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Large hierarchies in particle physics and cosmology

Particle physics: why gravity appears so weak compared to other forces?

Mp/Mw ∼ 1016

Cosmology: why the Universe is so large compared to our causal horizon?

at least 1026 larger

Possible connection: through large extra dimensions

their existence is required in string theory

Large size extra dimensions => low scale quantum gravity

Mp = M∗(2πRM∗)
d/2 : RM∗ >> 1 => M∗ << Mp

Horizon problem can be explained by a period of inflation↗
expansion rate faster than speed of light

Extra dimensions may obtain large size by higher-dim inflation
Anchordoqui-IA-Lust ’22
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Compact dimensions and inflation

If 4d inflation occurs for fixed size extra dimensions =>

H <∼ 1/R (Higuchi bound) => R < 10−16 cm for H >∼ TeV

For larger sizes there are 2 possibilities:

=>





- R gets a large value by a potential after the end of inflation

- extra dimensions expand with time

from R0 ∼ M−1
∗ to ∼R0

(
Mp

M∗

)2/d
to explain the mass hierarchy

Question: can uniform (4 + d) inflation relate the 2 hierarchies?

size of the observable universe to the observed weakness of gravity

compared to the fundamental (gravity/string) scale M∗

Anchordoqui-IA ’93
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4D decomposition of higher-dim metric

Start with (4 + d)-dim gravity with d compact dimensions of size R:

S4+d =

∫
[d4x ] [ddy ]

(
1

2
M2+d
∗ R(4+d) − Λ4+d

)

4D decomposition in the Einstein frame:

ds2
4+d =

(
r
R

)d
ds2

4 +
(

R
R0

)2
ds2

d r ≡ 〈R〉final =>
↖
internal volume normalised to (2πR0)d

S4 =

∫
[d4x ]

(
1

2
M2

pR(4) − d(d + 2)

4
M2

p

(
∂R

R

)2

− (2πr)2d Λ4+d

(2πR)d

)

M2
p = M2+d

∗ (2πr)d ; scalar potential: V =
M2

p

M2+d
∗

Λ4+d

(R/r)d
[14]
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maximal symmetric solution: (4 + d)-dim de Sitter

ds2
4+d = â2

4+d(τ)(−dτ2 + d~x2 + dy2)

â4+d(τ) =
1

Hτ
H2 =

2Λ4+d

(3 + d)(2 + d)M2+d
∗

=

(
R0

R

)d

ds2
4 +

(
R

R0

)2

dy2 ; ds2
4 = a2(τ)(−dτ2 + d~x2)

↗
a
(
τ0 = H−1

)
= 1 ; a (τend) = (r/R0)1+ d

2 =>

a(τ) =

(
R(τ)

R0

)1+ d
2

= â1+ d
2 (τ) ;

R(τ)

R0
= â(τ) = a

2
2+d (τ)

N̂ e-folds in (4 + d)-dims => N =
(
1 + d

2

)
N̂ e-folds in 4D
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Large extra dimensions from higher-dim inflation

Solution to the Horizon problem: N >∼ 30− 60 (Nmin ∼ ln MI
eV )

M2
p = (2πr)dM2+d

∗ ; r = R0 a
2

2+d = R0 e
2N

2+d =>

M∗ = Mpe
− dN

2+d <∼ 1013 GeV

Impose M∗ = Mp e
−dN/(2+d) >∼ 10 TeV

>∼ 108 GeV for d = 1 (r <∼ 30µm)

>∼ 106 GeV for d = 2 (r−1 >∼ 10 keV)

=> the horizon problem is solved for any d

14 (ln 10) ≥ d

d + 2
N => N <∼ 32

(
1 +

2

d

)
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4D decomposition of (4 + d) dimensional de Sitter

Higher-dim proper time t̂ = −H−1 ln(Hτ)

â(t̂) = eHt̂ => a(t̂) = e(1+d/2)Ht̂ ; R(t̂) = R0e
Ht̂

However 4D proper time t 6= t̂ since a(τ) = (Hτ)−(1+d/2):

exponential expansion in higher-dims => power low inflation in 4D

Ht =
2

d
(Hτ)−

d
2 => a(t) =

(
d

2
Ht

)1+ 2
d

; R(t) = R0

(
d

2
Ht

) 2
d

d = 1 : a(t) ∼ (Ht)3 ; R(t) ∼ R0(Ht)2

d = 2 : a(t) = (Ht)2 ; R(t) = R0Ht
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Precision of CMB power spectrum measurement

Physical distances change from higher to 4 dims

equal time distance between two points in 3-space

dτphys(x , x
′) = d(x , x ′) a(τ) = d(x , x ′) â(τ)

(
R
R0

)d/2
= d̂τphys(x , x

′)
Mp(τ)
M∗↖

co-moving distance

precision of CMB data: angles <∼ 10 degrees, distances <∼ Mpc (Gpc today)

Mpc → Mkm at MI ∼ TeV with radiation dominated expansion

×TeV/MI at a higher inflation scaleMI ∼ M∗

×M∗/MP conversion to higher-dim distances

}
× TeV/Mp

' micron scale => d = 1 is singled out! withM∗ ∼ 109 GeV

d > 1: needs a period of 4D inflation for generating scale invariant

density perturbations
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Density perturbations from 5D inflation

inflaton (during inflation) ' massless minimally coupled scalar in dS space

=> logarithmic growth at large distances (compared to the horizon H−1)

scale invariant (flat) power spectrum at low momenta

Equal time 2-point function in momentum space at late cosmic time

〈Φ2(k̂ , τ)〉 =
πτ

4 â3

[
J2
ν (k̂τ) + Y 2

ν (k̂τ)
]

; ν =
D − 1

2
= 2

τ → 0 : ' 4

π

H3

(k̂2)2
; k̂2 = k2 + n2/R2

0

2-point function on the Standard Model brane (located at y = 0):

∑

n

〈Φ2(k̂, τ)〉τ→0 '
2R0H

3

k2

(
1

k
coth(πkR0) +

πR0

sinh2(πkR0)

)
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CMB power spectrum from 5D inflation

physical wavelength:

λ = 2π
a

k
=

(
R

R0

)1/2

λ̂ ; λ̂ = 2π
â

k
in 5D

=> πkR0 = 2π2R/λ̂ > 1 for λ̂ <∼ micron (λ <∼ km)

Amplitude of the power spectrum: A = k3

2π2 〈Φ2(k , τ)〉y=0 [12]

πkR0 > 1 (‘small’ wave lengths) => A ∼ H2

π2 R0H ns ' 1

πkR0 < 1 (‘large’ wave lengths) => A ' 2H3

π3k
ns ' 0

summation over n is crucial for scale invariance

it amounts a ‘tower’ of 4D inflatons
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Large-angle CMB power spectrum
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Detailed computation of primordial perturbations:
IA-Cunat-Guillen ’23

5D: inflaton + metric (5 gauge invariant modes) =>

4D: 2 scalar modes (inflaton + radion), 2 tensor modes, 2 vector modes [10]

PR ' 1

3ε
A
[(

k

âH

)2δ−5ε

+ ε

(
k

âH

)−3ε

×
{

5
24 R0k >> 1
1
3 R0k << 1

]

PT ' 4H2

π2

(
k

âH

)−3ε

×
{
R0H R0k >> 1
2H
πk R0k << 1

r = 24ε

PV ' 4R0H
3

π2

(
k

âH

)−3ε

×
{

1 R0k >> 1

π3

45 (R0k)3 R0k << 1 S1/Z2 (n 6= 0)

PS ' 9ε2

16
PR entropy => βisocurvature =

PS
PR + PS

' 9ε2

16
< 0.038 exp

slow-roll parameters: ε = − Ḣ
H2 ; δ = ε− ε̇

2Hε ' η − ε
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End of inflation

5D inflation can be implemented in the framework of Dark Dimension

Montero-Vafa-Valenzuela ’22

5D inflaton should couple to the brane for SM particle production

e.g. via a ‘Yukawa’ coupling suppressed by the bulk volume ∼ y/(RM∗)
d/2

(
ΓΦ
SM ∼ y2 mΦ

(RM∗)d

)
>

(
Γϕgrav ∼

m4
Φ

M3
∗

)

=> mΦ < M∗

(
M∗
Mp

)2/(2+d)

' 1TeV (d = 1)

Also: specific realisation of the Dynamical Dark Matter framework

internal graviton decays for small violation of KK-momentum conservation

Gonzalo-Montero-Obied-Vafa ’22
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Radion potential

5D cosmological constant at the minimum of the inflaton potential

=> runaway radion potential: [21]

V0 = 2πr2 Λmin
5

R
; (Λmin

5 )1/5 <∼ 100GeV (Higuchi bound)

canonically normalised radion: φ =
√

3/2 ln(R/r) [4]

=> exponential quintessence-like form V0 ∼ e−αφ with α ' 0.8

just at the allowed upper bound: Barreiro-Copeland-Nunes ’00

Alternatively, radion could be stabilised

During inflation: R(t) ∼ t2 => radion φ ∼ ln t and φ̇ ∼ 1/t

it is therefore expected to oscillate around the minimum if it exists
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Radion stabilisation at the end of 5D inflation
Anchordoqui-IA ’23

Potential contributions stabilising the radion:

V =
( r

R

)2

V̂ + VC ; V̂ = 2πRΛmin
5 + T4 + 2π

K

R

T4: 3-branes tension, K : kinetic gradients, VC : Casimir energy
↑
Arkani-Hamed, Hall, Tucker-Smith, Weiner ’99

Radion mass mR : ∼ eV (mKK ) to 10−30 eV (m2
KK/Mp) depending on K

K ∼ M∗, all 3 terms of V̂ of the same order, VC negligible [21]

tune Λ4 ∼ 0+ => mR <∼ mKK ∼ eV

K negligible, all 3 remaining terms of the same order [22]

=> minimum is driven by a +ve VC =
2πr2

32π7R6
(NF − NB)

Arkani-Hamed, Dubovsky, Nicolis, Villadoro ’07

no tuning of Λ4 but Λmin
5 should be order (subeV)5

[20]
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Casimir potential

VC = 2πR
( r

R

)2
Tr(−)Fρ(R,m) m : 5D mass

ρ(R,m) = −
∞∑

n=1

2m5

(2π)5/2

K5/2(2πRmn)

(2πRmn)5/2





mR →∞ exp suppressed

mR → 0 1/R5
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Example of Radion stabilisation potential

10 15 20 25 30 35 40

0.8
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1.2

1.4

R [μm]

10
7
V
[e
V
4
]

(Λmin
5 )1/5 = 25 meV, |T4|1/4 = 27 meV, NF − NB = 7

NF = 12 (3 bulk R-neutrinos) NB = 5 (5D graviton)
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Cosmic discrepancies and Hubble tension
Anchordoqui-I.A.-Lust ’23, AAL-Noble-Soriano ’24

5σ tension between global and local measurements

H0 = 67.4± 0.5 km/s/Mpc Planck data

H0 = 73.04± 1.04 km/s/Mpc SH0ES supernova

This tension can be resolved if Λ changes sign around redshift z ' 2

Akarsu-Barrow-Escamilla-Vasquez ’20, AV-Di Valentino-Kumar-Nunez-Vazquez ’23

AdS→dS transition is hard to implement due to a swampland conjecture:

non-SUSY AdS vacua are at infinite distance in moduli space

However it could happen due to quantum tunnelling effects
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AdS→dS transition due to false vacuum decay in 5D

5D scalar at a false vacuum with light mass (lighter than R−1
max)

NF − NB = 6 => AdS vacuum

decay to a (almost degenerate δε < Λ) true vacuum with heavy mass

NF − NB = 7 => dS vacuum slow transition at z ' 2

AdS

dS

10 20 30 40 50
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R [μm]

10
7
V
[e
V
4
]

(Λmin
5 )1/5 = 22.6 meV, |T4|1/4 = 24.2 meV
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Conclusions

Large extra dimensions from higher dim inflation

connect the weakness of gravity to the size of the observable universe

scale invariant density fluctuations from 5D inflation

radion stabilization

smallness of some physical parameters might signal

a large distance corner in the string landscape of vacua

such parameters can be the scales of dark energy and SUSY breaking

mesoscopic dark dimension proposal: interesting phenomenology

neutrino masses, dark matter, cosmology, SUSY breaking
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Stabilisation neglecting VC

minimum with V̂ ′ = V̂ = 0 =>

r =

(
K

Λmin
5

)1/2

; T4 = −4π(KΛmin
5 )1/2 ; V ′′ = V̂ ′′ |R=r= 4π

K

r3

all terms of Vmin of order |T4| with T4 < 0 and m2
φ = 4

9
|T4|
M2

p

maximum: Rmax = 3r ; Vmax = 2
27 |T4|

Vmin < Vmax satisfying the Higuchi bound => mφ ≤ 3/r

experimental bounds on new forces implying mφ >∼ 0.1 eV

Higuchi bound on Λ5 [14]

}
=>

K 1/3 ∼ M∗ ; (Λmin
5 )1/5 ∼ 100 GeV ; |T4|1/4 ∼ 1 TeV [15]
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Stabilisation with K = 0

Rmax = − T4

πΛmin
5

=> T4 < 0

A minimum can be generated at lower R from VC if NF − NB > 0 [15]

NB = 5 (5D graviton) => need at least 2 5D-fermions with masses <∼ R−1
max

for instance 3 R-handed neutrinos: NF = 12

minimum at V ' 0+ and < R >∼ micron implies as before

all 3 terms of Vmin same order:
(
Λmin

5

)1/5 ∼ |T4|1/4 ∼ V
1/4
C ∼ subeV

Bulk masses µi >∼ ∆m32 > ∆m21 avoid strict bounds from ν-oscillations

(µi = 0 => r <∼ 0.2µm) Anchordoqui-IA-Cunat ’23

T4 = 0: R−1
max ∼ (Λmin

5 )1/5 from V0 + VC |bos → min from VC |fer
NB = 5 => maximum at ∼ 10 microns
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