + δ (z)E (bry)

)]
, n = 1, 2, . . .

Odd dimensional (compact) spacetimes have no conformal/Weyl (trace) anomalies...

〈
Tµµ
〉d=2n+1

=
2δ (z)

(d − 1)! Vol[Sd−1]
×
[∑

j

bj Ij + (−1)(d−1)/2ad E̊d−1

]
, n = 1, 2, . . .

The presence of (codimension-1) boundaries gives rise to extra A & B anomaly coefficients (localized on the boundary)...
and extra central charges which can classify defect CFTs (much like central charges classify pure CFTs)...
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(R + 2δ (z)K)
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Defect anomalies

Even dimensional CFTs (in curved spacetimes) are afflicted by conformal/Weyl anomalies: the trace of the energy-
momentum/stress tensor acquires non-vanishing expectation value that is given by (scheme-independent terms only)...

〈
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×
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×
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The presence of (codimension-1) boundaries gives rise to extra A & B anomaly coefficients (localized on the boundary)...
and extra central charges which can classify defect CFTs (much like central charges classify pure CFTs)... Examples:

〈
Tµµ
〉d=2

=
a

2π
(R + 2δ (z)K) ,

〈
Tµµ
〉d=3

=
δ (z)

4π

(
a R̊ + b trK̂2

)
〈
Tµµ
〉d=4

=
1

16π2

(
c W 2

µνρσ − a E4

)
+
δ (z)

16π2

(
a E

(bry)
4 − b1 trK̂

3 − b2 h
pqK̂ rsWpqrs

)
,

where Ed , E̊d−1 are the bulk/boundary Euler densities, and E (bry) the boundary term of the Euler characteristic... Kpq is the
boundary extrinsic curvature, and hpq is the induced metric on the boundary... dimensionalities d = 5, 6 not fully classified
as of now (no nontrivial CFTs in d > 6)...
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Defect anomalies
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where Ed , E̊d−1 are the bulk/boundary Euler densities, and E (bry) the boundary term of the Euler characteristic... Kpq is the
boundary extrinsic curvature, and hpq is the induced metric on the boundary... dimensionalities d = 5, 6 not fully classified
as of now (no nontrivial CFTs in d > 6)... We also define the traceless part of extrinsic curvature:

K̂pq ≡ Kpq −
hpq

d − 1
K , trK̂2 ≡ trK2 −

1

2
K2, trK̂3 ≡ trK3 − K trK2 +

2

9
K3

E4 =
1

4
δµνρσαβγδR

αβ
µν R

γδ
ρσ , E

(bry)
4 = −4δstwpqrK

p
s

(
1

2
Rqr
tw +

2

3
Kq
t K

r
w

)
hµν K̂ρσWµνρσ = Rνρσµ Kρµn

νnσ −
1

2
Rµν (n

µnνK + Kµν) +
1

6
KR, hµρK̂νσWµνρσ = −KpqWnpnq .
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Defect anomalies

Even dimensional CFTs (in curved spacetimes) are afflicted by conformal/Weyl anomalies: the trace of the energy-
momentum/stress tensor acquires non-vanishing expectation value that is given by (scheme-independent terms only)...

〈
Tµµ
〉d=2n

=
4

d! Vol[Sd ]
×
[∑

i

ci Ii + δ (z)
∑
j

bj Ij − (−1)d/2ad

(
Ed + δ (z)E (bry)

)]
, n = 1, 2, . . .

Odd dimensional (compact) spacetimes have no conformal/Weyl (trace) anomalies...

〈
Tµµ
〉d=2n+1

=
2δ (z)

(d − 1)! Vol[Sd−1]
×
[∑

j

bj Ij + (−1)(d−1)/2ad E̊d−1

]
, n = 1, 2, . . .

The presence of (codimension-1) boundaries gives rise to extra A & B anomaly coefficients (localized on the boundary)...
and extra central charges which can classify defect CFTs (much like central charges classify pure CFTs)... Examples:

〈
Tµµ
〉d=2

=
a

2π
(R + 2δ (z)K) ,

〈
Tµµ
〉d=3

=
δ (z)

4π

(
a R̊ + b trK̂2

)
〈
Tµµ
〉d=4

=
1

16π2

(
c W 2

µνρσ − a E4

)
+
δ (z)

16π2

(
a E

(bry)
4 − b1 trK̂

3 − b2 h
pqK̂ rsWpqrs

)
,

where Ed , E̊d−1 are the bulk/boundary Euler densities, and E (bry) the boundary term of the Euler characteristic... Kpq is the
boundary extrinsic curvature, and hpq is the induced metric on the boundary... dimensionalities d = 5, 6 not fully classified
as of now (no nontrivial CFTs in d > 6)...
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a theorems

Type-A anomaly coefficients have been shown (in d = 2, 3, 4) to have the following monotonicity property (a-theorem):

aUV > aIR,

under the renormalization group flow. Here are the main monotonicity properties:

d = 2: the c (or a = c/12) theorem was shown by Zamolodchikov (1986)...

d = 3: the a theorem for the (codimension-1) boundary anomaly coefficient was shown by Jensen-O’Bannon (2015)...

d = 4: the a theorem conjectured by Cardy (1988) and proven by Komargodski-Schwimmer (2001)...

Proofs of the above a-theorems with entanglement entropy have been given by Casini-Huerta (2004), Casini-Landea-Torroba
(2018) and Casini-Teste-Torroba (2017) respectively. The 2d central charge c = 12a also shows up in:

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0, m, n ∈ Z, T =

∞∑
n=−∞

Ln

zn+2
(Virasoro algebra)

⟨T (z1)T (z2)⟩ =
c/2

(z1 − z2)
4
, ⟨T (z1)T (z2)T (z3)⟩ =

c

(z1 − z2)
2 (z2 − z3)

2 (z3 − z1)
2
, T ≡ Tzz

Sthermo =
π

3
c LT + . . . (Cardy, 1986)

SEE =
c

3
ln
ℓ

ϵ
+ . . . (Holzhey-Larsen-Wilczek, 1994 & Calabrese-Cardy, 2004)

where L is the system size, T the temperature, ℓ is the EE interval and ϵ the short-distance cutoff...
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Anomaly coefficients in free theories

Before calculating the A & B anomaly coefficients for the D3-D5 dCFT, let us go through some results for codimension-1:

In d = 2 the relation of the anomaly coefficient a to the central charge is c = 12a... For free scalar & Dirac fields:

as=0 = as=1/2 =
1

12
(see e.g. Cardy, 2004).

In d = 3 there are two new central charges... for free scalars their value depends on the type of boundary conditions
Dirichlet (D) or Robin (R) (Neumann (N) boundary conditions are not consistent with the residual symmetries)...

as=0
∣∣
D
= −

1

96
, as=0

∣∣
R
=

1

96
, as=1/2 = 0, bs=0

∣∣
D/R

=
1

64
, bs=1/2 =

1

32
.

Nozaki-Takayanagi-Ugajin (2012), Jensen-O’Bannon (2015)

In d = 4 there are three new central charges... for free fields, bulk charges are independent of boundary conditions...

as=0 =
1

360
, as=1/2 =

11

360
, as=1 =

31

180
, cs=0 =

1

120
, cs=1/2 =

1

120
, cs=1 =

1

10
,

(see e.g. Birrell-Davies)... For the boundary charges of free fields, b1 generally depends on the boundary conditions...

bs=0
1

∣∣
D
=

2

35
, bs=0

1

∣∣
R
=

2

45
, b

s=1/2
1

∣∣
D/R

=
2

7
, bs=1

1

∣∣
D/R

=
16

35
,

Melmed (1988), Moss (1989)
whereas the (free field) boundary charge b2 is independent of the BCs and proportional to the bulk central charge c:

b2 = 8c. Dowker-Schofield (1990)
Fursaev (2015), Solodukhin (2015)
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Anomalies as observables (bulk)

All types (A, B, C) of anomaly coefficients show up in CFT and dCFT data... For the bulk charges,

In d = 2, the central charge c = 12a shows up in the two and three-point function of the (traceless) stress tensor:

⟨T (z1)T (z2)⟩ =
c/2

(z1 − z2)
4
, ⟨T (z1)T (z2)T (z3)⟩ =

c

(z1 − z2)
2 (z2 − z3)

2 (z3 − z1)
2
,

where T ≡ Tzz, and z ≡ x1 + ix2, z̄ ≡ x1 − ix2 are the holomorphic/anti-holomorphic coordinates.

In d = 4, the central charge c may show up in the two-point function of the (improved!) stress tensor,

⟨Tµν (x1)Tρσ (x2)⟩ =
CT

x812
· Iµνρσ (x1 − x2) .

E.g. for free (scalar, Majorana-Weyl, and vector) fields and N = 4 SYM, the 2-point function coefficient is given by

CT =
N0 + 3N1/2 + 12N1

3π4
.

On the other hand, the (type A & C) conformal anomaly coefficients become:

c =
N0 + 3N1/2 + 12N1

120
=
π4CT

40
, a =

2N0 + 11N1/2 + 124N1

720
,

so that in the case of U(Nc ), N = 4 SYM, all three coefficients turn out to be equal:

a = c =
N2
c

4
=
π4CT

40
.
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Anomalies as observables (boundary)

The boundary charges show up in two and three-point functions of the displacement operator D. In d dimensions,

⟨D (x1)D (x2)⟩ =
cnn

x2d12
, ⟨D (x1)D (x2)D (x3)⟩ =

cnnn

xd12x
d
23x

d
31

.

It can be shown that the single 3d B-type anomaly coefficient and the two 4d B-type anomaly coefficients are given by:

b =
π2

8
cnn, b1 =

2π3

35
cnnn, b2 =

2π4

15
cnn,

whereas there is no known relation for the 3d A-type anomaly coefficient a... Interestingly, the displacement operator
computations confirm the (old) heat kernel results...
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Codimension-1 determinant formulas

Section 8

Codimension-1 determinant formulas
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Codimension-1 determinant formulas D3-D5 domain wall

D3-D5 domain wall

In the so (6) sector of the N = 4 SYM domain wall (dCFT) that is dual to the D3-D5 probe-brane system,

Ck (u; v ;w) = Tk−1 × Q1 (k/2)×

√
Q1 (0)Q1 (1/2)

R2 (0)R2 (1/2)R3 (0)R3 (1/2)
· detG

+

detG−

(modulo the overall factor L−1/2
(
8π2/λ

)L/2
) for fully balanced excitations ui ≡ u1,i , vj ≡ u2,j , wk ≡ u3,k and

Ts ≡
s/2∑

q=−s/2

qL · Q2 (q)Q3 (q)

Q1 (q + 1/2)Q1 (q − 1/2)
.

de Leeuw-Kristjansen-GL (2018)

This formula has also been verified numerically. The M/2×M/2 matrices G±
jk and K±

jk are defined as:

G±
ab,jk = δabδjk

 Lq2
a

u2
a,j + q2

a/4
−

3∑
c=1

⌈N/2⌉∑
l=1

K+
ac,jl

+ K±
ab,jk , K±

ab,jk = K−
ab,jk ±K+

ab,jk

K±
ab,jk ≡

Mab

(ua,j ± ub,k)
2 + 1

4
M2

ab

.
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Some more properties of one-point functions in so (6) (easily reducible to su (2) and su (3)) are:

One-point functions vanish (for all values of k) if M or L+ N+ + N− is odd.

Because Q3 |MPS⟩ = 0, all 1-point functions vanish (for all k) unless all the Bethe roots are fully balanced:{
u1, . . . , uM/2,−u1, . . . ,−uM/2

}{
v1, . . . , vN+/2,−v1, . . . ,−vN+/2, (0)

}
,

{
w1, . . . ,wN−/2,−w1, . . . ,−wN−/2, (0)

}
.
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D3-D5 domain wall

Yet another definition of the norm matrix is the following:

G ≡ ∂JϕI =
∂ϕI

∂uJ
=




[
A1 A2
A2 A1

]
B1 B2 D1
B2 B1 D1

Bt
1 Bt

2
Bt
2 Bt

1
Dt
1 Dt

1

C1 C2 D2
C2 C1 D2
Dt
2 Dt

2 D3


F1 F2 H1
F2 F1 H1
K1 K2 H2
K2 K1 H2
Dt
4 Dt

4 H3

F t
1 F t

2
F t
2 F t

1
Ht
1 Ht

1

K t
1 K t

2 D4
K t
2 K t

1 D4
Ht
2 Ht

2 Ht
3

L1 L2 H4
L2 L1 H4
Ht
4 Ht

4 H5


,

where the submatrices correspond to the norm matrices in the su (2) and su (3) subsectors, while

ϕI ≡
{
ϕ1,i , ϕ2,j , ϕ3,k

}
, i = 1, . . . ,N1, j = 1, . . . ,N2, k = 1, . . . ,N3

uJ ≡
{
u1,i , u2,j , u3,k

}
, I , J = 1, . . . ,N1 + N2 + N3,

and

ϕ1,i= −i log

[(
u1,i − i/2

u1,i + i/2

)L N1∏
j ̸=i

u1,i − u1,j + i

u1,i − u1,j − i

N2∏
k=1

u1,i − u2,k − i
2

u1,i − u2,k + i
2

N3∏
l=1

u1,i − u3,l − i
2

u1,i − u3,l +
i
2

]

ϕ2,i= −i log

[ N2∏
l ̸=i

u2,i − u2,l + i

u2,i − u2,l − i

N1∏
k=1

u2,i − u1,k − i
2

u2,i − u1,k + i
2

]
, ϕ3,i = −i log

[ N3∏
l ̸=i

u3,i − u3,l + i

u3,i − u3,l − i

N1∏
k=1

u3,i − u1,k − i
2

u3,i − u1,k + i
2

]
.
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D3-D5 domain wall

It can be shown that the determinant of the norm matrix factorizes:

detG = detG+ × detG−,

with A± ≡ A1 ± A2 (and so on for B±, C±, F±, K±, L±), while

G+ =


A+ B+ D1 F+ H1

Bt
+ C+ D2 K+ H2

2Dt
1 2Dt

2 D3 2Dt
4 H3

F t
+ K t

+ D4 L+ H4

2Ht
1 2Ht

2 2Ht
3 2Ht

4 H5

 & G− =

 A− B− F−
Bt
− C− K−

F t
− K t

− L−

 .

These forms are fully consistent with the G± matrices we’ve defined in SU(2) and SU(3)... We have checked the
equivalence of the two definitions of the matrices G± for a large number of states...
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These forms are fully consistent with the G± matrices we’ve defined in SU(2) and SU(3)... We have checked the
equivalence of the two definitions of the matrices G± for a large number of states...

Another unproven claim (Escobedo, 2012) is that the norm of any so (6) Bethe eigenstate is given by the following
expression which involves the determinant of the norm matrix:

N (L,N1,N2,N3) = ⟨Ψ|Ψ⟩ = detG ·
M∏
i=1

(
u2i +

1

4

)
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which obviously also shares the above factorization property of G ...
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which obviously also shares the above factorization property of G ... It is rather straightforward to extract the su (2)
and su (3) structure constants and selection rules from so (6)...
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D3-D7 domain wall
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D3-D7 domain wall

In the so (6) sector of the N = 4 SYM domain wall (dCFT), dual to the SO(5) symmetric D3-D7 probe-brane system,

Cn (u; v ;w) = Tn ·

√
Q1 (0)Q1 (1/2)

R2 (0)R2 (1/2)R3 (0)R3 (1/2)
·
detG+

detG−

(modulo the overall factor L−1/2
(
8π2/λ

)L/2
) for fully balanced excitations ui ≡ u1,i , vj ≡ u2,j , wk ≡ u3,k and

Tn =

n/2∑
q=−n/2

(2q)L

[
q∑

p=−n/2

Q1

(
p − 1

2

)
Q1

(
q − 1

2

) Q3 (q)Q3

(
n
2
+ 1
)

Q3 (p)Q3 (p − 1)

][ n/2∑
r=q

Q1

(
r + 1

2

)
Q1

(
q + 1

2

) Q2 (q)Q2

(
n
2
+ 1
)

Q2 (r)Q2 (r + 1)

]
.

de Leeuw-Gombor-Kristjansen-GL-Pozsgay (2019)

This formula has also been verified numerically. The M/2×M/2 matrices G±
jk and K±

jk are defined as:

G±
ab,jk = δabδjk

 Lq2a
u2a,j + q2a/4

−
3∑

c=1

⌈N/2⌉∑
l=1

K+
ac,jl

+ K±
ab,jk , K±

ab,jk = K−
ab,jk ± K+

ab,jk

K±
ab,jk ≡

Mab(
ua,j ± ub,k

)2
+ 1

4
M2

ab

.
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n
2
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)
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de Leeuw-Gombor-Kristjansen-GL-Pozsgay (2019)

Interesting special cases of the D3-D7 determinant formula are obtained for n = 1,

T1 =
(
1 + (−1)L

)
·
Q1 (1)

Q1 (0)
+ (−1)N− ·

Q3 (3/2)

Q3 (1/2)
+ (−1)L+N+ ·

Q2 (3/2)

Q2 (1/2)
,

as well as for n = 2,

T2 = 2L+1 ×
{(

1 + (−1)L
)

2
·
Q1 (3/2)

Q1 (1/2)
+

Q3(2)

R3(0)

[
Q′
1 (1/2)

Q1 (1/2)
−

Q′
3(1)

Q3(1)

]δM/2=odd
+ (−1)L ·

Q2(2)

R2(0)

[
Q′
1 (1/2)

Q1 (1/2)
−

Q′
2(1)

Q2(1)

]δM/2=odd
}
.
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Subsection 3

D2-D4 domain wall
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Codimension-1 determinant formulas D2-D4 domain wall

D2-D4 domain wall

In the su (4) sector of the ABJM domain wall (dCFT) that is dual to the D2-D4 probe-brane system:

Cq (u; v ;w) = Tq ·
Q1 (1/2)Q1 (q − 1/2)√

R2 (0)R2 (1/2)
·
√

detG+

detG− ,

Gombor-Kristjansen (2022)

where

Tq ≡
q−1∑
k=1

(
k

2

)L

·
Q2 (k)

Q1 (k + 1/2)Q1 (k − 1/2)
,

and the G± matrices have been defined above... The Baxter Q and R functions have been defined as:

Qa (x) =

Na∏
i=1

(
i x − ua,i

)
, Ra(x) =

2⌊Na/2⌋∏
i=1

(
i x − ua,i

)
, a = 1, 2, 3.

92 / 100

https://arxiv.org/abs/2207.06866


Chiral primary operators

Section 9

Chiral primary operators

93 / 100



Chiral primary operators

Definition of CPOs

The chiral primary operators (CPO’s) of SU(Nc), N = 4 SYM theory are defined as:

OCPO
I (x) =

1√
L

(
8π2

λ

) L
2

Ψµ1...µL
I tr [φµ1 (x) . . . φµL (x)] , x ≡ {x(0,1,2,3)},

where Ψµ1...µL
I are traceless symmetric tensors of SO(6) defining the S5 spherical harmonics

YI (xµ) ≡ Ψµ1...µL
I xµ1 . . . xµL , Ψµ1...µL

I Ψµ1...µL
J = δIJ ,

9∑
µ=4

x2
µ = 1

and I , J the corresponding quantum numbers. The dual supergravity fields sI have been identified...

S =
4N2

c

(2π)5

∫
d4x dz

√
g

∑
I

AI

2

[
− (∇sI )2 − L(L− 4)s2I

]
+
∑
I ,J,K

1

3
GI ,J,K sI sJsK

 .

Lee-Minwalla-Rangamani-Seiberg (1998)

The overall factor in front of the CPO’s ensures that their 2-point functions are normalized to unity:

⟨OCPO
I (x1)OCPO

J (x2)⟩ =
δIJ
x2L
12

.

Differentiating the definition of YI we may also show

□YI = −L (L+ 4)YI .
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Chiral primary operators SO(3) × SO(3) spherical harmonics

SO(3)× SO(3) invariant spherical harmonics

The definition of the S5 spherical harmonics was given above. Let us now determine the subset of S5 spherical
harmonics that is invariant under the SO(3)× SO(3) subgroup of SO(6)...

The line element of the unit 5-sphere dΩ5 in a manifestly SO(3)× SO(3) invariant way reads:

dΩ2
5 = dψ2 + cos2 ψ

(
dθ2 + sin2 θdφ2

)
+ sin2 ψ

(
dϑ2 + sin2 ϑdχ2

)
,

where ψ ∈ [0, π/2]. The corresponding Cartesian coordinates x4, . . . , x9 are

x4 = cosψ sin θ cosφ, x5 = cosψ sin θ sinφ, x6 = cosψ cos θ,

x7 = sinψ sinϑ cosχ, x8 = sinψ sinϑ sinχ, x9 = sinψ cosϑ.

These obviously obey

9∑
µ=4

x2
µ = 1,

6∑
µ=4

x2
µ = cos2 ψ,

9∑
µ=7

x2
µ = sin2 ψ,

so that the SO(3)× SO(3) invariant spherical harmonics on S5 depend only on the angle ψ.
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Chiral primary operators SO(3) × SO(3) spherical harmonics

SO(3)× SO(3) invariant spherical harmonics

We can compute the spherical harmonics Y (ψ) from the eigenfunctions of the Laplace operator on S5:

□Y =
1

√
ĝs
∂µ
[√

ĝs ĝ
µν∂νY

]
=

1

cos2 ψ sin2 ψ
∂ψ
(
cos2 ψ sin2 ψ∂ψY (ψ)

)
.

Changing variables z = sin2 ψ, the eigenvalue equation □Y = −EY is brought to the following form

z (1− z) ∂2zY (z) +

(
3

2
− 3z

)
∂zY (z) +

E

4
Y (z) = 0.

which is just the hypergeometric equation with solution

E = 2j (2j + 4) , Yj (ψ) = Cj · 2F1

(
− j , j + 2,

3

2
; sin2 ψ

)
, j = 0, 1, . . . ,

where the normalization factor Cj is determined from∫
S5

∣∣Yj

∣∣2 =
1

22j−1 (2j + 1) (2j + 2)

∫
S5

1.

We end up with the general formula,

Yj (ψ) =
(2j + 2)!

2j+
1
2
√

(2j + 1)(2j + 2)

j∑
p=0

(−1)p cos2p ψ sin2j−2p ψ

(2p + 1)!(2j − 2p + 1)!
⇒ Cj = Yj (0) =

(
−
1

2

)j
√

j + 1

2j + 1
.

Comparing the SO(3)× SO(3) eigenvalues with the above SO(6) eigenvalues L(L+ 4), we get L = 2j ...

97 / 100



Chiral primary operators SO(4) spherical harmonics

Subsection 2

SO(4) spherical harmonics
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Chiral primary operators SO(4) spherical harmonics

SO(4) invariant spherical harmonics

Here we determine the subset of S5 spherical harmonics that is invariant under the SO(4) subgroup of SO(6)...

First we write the line element of the unit 5-sphere dΩ5 as:

ds2 = dθ2 + cos2 θ dΩ2
4,

where θ ∈ [−π/2, π/2]. The corresponding Cartesian coordinates x4, . . . , x9 are

xa = m(a−3) cos θ, x9 = sin θ, a = 4, . . . , 8,
5∑

a=1

m2
a = 1,

where the variables ma parametrize the unit 4-sphere, for instance

m1 = c1, m2 = s1c2, m3 = s1s2c3, m4 = s1s2s3c4, m5 = s1s2s3s4,
5∑

a=1

m2
a = 1.

Obviously, the SO(4) invariant spherical harmonics on S5 will depend only on the angle θ...

99 / 100



Chiral primary operators SO(4) spherical harmonics

SO(4) invariant spherical harmonics

Here we determine the subset of S5 spherical harmonics that is invariant under the SO(4) subgroup of SO(6)...

First we write the line element of the unit 5-sphere dΩ5 as:

ds2 = dθ2 + cos2 θ dΩ2
4,

where θ ∈ [−π/2, π/2]. The corresponding Cartesian coordinates x4, . . . , x9 are

xa = m(a−3) cos θ, x9 = sin θ, a = 4, . . . , 8,
5∑

a=1

m2
a = 1,

where the variables ma parametrize the unit 4-sphere, for instance

m1 = c1, m2 = s1c2, m3 = s1s2c3, m4 = s1s2s3c4, m5 = s1s2s3s4,
5∑

a=1

m2
a = 1.

Obviously, the SO(4) invariant spherical harmonics on S5 will depend only on the angle θ...

99 / 100



Chiral primary operators SO(4) spherical harmonics

SO(4) invariant spherical harmonics

As before, we compute the spherical harmonics Y (ψ) from the eigenfunctions of the Laplace operator on S5:

□Y =
1

√
ĝs
∂µ
[√

ĝs ĝ
µν∂νY

]
= sec4 θ ∂θ

(
sec4 θ ∂θY (θ)

)
= −E Y (θ) ,

By changing variables z = (1− sin θ)/2, the eigenvalue equation □Y = −EY can be brought to the following form

z (1− z) ∂2zY (z) +

(
5

2
− 5z

)
∂zY (z) + E Y (z) = 0,

which is again the hypergeometric equation with solution

E = 2j (2j + 4) , Yj (z) = Cj · 2F1

(
− 2j , 2j + 4,

5

2
; z
)
, j = 0, 1, . . . ,

and the normalization factor Cj is determined from∫
S5

∣∣Yj

∣∣2 =
1

22j−1 (2j + 1) (2j + 2)

∫
S5

1.

We end up with the general formula,

Yj (θ) =
1

2j

√
(2j + 2)(2j + 3)

6
·

2j∑
p=0

Γ (5/2)

Γ (p + 5/2)

(2j + p + 3)!(2j)!

(2j − p)!(2j + 3)!p!

(
sin θ − 1

2

)p

⇒ Cj =
1

2j

√
(2j + 2)(2j + 3)

6
.

By comparing the SO(4) eigenvalues with the above SO(6) eigenvalues L(L+ 4), we get again L = 2j ...
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