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Multiparticle quantization of braided Majorana qubits:

- F. T., First quantization of braided Majorana fermions,
Nucl. Phys. B 980 (2022), 115834; arXiv:2203.01776

- F. T., The parastatistics of braided Majorana fermions,
SciPost Phys. Proc. 14, 046 (2023); arXiv:2312.06693
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Fundamental ingredients:

The mathematical framework for braids appeared in:

- L. Kauffman and H. Saleur, Free fermions and the Alexander-Conway
polynomial, Comm. Math. Phys. 141, 293 (1991).

Parastatistics recovered from graded Hopf algebras endowed with a
braided tensor product:

- S. Majid, Foundations of Quantum Group Theory,
Cambridge University Press, Cambridge (1995).
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Recent results:

- F.T., Volichenko-type metasymmetry of braided Majorana qubits,
arXiv:2406.00876

1 - Quantum group interpretation of the roots of unity truncations recovered
from a (superselected) set of reps of the quantum superalgebra U (0sp(1]2));

2 - Reconstruction, via suitable intertwining operators, of the braided tensor
products as ordinary tensor products;

3 - Introduction of mixed-brackets for the braided creation/annihilation
operators which define generalized Heisenberg-Lie algebras;

4 - Braided creation/annihilation operators as (meta)symmetries of ordinary
differential equations given by matrix Schrodinger equations in 0 + 1 dimension;

5 - Special case of a third root of unity truncation, a nonminimal realization of

the intertwining operators defines the system as a ternary algebra.

4/61



Symmetries wider than supersymmetry:

Volume 252, number | PHYSICS LETTERS B 6 December 1990

Metasymmetry and Volichenko algebras

D. Leites and V. Serganova '
Department of Mathematics, Stockholm University, Box 6701, S-11385 Stockholm, Sweden

Received 12 April 1990; revised ipt received 14 September 1990

We continue the study of a generalization of supermanifolds (called here metamanifolds) on which “functions™ form a meta-

belian algebra (one for which [(x, ¥], z] =0). The usual supersp idered as and some conventional lagran-
geans have a sy y wider than supersy ry. Infinitesimal f ions of these itute Volichenko al-
gebras, The Volichenko algebras are natural lizations of Lie Iget Here we classify simple finite-dimensional complex
Volichenko algebras (under a technical hypothesis). Their list is as discrete as the list of simple Lie superalgebras. The results
may be significant for applications to physics in ion with istics.
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What is a Majorana qubit:

A Z»-graded qubit describes the Hilbert space HD of a single Majorana
fermion. |vac) is the bosonic vacuum and |1)) is the fermionic excited state:

weyi=(5 ) w=(9)

The 2 x 2 matrix operators acting on the graded qubit are:

10 01 0 0 0 0
=(o0) =(50) =(10) =(a1)

where «, § are even (bosonic) and 3, are odd (fermionic) matrices.
Their (anti)commutators define the gl(1|1) superalgebra:

[OQB] = 67 [0‘77] == [057(5] =0, [67 ﬂ] = _6: [67 '7] =7,
{88} = {7} =0, {B,7}=a+4.

The Z»-grading is given by

gl(1]1) = ol(1[1) @ gl(1[1)y,  with a,d € gl(1|1)g and B, € gl(1|1)n.



The matrices v, 8 are a pair of fermionic creation/annihilation operators:

{7»7}:{6’[3}:07 {’7%6}:]127 5‘V3C>:07 ‘w>:’7‘vac>'

Since bosons/fermions are superselected, the linear superposition of states
belonging to different graded sectors is not allowed. Therefore, the Hilbert
space is graded:

(1) _ 441) (€ — 11
HY = 7—[[0] ® H[l] = C'".
The elements of its even and odd sectors are
col|vac) € H&), aly) € 7-1,}11]), with @, c € C.

A physical state is recovered by taking into account the irrelevance of the
phase of a normalized vector. The above system describes two inequivalent
physical states which are just |vac) and [¢).

They correspond to a classical 1 bit of information (off/on states).

Just like the physically inequivalent states of an ordinary qubit are specified by
points of the S Bloch sphere, Z* (which is equivalent to a classical bit)
represents “the Bloch sphere of the graded qubit”.

The single-particle quantum Hamiltonian can be taken to be

H = 7,826:(8 2)

Then 0 is the vacuum energy and 1 the energy eigenvalue of-the excited-state:
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The multi-particle Hilbert space

The Zy-graded N-particle Hilbert space H™ is a subset of the tensor product
of N single-particle Hilbert spaces HO =t

HM o BN,

The N-particle vacuum |vac)n is the tensor product of N single-particle vacua:

[vac)y = |vac)®...® |vac) (N times).

The construction of the multiparticle observables and excited states is

made in terms of an operation, the coproduct, defined for a Hopf algebra.

In our case the Hopf algebra is a Universal Enveloping Algebra (denoted as
U = U(g)) of a graded Lie algebra.

A Hopf algebra is characterized by compatible structures (unit and

multiplication), costructures (counit and coproduct) and antipode.
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The coproduct A is a map
A U—=-URU
which satisfies the coassociativity property
(A®id)A(U) = (id® A)A(U) for Uel,
AT = (A®id)A" = (id® A)A.
For any Ua, Ug € U, the further property
A(UaUg) = A(Ua)A(Us)

implies that the action on any given U € U(g) is recovered from the action of
the coproduct on the Hopf algebra unit 1 and the Lie algebra elements g € g:

Al)=1@1, Alg)=10g+g®l.

Let R be a representation of the Universal Enveloping Algebra &/ on a vector
space V. The representation of the operators induced by the coproduct will be
denoted with a hat:

—

for R:U—V, A:=AlgeEnd(VaV), with AU)eVaV.



The coassociativity implies

AMU) € V®...9V  (n+1 times).

The N-particle Hamiltonians Hy) are obtained by applying the N-particle
coproducts A=Y to the single-particle Hamiltonian H = §;

an N-particle excited state is created by applying AN~ to the creation
operator y:

Hoy = AN-D(5), gy = AB-D(y),

For N=2,3,..., we get:

Hoy = L®i+ixl,
Hz = LoLei+LeiIoh+i0hl,
Y2y = Lev+vI,
139 = LOLe®y+LeyeL+vy®L®l

and so on.
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The braided tensor product

The introduction of a non-trivial braiding requires specifying how Lie
superalgebra generators are braided in a tensor product.

Let a, b, ¢, d be four generators of a Lie superalgebra represented by
n-dimensional matrices. The braiding is expressed as

“a@b}(c@d):(a®HJ~WUyd-ﬂn®dL‘

W(b,c) is a n* x n* matrix which encodes the braiding of b and c.
The dots in the right hand side denote ordinary matrix multiplication.
W(b, c) needs to satisfy certain braiding conditions.

For braided Majorana fermions we only need to specify the braidings of § and ~.

The unique nontrivial braiding matrix is W(~,v) which encodes the braiding
properties of the Majorana fermions (since + is their creation operator):

\wa®:5®& V(6,7) =@, w%®=5®ﬂ

and

’ V(y,7) = We(v,7), where, for t € C*, Wi(v,7) =Bi-7®7. \
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B: is a 4 x 4 constant matrix which depends on the parameter t # 0 and
satisfies the braiding conditions; the dot in the r.h.s. denotes the standard
matrix multiplication. C* = C\{0} is the punctured complex plane without
the origin.

A consistent choice for B; is

1 0 0 0
0 1—-t t O
B = 0 1 0 0
0 0 0 -t

B: is related to both the Burau representation of the braid group and the
R-matrix of the quantum group Uq(gl(1|1)).

The consistency is the braid relation satisfied by B;:

[(B:®D) (L@ B) (Bi®L)=(L®B) (B:® L) (L B). |
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Properties

| - B; is dynamically compatible, since it commutes with the 2-particle

Hamiltonian Hy:
[H(Q)., Bt] = 0

Il - for any integer N, the N-particle creation operator ~y(y) creates one
quantum of energy:

’ (Hiwys vl = vwy- ‘

Il - B; is bosonic. The even (odd) nonvanishing entries of the gl(1]1)
generators can be expressed as bullets (stars); in the tensor products we get

/N
* @
o ¥
~
&
I/
* @
o x
~
Il
e x % ®
* © @ %
*x ®© @ %
e x % ®
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Truncations at roots of unity:

The t roots of unity which satisfy the polynomial equations produce
truncations in multiparticle Hilbert spaces (and corresponding energy spectra)
of the braided Majorana fermions.

The braided tensor product implies that

[(L®7) (781L) = Vi(y,7) = —t7® 7.

By taking into account that 4> = 0 simple computations show that, for
N = 2,3, the only nonvanishing powers of 7y are

Yo = 1 (Levy+y®Lh),

Ty = (1—1)-(ve9),

1 = 1 (Lehey+LeydL+7eLeh),
T = 1-t) Le797+70Le®y+7®vRL),
Ny = -D1-t+) - (yeye).
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Important notion: “root of unity level”

A “level-k" root of unity, for k = 2,3,4,..., a solution tx of the bi(tx) =0
equation such that, for any k' < k, by (t«) # 0.

Physical significance of a level-k root of unity: the corresponding braided
multiparticle Hilbert space can accommodate at most k — 1 Majorana spinors.

The special point t = 1, being the solution of the by(t) =1 — t = 0 equation,
is a level-2 root of unity.

It givesthe ordinary total antisymmetrization of the fermionic wavefunctions.
The t =1 level-2 root of unity encodes the Pauli exclusion principle of ordinary
fermions.

With an abuse of language, the t = —1 root of unity, which does not solve any

bi(t) = 0 equation, can be called a root of unity of oo level.
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Example: the 5 roots of bg(t) =1 —t +t2 — 3+ t* — t°
are classified, for t = exp(if), into:

level-2 root, § = 0,
level-3 roots # = 7/3 and 57/3,
level-6 roots # = 27/3 and 47/3.

Physical significance of the level:

| - truncation of the energy spectrum: a level k root
accommodates at most k inequivalent energy levels in the
multiparticle states.

Il - statistics’ viewpoint: a level k root implies that at most
k — 1 Majorana parafermions can be created.

Comment: the lowest level k = 2 for t = 1 implies that the
Majorana particles are ordinary fermions obeying the Pauli
exclusion principle.

16
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Roots of unity, levels up to 3:
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Roots of unity, levels up to 4:

/61



Roots of unity, levels up to 6:
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Roots of unity, levels up to 8:
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Comment: the multiparticle energy spectra only depend on the
“roots of unity levels”.

Let’s present some tables
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Level k = 2 root of unity: t = 1; the N-particle energy levels are

E\WW| 1|2 |3|4|5|6]|7
2
1 X[ X[ X|X|X|X|X
0 X| X | XX | X|X]|X

Comment: this table corresponds to the ordinary, totally antisymmetrized,
Majorana fermions, with only E = 0,1 energy eigenvalues for any N.

Level k = 3 roots of unity, given by t = e’ with ¥ = %T{', %ﬂ':
E\N|1|2|3|4|5|6]|7
3
2 X[ X|X|X|X|X
1 X[ XX |X|X]|X|X
0 [ X|X|X|X|X|X]|X

Comment: the energy eigenvalues are E = 0, 1,2 for any multiparticle sector

with N > 2.

22/
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_ : : i _1_ 3.
Level k = 4 roots of unity, given by t = e with ¥ = 5, 5

[EW[1[2[3[4][5[6][7]
4

3
2
1
0

x| x| x|
x| x| x| >
x| x| x| >
x| x| x| %
x| x| x| *

X
X | X
X | X

Comment: a “plateau” is reached; starting from N > 3 the energy eigenvalues
are E=10,1,2,3.

Sr, I, 2

P 0 1
Level k = 5 roots of unity given by t = €', ¥ = zm, zm, ¢, ¢

EWW[1[2[3[4]5]6]7
5

4 XX [X][X
3 X[ X[ X[ X[X
2 X[ X[ X[X[X[X
I [ X[ X[ X[X[X[X]|X
0 | X|X[X|[X[X[X[X

Comment: the plateau is shifted at N > 4, with energy eigenvalues
E=0,1,2,3,4.
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General formulas:

Truncated cases at level-k: N-particle energy eigenvalues E given by

E = 01,...,N for N <k,
E = 01,....,k—1 for N> k.

Comment: the plateau is reached for the maximal energy level k — 1; this is the
maximal number of braided Majorana fermions that can be accommodated in a
multiparticle Hilbert space.

Untruncated case for t = —1 (level-c0):

E = 01,...,N for any N.

Comment: there is no plateau; the energy eigenvalues grow linearly with N.
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Il - solutions of open questions and new results
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Convenient parametrization of roots of unity levels

Set for t belonging to the |t| = 1 unit circle:

t = —e?"8, for real values g € [0,1].

Level-s roots of unity Ls and the Lo, untruncated case are given by

r
Ls : g= B with r, s mutually prime integers,

Lo : g=0.
At the first orders the g values are

LOQZO; L2:1' L3—

1 2.
2 33 L=

[SILN)
Gllw
ol

Q=

The physics only depends on the s level and not on a given particular
representative; without loss of generality one can set r = 1, so that

1 .
Ls &= and t; = (G,

The g = 0 case of the untruncated L., level is recovered in the limit

g~ = lim g =0.

5— 00
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A quantum group derivation of the truncations
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Naively one could expect to directly work with the quantum superalgebra
Uq(gl(1]1)). This option is not viable: the creation operator ~y entering is
nilpotent and the same is true for its U, (gl(1|1)) quantum group counterpart.
Due to the homomorphism of the coproduct, we get the nilpotent quantum
group expression Aq(7)? = Ag(7) - Aq(7) = Ag(7?) = 0 for the Uy(gl(1]1))
coproduct.

On the other hand a nonvanishing (A(7))? # 0 coproduct induced by the
braiding is essential to produce the multi-particle spectra of the braided
Majorana qubits. Clearly, some other construction has to be done.

The solution is found by working within the quantum superalgebra
Uq(0sp(1]2)), inducing the multi-particle states by applying its coproduct to a
specific representation and, furthermore, implementing a consistent
superselection of the energy spectra. These steps allow to recover the

multi-particle spectra of the braided Majorana qubits.
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Another realization of the building blocks:

braided tensors via intertwining operators
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The braiding relation

(L @pry) (v @) ==t(y Qb 2) - (I @b y) = —t(y Rbry)-

can be expressed in terms of an ordinary tensor product ® by introducing a
suitably defined intertwining operator W;:

(v ®pr ) =1, (L ®bry) = W@ 7.
The mappings

(L @) (v @) = (We®7) (y@L)= W)@y
(v @) - (l2 ®ry) = (v®L)- (We®7)=(W) @y
imply a consistency condition for the 2 x 2 interwining operator W; given by
Wey = (=thyWe
A solution, expressed in terms of the t = —e*™ position, is

W: = cos(—ng)- 1o+ isin(—mg)- X, where X = ( (1) _01 )

New building blocks:
2P . Al =90, Al =W, @

3P © Bli=y9Loh, Bl =W, oyoh B =WoWo-y.
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The 2-particle creation and annihilation operators belong to a non-standard odd
sector of a Zs-graded decomposition of 4 X 4 matrices: the nonvanishing entries

(denoted with “x") of the even (odd) sector My (M:) are accommodated in

* 0 0 = 0 = x O

| 0 % % 0 _ x 0 0 =*
Mo = 0 = x 0 My = *x 0 0 =
* 0 0 = 0 = x O

The Z, grading is respected since
M; - Mj = M} for i,j=0,1, with i+j=0,1 mod 2.

The 2-particle creation building blocks AI, Az and their conjugate are

0000 0 0 0 0
+ oo oo i | e™ 0 0 o0
A=1100 0| A = o o o0 0 |
01 00 0 0 €™ 0
0 010 0 €™ 0 0
0 0 0 1 0 0 0 0
A=1900 0| =10 o 0 e
0000 0 0 0 0
An even 4 X 4 central charge c is defined as ¢ = diag(1,1,1,1).
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Leites-Serganova introduced in 1990 the notions of:
metamanifold, metaspace, metasymmetry,
Volichenko algebra

Metasymmetries are transformations acting on “metaspaces”: they do not
respect even/odd gradings and generalize the Z,-grading preserving symmetries
of ordinary superalgebras.

They lead to “mixed-brackets” which interpolate ordinary
commutators/anticommutators.

They are impllemented in Volichenko algebras which are “metabelian”:
(metabelianess means that for any x, y, z triple of operators the ordinary
[[x,y], z] = 0 commutators are vanishing.

The operators entering the mixed-brackets generalized Heisenberg-Lie algebras
do not satisfy the metabelianess condition: they are not Volichenko (just the
2-particle subalgebras spanned by either the creation or the annihilation
operators are).

Despite of that the notion of metasymmetry can be applied to the

mixed-brackets Heisenberg-Lie algebras.
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from Leites-Serganova, NATO ARW Proc., Kiev 2000:

1.3. An intriguing example: the general Volichenko algebra vgl, (p|g). Let
the space b of vgl, (p|q) be the space of (p + ¢) x (p + g)-matrices divided into
the two subspaces as follows:

ba={gg};bi={glg}- (1.3.1)

Here b is a natural f3-module with respect to the bracket of matrices; fix a,b € C
such thata : b = u € CP! and define the multiplication h; X by — by by the
formula

[X,Y] = a[X,Y]- +b[X,Y], forany X,Y € b;. (1.3.2)

(The subscript — or + indicates the commutator and the anticommutator, respec-
tively.) As we sill see, b is a simple Volichenko algebra for any a,b except for
ab = 0 when it becomes isomorphic to either the Lie algebra gl(p + ¢) or the Lie
superalgebra gl(p|q). To show that vg[,(p|q) is indeed a Volichenko algebra, we
have to realize it as a subalgebra of a Lie superalgebra. This is done in heading 2
of Theorem 2.7.
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Introduction of the

“mixed-brackets”
generalized fermionic Heisenberg-Lie algebras

(satisfied by the creation/annihilation operators
of the multiparticle braided Majorana qubits)

Here: 2-particle example
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Definition

For two operators A, B, the mixed-bracket is defined as

(A, B)

OaB

with the angle 045 to be determined.

Property:

(B7A)_9AB = (A>B)9AB‘

= isin HAB[A, B] -+ cos QAB{A, B}
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Level-s 2-particle operators:

0000 0 0 0 o0
—im/s
+ oo oo i ] e 0 0 O
A=l 1000 |0 ™= o o o o |’
01 00 0 0 € 0
0010 0 & 0 0
00 0 1 0 0 0 0
A=  00 0 | Az = 0 0 0 e/ |
00 00 0 0 0 O

c = diag(1,1,1,1).
Rename them:
Go=c G=Al G=Al G=A4s G =A,.
Mixed-brackets:

(G/,GJ) for I,J:0,1,2,3,4.

01
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Level-s 2-particle generalized fermionic Heisenberg-Lie algebra:

(G1, G3)oys = (G3, G1)os, = (G2, Ga)g,, = (Ga, G2)p,, = Go.

All other (G;, G,)p,, brackets are vanishing.

Determination of the 6, angles:

2
Oy = S;; Ty - (v —vy).

where py, piy, vy, vy are determined as follows
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Let
1 . 1.
N, = —5 diad(1,1, -1, -1), Nr = —Ed/ag(l, -1,1,-1)
and define for a given operator G:
[N, G] = \.G, [Ng, G] = \rG.
We can set
L=+ As, v=A\ — A3

The corresponding i/, v values for G are read from the table

uwo| v
G| O 0
G| 1 1
G| 1 |-1
G|-1|1
G| -1 | -1
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Comments:

The generalized mixed-brackets level-s multiparticle Heisenberg-Lie algebras
have formally the same presentation of the ordinary Heisenberg-Lie algebras.

The 2-particle construction is immediately generalized to the N-particle case.

We get

(Ai, A)) =Jjj-c=20;-1 (all other brackets are vanishing)

for the suitable angles entering (-, -).
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The s — oo limit which reproduces
a bosonic spectrum for the graded Majorana qubits

In that limit the 2-particle operators are:

Al

Ay =

[eNeoNel SN oNoNeNe
O OO OO0 O0oOOo

OO OO OO o
OO OO = OOoOOo

OO OO O+ OO
OO OO = OOOo
OO O+ OOO0OOoO
OO, O OOOoOOo

c =diag(1,1,1,1).

They close a Z;, x Zj-graded extension of the 2-particle fermionic Heisenberg

algebra:
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Zo x Zo-graded Lie superalgebra with grading assignment:

c €00 (boson),
A, Al €10 (parafermions),
A, Al € 01 (parafermions),
ell (empty exotic boson sector).

{AlvAI} = {A27A§} =G
{A1, AL} = {As, A} = {ALL AT} = {A], Al} =0,
[A1, A2] = [Ar, Al = [A]L As] = [A] Al] = o,
[Cv*] =0.



Dynamical “metasymmetry” of the

mixed-brackets Heisenberg-Lie algebras
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The mixed-brackets generalizations of the fermionic Heisenberg-Lie algebras
appear as dynamical symmetry of Ordinary Differential Equations given by
Matrix Schrodinger equations in 0 + 1 dimensions.

2-particle example: Matrix Schrodinger equation
(I'at - — Hz)\U(t) = 07
where H, = diag(0,1,1,2) and W(t) is a 4-component vector.

The W;(t) solutions can be expressed in terms of the creation (Al, Al) and
annihilation (A1, A2) operators defined for the given angle 7g:

Voo(t) = woo, where vgp = (1,0,0,0),

Vi(t) = ef"tA}L Voo = ef"tvm7 where v1£ =(0,0,1,0),

Voi(t) = ef"tAg Voo = e vt where vg; = (0, ™0, 0),

Vi(t) = e AlAlvo = e vy, where v{} = (0,0,0, ™).
By setting

Sf=eAl,  Sl=eTAl, S =e€"A, S =etA,
we end up with four plus one symmetry operators (the extra operator being
the 4 x 4 identity operator ¢ := I4) satisfying
[S:,i0: s —H)] = 0 for S, =S, SI, S, S, c.
These operators close the 2-particle mixed-bracket generalization of the

fermionic Heisenberg-Lie algebra.
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Nonminimal realization of the intertwining operators:

Connection with ternary algebras

In the minimal matrix representation, the N-particle sector of the braided
Majorana qubits is realized by 2V x 2V matrices. Equivalent descriptions which
produce isomorphic Hilbert spaces can be obtained from nonminimal
representations.

Let's consider the third root of unity; an example of a set of nonminimal
representations is given by 2 - 6"~ x 2. 6"~ matrices. Unlike the minimal
representations with the special third root of unity case this nonminimal set

encodes a Z3 ternary grading.
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The ternary construction of the braided Majorana qubits employs tensor

products of the three 3 x 3 matrices Q; (defined for j = 5™ with i#=1)and
their QiT hermitian conjugates:

0 10 0 j 0 01 0
Q= 0 0 J Q= 0 0 1 Q= 0 0 1 |,

2 00 2 00 1 00

0 0 0 0 j 0 0 1
Q=10 0 Q=(/400], @&=|100

0 /2 0 0 10 010

A consistent Z3 grading can be assigned by setting, mod 3,
deg(Q) =1, deg(Q) =2, for i =1,2,3.
The non-minimal building blocks of the braided 2-particle are
ZI =70L® Q, Z; =70L® Q. A =”YT®]I2®QL A =’YT®H2®Q2T~

They satisfy the same relations as their minimal counterparts.
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Note about quons:
The "mixed brackets” which interpolate commutators and anticommutators
can be defined for other types of parastatistics. The most notable example is
the algebra of quons introduced by Greenberg and Mohapatra. Quons are
g-deformed oscillators, defined for —1 < g < 1 which interpolate between
fermions (¢ = —1) and bosons (¢ = 1). The “g-mutators” of n

creation/annihilation a;, a; quons, with i =1,2,..., n are defined to satisfy
a,-aJT — qajaj = 0y

It is a trivial exercise to express the g-mutator of one (n = 1) quon as a mixed
bracket, interpolating commutator and anticommutator. One has to set

aa' —ga'la=1 &  cos’(0,)-[a,a'] +sin’(0y) - {a,a'} =1,

where the angle 64, comprised in the range 6, € [0,7/2], is given by

0q = arcsin <1/ 1—2q> , (g =1—2sin’0,).

The Volichenko-type mixed brackets which define the generalized fermionic
Heisenberg-Lie algebras and give the multi-particle parastatistics of the braided

Majorana qubits is not reproduced by the the quonic “mixed brackets”
formulas.
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Braid statistics (anyons) have been experimentally observed
in two-dimensional material. They can also have relevant
applications.

What about parastatistics?
(beyond bosons/fermions in any D)

(Permutation group, not braid group, with 5% =1)
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Along the years some arguments have been put forward to
explain why fundamental paraparticles have not been
observed in Nature.

Main idea: paraparticles are not observable because they can
be reproduced by ordinary particles

(Conventionality of parastatistics’ argument)

A nice and nuanced discussion is found in the following paper
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The Conventionality of Parastatistics

David John Baker
Hans Halvorson

Noel Swanson*

March 6, 2014

Abstract

Nature seems to be such that we can describe it accurately with quantum theories
of bosons and fermions alone, without resort to parastatistics. This has been seen as
a deep mystery: paraparticles make perfect physical sense, so why don’t we see them
in nature? We consider one potential answer: every paraparticle theory is physically
equivalent to some theory of bosons or fermions, making the absence of paraparticles
in our theories a matter of convention rather than a mysterious empirical discovery.
We argue that this equivalence thesis holds in all physically admissible quantum field
theories falling under the domain of the rigorous Doplicher-Haag-Roberts approach to

perselection rules. Inadmissible f istical theories are ruled out by a locality-
inspired principle we call Charge Recombination.
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Zy %X Zy-graded superalgebras

00| 10 | 01 | 11

Comment. In Z; x Z,-graded superalgebra physics the
particles are accommodated in 2 bits of information:

- ordinary bosons (00),

- exotic bosons (11),

- parafermions of (10) type,
- parafermions of (01) type.
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1. arXiv:2308.05203 [pdf, other] cond-mat.stat-mech  hep-th  math-ph

Free particles beyond fermions and bosons

Authors: Zhiyuan Wang, Kaden R. A. Hazzard

Abstract: It is commonly believed that there are only two types of particle exchange statistics in
quantum mechanics, fermions and bosons, with the exception of anyons in two dimension. In
principle, a second exception known as parastatistics, which extends outside of two dimensions,
has been considered but was believed to be physically equivalent to fermions and bosons. In this
paper we show that nontrivia... */ More
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1. arXiv:2309.00965 [pdf, other] cond-mat.stat-mech ~ math-ph  quant-ph

Inequivalent ZJ'-graded brackets, n-bit parastatistics and statistical
transmutations of supersymmetric quantum mechanics

Authors: M. M. Balbino, I. P. de Freitas, R. G. Rana, F. Toppan

Abstract: Given an associative ring of Z}'-graded operators, the number of inequivalent brackets
of Lie-type which are compatible with the grading and satisfy graded Jacobi identities is

b, = n -+ |n/2] + 1. This follows from the Rittenberg-Wyler and Scheunert analysis of "color"
Lie (super)algebras which is revisited here in terms of Boolean logic gates. The inequivalent
brackets, recovered f... 7/ More

Submitted 2 September, 2023; originally announced September 2023.

Comments: 57 pages, 16 figures
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1. arXiv:2108.05471 [pdf, other]

Experimental realization of para-particle oscillators

Authors: C. Huerta Alderete, Alaina M. Green, Nhung H. Nguyen, Yingyue Zhu, B. M. Rodriguez-
Lara, Norbert M. Linke

Abstract: Para-particles are fascinating because they are neither bosons nor fermions. While
unlikely to be found in nature, they might represent accurate descriptions of physical phenomena
like topological phases of matter. We report the quantum simulation of para-particle oscillators
by tailoring the native couplings of two orthogonal motional modes of a trapped ion. Our system
reproduces the dynamics of... V More
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1. arXiv:2207.02430 [pdf, other]

Para-particle oscillator simulations on a trapped ion quantum computer

Authors: C. Huerta Alderete, Alaina M. Green, Nhung H. Nguyen, Yingyue Zhu, Norbert M. Linke,
B. M. Rodriguez-Lara

Abstract: Deformed oscillators allow for a generalization of the standard fermions and bosons,
namely, for the description of para-particles. Such particles, while indiscernible in nature, can
represent good candidates for descriptions of physical phenomena like topological phases of
matter. Here, we report the digital quantum simulation of para-particle oscillators by mapping
para-particle states to the st... 'V More
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