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Intro

• Compelling evidence for the existence of  Dark Matter (DM) on different astrophysical scales 
(galactic, clusters of  galaxies, cosmological scale,…) 

• ~ 84% of  the matter in the Universe is DARK 

• DM candidate: stable (compared to the current age of  the Universe), (dominantly) Non-
relativistic,  electrically neutral and colorless. (Only?) gravitational interactions 

• Usual problem with DM candidates (e.g. WIMPs): Conflict between relic abundance and 
direct/indirect/accelerator searches because of  interactions with the SM 



4

80 orders of  magnitude

Bertone and Tait, Nature ’18 

Intro

Warped extra dimensional model with three 3-branes 
(extended Randall-Sundrum (RS) models)

Michele Redi talk



5

The simplest 5D model
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PTA’s SGWB with three branes
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A. Arbey and F. Mahmoudi, Dark 
matter and the early Universe: a review 

its supersymmetric partner, the axino [87, 88]. Also in presence of several extra-dimensions,
each extra-dimension can give birth to one dark matter candidate or more [89]. In addition,
it is possible to have dark matter in the form of primordial black holes.

5.2 Experimental constraints on dark matter scenarios

Dark matter particles are currently actively searched for at colliders and in dedicated dark
matter experiments. In addition the relic density imposes strong constraints on dark matter
scenarios. We discuss here the main experiment types: dark matter direct and indirect
detections, and collider searches. A schematic and simplified view of the interplay between
the three types of searches is shown in Fig. 9.

Figure 9: Schematic representation of the three di↵erent types of dark matter particle
searches and their interplay.

5.2.1 Dark matter direct detection

The local density of dark matter in the Solar System is of the order of 0.4 GeV/cm3 [90–
92]. If dark matter is composed of particles of masses around 100 GeV, this results in
about 4 particles per cubic meter. Galactic halos are considered to be fixed in comparison
to the rotating disc of the galaxy, thus dark matter has a relative velocity of about 200
km/s. During one year each cubic meter on Earth would therefore be crossed by ⇠ 1013

dark matter particles. It is thus possible to look for interactions of dark matter particles
on Earth, by building large tanks and detectors of specific materials which maximize the
probability of interaction.

Dark matter interacts with standard matter via a scattering with the nucleons (or
electrons) of the atoms present in the experiments. The idea is to measure the recoil
energy of nuclei in order to detect their interactions with matter, and to estimate the dark
matter mass and the scattering cross section with nucleons, �N . Several direct detection
experiments are currently running. A summary of the present and prospective results is
shown in Fig. 10, based on the assumption that dark matter is composed of a single type
of weakly-interacting massive particles.

3From https://supercdms.slac.stanford.edu/dark-matter-limit-plotter.
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Radion interactions

For computing the interesting cross-sections, the KK gravitons with momentum q will propagate between

the BT and B1 branes with a propagator [37]

P
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µ⌫;⇢�(q) =
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2
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connecting the DM in the brane B1 with ordinary matter in the brane BT . The propagator satisfies the

traceless and transverse conditions [⌘µ⌫ , ⌘⇢�, qµ, q⌫ , q⇢, q�]Pµ⌫;⇢�(q) = 0.

As the SM is in the BT brane, with energy-momentum tensor Tµ⌫
SM, and the dark sector in the B1 brane,

with energy-momentum tensor T
µ⌫
DS, the exchange of KK gravitons between both branes, with momentum

transfer q2 ⌧ m
2
n, generates the e↵ective Lagrangian given by
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with, generically, dimension 8 operators. The coe�cient an is very suppressed. In particular for the first

mode n = 1, it turns out to be

a1 = 0.32 (k/MPl)
�2 1

⇢̃
4
T

. (2.13)

2.2 The radion sector

The radion corresponds to scalar perturbations F (z, x) of the metric as

ds
2 = e

�2A(z)
h
e
�2F (z,x)

⌘µ⌫dx
µ
dx

⌫ + (1 + 2F (z, x))2dz2
i
.

The wave function of the KK modes of the light radion can be decomposed as

F (z, x) =
1X

n=0

f
(n)(z)r(n)(x) . (2.14)

In this subsection we will consider the dynamics of the lightest radion r
(0)(x) ⌘ r(x) with a 5D profile

f
(0)(z) ⌘ f(z). This mode is massless if we neglect the backreaction on the metrics. However, after the

backreaction is taken into account, it can get a mass m2
r ⌧ m

2
n. The value of the radion mass mr depends

on the superpotential parameter u, as well as the details of the B1 localized potential (in particular on its

second derivative) fixing the value of � at the particular value v1. A computation of the radion mass in the

sti↵ wall limit leads to [38]
mr

⇢1
=

2
p
3
v̄1u . (2.15)

We have introduced the dimensionless quantity v̄↵ ⌘ v↵/M
3/2
5 , where ↵ refers to the B↵ brane. Therefore

we can consider the radion mass as a free parameter.

The coupling of the radion zero mode to matter localized on the Bb brane is given by

L = �cr(zb)r(x)Tb(x) , (2.16)
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where Tb(x) = ⌘µ⌫T
µ⌫
b . In the limit of small backreaction, after imposing that the field r(x) is canonically

normalized, one gets that the function cr(zb) is given by [39]

cr(zb) =

✓
k

MPl

◆
1
p
6

z
2
b

z1
, (2.17)

so that the couplings to the BT and B1 branes are given by

cr(zT ) =
⇢̃1

p
6⇢̃2T

, cr(z1) =
1

p
6⇢̃1

, and cr(zT )cr(z1) =
1

6⇢̃2T
. (2.18)

Notice that for ⇢1 ⌧ ⇢T , the product of couplings cr(zT )cr(z1) is much larger than the corresponding product

for graviton exchange in Eq. (2.10). In particular the coupling to the SM brane BT is suppressed with respect

to the Randall-Sundrum case by the factor ⇢1/⇢T , while the coupling to the DS brane is enhanced by the

same factor.

As in the previous section, the exchange of a radion between the SM and DS branes generates the

e↵ective Lagrangian

Le↵ = arTSMTDS , where ar = �
cr(zT )cr(z1)

q2 �m2
r

, (2.19)

that will be used in Sec. 4. Note that for the radion exchange case we have kept the associated propagator

in the general expression of the e↵ective coupling, while we are neglecting the radion width �r which will be

shown to be much smaller than the radion mass �r/mr ⌧ 1. However, in the following when it comes to ar

we will use either the small or the large momentum transfer, q2 ⌧ m
2
r or q2 � m

2
r respectively.

3 The relic abundance

In a previous paper, see Ref. [15], we have seen that in the presence of the B1 brane, at the scale ⇢1, there

is a confinement/deconfinement first order phase transition at the nucleation temperature Tn . ⇢1, followed

by a reheating at a temperature TRH & ⇢1. In the language of the AdS/CFT correspondence the radion

and the dark sector (including the dark matter �) localized in the IR brane appear as composite states of

a holographic conformal theory [15, 35, 40]. It was proven that the first order phase transition triggers a

stochastic gravitational waves background which can be fitted with the recent observations from the Pulsar

Timing Arrays (PTA) collaborations [11–14] with nanoHz frequencies, provided that ⇢1 2 [10 MeV, 10 GeV].

For the case of a thermal relic � its energy density today ⌦� depends on its annihilation rate h�vi as

(see e.g. Ref. [41]),

⌦�h
2
' 0.1

xFO

10

s
65

g⇤(TFO)

h�vic

h�vi
, with h�vic ⇠ 1.09⇥ 10�9 GeV�2

, (3.1)

where xFO = m�/TFO � 1 (typical of a cold thermal relic) is provided by the freeze-out temperature such

that h�vin�(TFO) ' H(TFO), H(T ) is the Hubble parameter and g⇤(T ) is the e↵ective number of relativistic

degrees of freedom at the temperature T .

9

where Tb(x) = ⌘µ⌫T
µ⌫
b . In the limit of small backreaction, after imposing that the field r(x) is canonically

normalized, one gets that the function cr(zb) is given by [39]

cr(zb) =

✓
k

MPl

◆
1
p
6

z
2
b

z1
, (2.17)

so that the couplings to the BT and B1 branes are given by

cr(zT ) =
⇢̃1

p
6⇢̃2T

, cr(z1) =
1

p
6⇢̃1

, and cr(zT )cr(z1) =
1

6⇢̃2T
. (2.18)

Notice that for ⇢1 ⌧ ⇢T , the product of couplings cr(zT )cr(z1) is much larger than the corresponding product

for graviton exchange in Eq. (2.10). In particular the coupling to the SM brane BT is suppressed with respect

to the Randall-Sundrum case by the factor ⇢1/⇢T , while the coupling to the DS brane is enhanced by the

same factor.

As in the previous section, the exchange of a radion between the SM and DS branes generates the

e↵ective Lagrangian

Le↵ = arTSMTDS , where ar = �
cr(zT )cr(z1)

q2 �m2
r

, (2.19)

that will be used in Sec. 4. Note that for the radion exchange case we have kept the associated propagator

in the general expression of the e↵ective coupling, while we are neglecting the radion width �r which will be

shown to be much smaller than the radion mass �r/mr ⌧ 1. However, in the following when it comes to ar

we will use either the small or the large momentum transfer, q2 ⌧ m
2
r or q2 � m

2
r respectively.

3 The relic abundance

In a previous paper, see Ref. [15], we have seen that in the presence of the B1 brane, at the scale ⇢1, there

is a confinement/deconfinement first order phase transition at the nucleation temperature Tn . ⇢1, followed

by a reheating at a temperature TRH & ⇢1. In the language of the AdS/CFT correspondence the radion

and the dark sector (including the dark matter �) localized in the IR brane appear as composite states of

a holographic conformal theory [15, 35, 40]. It was proven that the first order phase transition triggers a

stochastic gravitational waves background which can be fitted with the recent observations from the Pulsar

Timing Arrays (PTA) collaborations [11–14] with nanoHz frequencies, provided that ⇢1 2 [10 MeV, 10 GeV].

For the case of a thermal relic � its energy density today ⌦� depends on its annihilation rate h�vi as

(see e.g. Ref. [41]),

⌦�h
2
' 0.1

xFO

10

s
65

g⇤(TFO)

h�vic

h�vi
, with h�vic ⇠ 1.09⇥ 10�9 GeV�2

, (3.1)

where xFO = m�/TFO � 1 (typical of a cold thermal relic) is provided by the freeze-out temperature such

that h�vin�(TFO) ' H(TFO), H(T ) is the Hubble parameter and g⇤(T ) is the e↵ective number of relativistic

degrees of freedom at the temperature T .

9

SM brane Dark brane

where Tb(x) = ⌘µ⌫T
µ⌫
b . In the limit of small backreaction, after imposing that the field r(x) is canonically

normalized, one gets that the function cr(zb) is given by [39]

cr(zb) =

✓
k

MPl

◆
1
p
6

z
2
b

z1
, (2.17)

so that the couplings to the BT and B1 branes are given by

cr(zT ) =
⇢̃1

p
6⇢̃2T

, cr(z1) =
1

p
6⇢̃1

, and cr(zT )cr(z1) =
1

6⇢̃2T
. (2.18)

Notice that for ⇢1 ⌧ ⇢T , the product of couplings cr(zT )cr(z1) is much larger than the corresponding product

for graviton exchange in Eq. (2.10). In particular the coupling to the SM brane BT is suppressed with respect

to the Randall-Sundrum case by the factor ⇢1/⇢T , while the coupling to the DS brane is enhanced by the

same factor.

As in the previous section, the exchange of a radion between the SM and DS branes generates the

e↵ective Lagrangian

Le↵ = arTSMTDS , where ar = �
cr(zT )cr(z1)

q2 �m2
r

, (2.19)

that will be used in Sec. 4. Note that for the radion exchange case we have kept the associated propagator

in the general expression of the e↵ective coupling, while we are neglecting the radion width �r which will be

shown to be much smaller than the radion mass �r/mr ⌧ 1. However, in the following when it comes to ar

we will use either the small or the large momentum transfer, q2 ⌧ m
2
r or q2 � m

2
r respectively.

3 The relic abundance

In a previous paper, see Ref. [15], we have seen that in the presence of the B1 brane, at the scale ⇢1, there

is a confinement/deconfinement first order phase transition at the nucleation temperature Tn . ⇢1, followed

by a reheating at a temperature TRH & ⇢1. In the language of the AdS/CFT correspondence the radion

and the dark sector (including the dark matter �) localized in the IR brane appear as composite states of

a holographic conformal theory [15, 35, 40]. It was proven that the first order phase transition triggers a

stochastic gravitational waves background which can be fitted with the recent observations from the Pulsar

Timing Arrays (PTA) collaborations [11–14] with nanoHz frequencies, provided that ⇢1 2 [10 MeV, 10 GeV].

For the case of a thermal relic � its energy density today ⌦� depends on its annihilation rate h�vi as

(see e.g. Ref. [41]),

⌦�h
2
' 0.1

xFO

10

s
65

g⇤(TFO)

h�vic

h�vi
, with h�vic ⇠ 1.09⇥ 10�9 GeV�2

, (3.1)

where xFO = m�/TFO � 1 (typical of a cold thermal relic) is provided by the freeze-out temperature such

that h�vin�(TFO) ' H(TFO), H(T ) is the Hubble parameter and g⇤(T ) is the e↵ective number of relativistic

degrees of freedom at the temperature T .

9

The thermal average h�vi is defined as

h�vi =
1

8m4
�TK

2
2 (m�/T )

Z 1

4m2
�

(s� 4m2
�)
p
sK1(

p
s/T )�(s)ds , (3.2)

where v is the Møller velocity 3, and Eq. (3.2) is valid for T . 3m� [42].

3.1 Annihilation into SM fields

Both the radion and the KK gravitons connect the DM, localized in B1, with the SM localized in the BT

brane, so in principle both (or in particular the radion and the first –the lightest– KK mode graviton)

can mediate the annihilation of DM into SM fields. Even if both couplings to the B1 brane are equal,

cr(z1) = c1(z1) = 1/⇢̃1, the coupling of the graviton to the BT brane is much smaller that that of the

radion, c1(zT )/cr(zT ) ' (3⇢̃1/⇢̃T )
2
⌧ 1 for ⇢̃1 ⌧ ⇢̃T . Moreover, given that we are using radion masses much

smaller than the DM mass mr ⌧ m�, the ratio of annihilation cross sections into the SM mediated by KK

gravitons is further suppressed with respect to that mediated by the radion by a factor ⇠ (2m�/m
h
1)

4
'

7 ⇥ 10�2(m�/⇢1)4 ⌧ 1, as we are considering m� < ⇢1. We will then consider the radion as the messenger

between the DM and the SM.

As the radion couples to the SM through the trace of the energy momentum tensor, the first candidates

for DM annihilation into SM fields are fermions f with mass mf . m�/2 and massless gauge bosons, the

gluon and the photon. In fact the coupling between � in the B1 brane and the radion, gr��̄, and the coupling

between the SM fermion f in the BT brane and the radion, grff̄ , are such that

gr��̄grff̄ '
m�mf

6⇢̃2T
. (3.3)

The total cross-section for the process ��̄ ! ff̄ mediated by the radion, is given by

�f = (gr��̄grff̄ )
2 1

16⇡s

 
1�

4m2
�

s

!1/2 
1�

4m2
f

s

!3/2

, (3.4)

where we have neglected the radion mass, as s � m
2
r . Using Eq. (3.4) and s > 4m2

�, mf < m�/2, we find

an upper bound for �f as

�f . 10�4 m
2
�

⇢̃
4
T

. (3.5)

Using now the considered range ⇢̃T & 1 TeV and m� . 10 GeV, and v < 1, we get the upper bound

�fv . 10�14 GeV�2, much smaller than the value of �cv in Eq. (3.1).

Moreover, the radion is also coupled to the gluon with an e↵ective vertex given by [43]

L = cr(zT )

 
b3 �

1

2

X

q

F1/2(⌧q)

!
↵3

8⇡
r(x)Gµ⌫G

µ⌫
, (3.6)

3
The Møller velocity v (sometimes referred to as vMøl) is related to the velocities of incoming particles ~v1 and ~v2 by v =

(|~v1 � ~v2|
2
� |~v1 ⇥ ~v2|

2
)
1/2

[42], where ~vi ⌘ ~pi/Ei. In the center of mass system v = 2|~v1|.
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• The model has 3 free parameters: 

• DM relic abundance via annihilation into radions whereas its detection signatures via 
interactions with the SM

1. The scale of  the Dark Brane . Its range to describe the PTA data is  
, but in principle we also have considered a broader range 

ρ̃1 =
Mpl

k
ρ1

10 MeV ≲ ρ̃1 ≲ 10 GeV

2. The DM mass . We consider it in the range . In this way the non-
relativistic annihilation into gravitons KK modes  cannot take place 

mχ mχ < ρ̃1
χχ̄ → GnGn

3. The radion mass . We will assume that  and . In this way the 
radion decay  is closed and only the channel  is kinematically 

accessible 

mr mr < mχ mr ≪ ρ̃1
r → χχ̄ r → SM + SM

The setup
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Thermal history of SM+DM+radion
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Figure 6: The temperatures Td/m� (solid line) and TFO/m� (dashed line) as functions of m�. The symbol () ( /())
between two species means that they are (not) in thermal equilibrium.

• At T ' Td the DM decouples from the SM and keeps thermal equilibrium with radions through the

reaction �̄� ! rr.

• For Td > T > TFO = m�/xFO, where xFO ' 24+log(m�/GeV), the DM is in thermal equilibrium with

radions via the reaction �̄� ! rr. Middle (gray) region in Fig. 6.

• At T = TFO the DM goes out of thermal equilibrium and the relic abundance is generated.

• For T < TFO the DM and the radion are out of thermal equilibrium. Lower (red) region in Fig. 6.

The temperatures Td (solid line) and TFO (dashed line) are shown in Fig. 6 as functions of m�, where

the value of TFO already assumes that ⌦�h
2 = 0.12, according with the cosmological observations.

In the calculation of the relic density we have assumed that mr < m� so that, neglecting the value of mr,

the value of ⌦�h
2 mainly depends on m� and ⇢̃1. As the relic density incorporates the interaction of radion

with the DM, localized in the IR brane, while direct measurements are controlled by the interaction of the

radion with both the DM and with the SM, it is very easy to avoid bounds from direct measurements of DM

scattering on nucleon and electrons while keeping the relic density safe. In fact, for a given value of the DM

mass m�, direct measurements translate into lower bounds on the radion mass mr, while for m� & 0.5 GeV

and data from DM-nucleon scattering, the neutrino floor translates into an upper bound on the value mr.

This gives an allowed window on the radion mass, well in agreement with the assumption mr < m� and

consistent with the observed relic density.

In the same way indirect measurements, based on the annihilation processes �̄� ! SM+SM, are easily

avoided as the messenger radion is very weakly coupled with the TeV brane, where the SM is localized.
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The Boltzmann equation for the radion number density nr and the DM number density n� can be

written as
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where �r ⌘ �(r ! SM+SM) ⇠ c
2
r is the decay width defined in Eqs. (5.6), (5.7) and (5.8) 8, while the

di↵erent cross-sections are defined as: �r ⌘ �(rr ! SM+SM) ⇠ c
4
r , �� ⌘ �(��̄ ! rr) ⇠ c

0
r and �0 ⌘ �(��̄ !

SM+SM) ⇠ c
2
r , where we have indicated the respective orders in the small parameter cr(zT ). Eq. (6.1) can

be written changing variable to Yr = nr/s and x = mr/T as
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H(mr)
, (i = r,�, 0) , (6.3)

where H(mr) is the Hubble constant at the temperature T = mr, Y
eq
r,� are given by Eq. (3.10), and the

cross-sections �i (i = r,�) are p-wave suppressed so that �i = �
0
i
v, and h�ivi = 2�0

i
+ O(x2) for x ⌧ 1.

Taking into account the dependence of the di↵erent couplings on the small parameter cr(zT ), we find the

following hierarchy among them: �r ⌧ �0, �0 ⌧ ��. For instance we can consider the di↵erent cross-section

and decay rates into SM fermions f . In this case we find that, parametrically in terms of the couplings

�0
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�0
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' grff ,
�r

��

' g
2
rff , grff =

mf⇢1
p
6⇢2

T

(6.4)

where e.g. for f = e the coupling is typically gree ' 10�10. Similar suppression is obtained for processes into

photons and/or gluons.

Some analytical properties of Eq. (6.3) are in order before exploring it numerically. For very high

temperatures (x ⌧ 1), for which �i/x
2
� 1, the equilibrium solution Yr = Y

eq
r and Y� = Y

eq
� follows.

Concerning the radion abundance, for a value of the temperature T0 ' m�, corresponding to x0 = mr/T0 < 1,

such that �r/x
2
0 . O(1) (i.e. x0 & �

1/2
r ), the radion goes out of equilibrium while � stays in equilibrium as

��/x
2
0 � 1. One can easily check using numerical analysis that the solution we find is an attractor, which

does not depend on the initial conditions as the equilibrium solution for Yr = Y
eq
r is quickly recovered 9,

8h�ri stands for the thermally averaged (time dilation included) decay width of the radion, which is computed as

h�ri =
P1

n=1

1

nK1(nx)P1
n=1

1

nK2(nx)
�r , (6.2)

where �r is the decay width of the radion at rest.
9
This behavior, with re-equilibration at low temperature, was already observed for the case of ALPs a from the three-point

function a $ �� [62].
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Relic density

Only radion mediation

where Tb(x) = ⌘µ⌫T
µ⌫
b . In the limit of small backreaction, after imposing that the field r(x) is canonically

normalized, one gets that the function cr(zb) is given by [39]

cr(zb) =

✓
k

MPl

◆
1
p
6

z
2
b

z1
, (2.17)

so that the couplings to the BT and B1 branes are given by

cr(zT ) =
⇢̃1

p
6⇢̃2T

, cr(z1) =
1

p
6⇢̃1

, and cr(zT )cr(z1) =
1

6⇢̃2T
. (2.18)

Notice that for ⇢1 ⌧ ⇢T , the product of couplings cr(zT )cr(z1) is much larger than the corresponding product

for graviton exchange in Eq. (2.10). In particular the coupling to the SM brane BT is suppressed with respect

to the Randall-Sundrum case by the factor ⇢1/⇢T , while the coupling to the DS brane is enhanced by the
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χ + χ̄ → f + f̄

∼ χ + χ̄ → g + g

The thermal average h�vi is defined as

h�vi =
1

8m4
�TK

2
2 (m�/T )

Z 1

4m2
�

(s� 4m2
�)
p
sK1(

p
s/T )�(s)ds , (3.2)

where v is the Møller velocity 3, and Eq. (3.2) is valid for T . 3m� [42].

3.1 Annihilation into SM fields

Both the radion and the KK gravitons connect the DM, localized in B1, with the SM localized in the BT

brane, so in principle both (or in particular the radion and the first –the lightest– KK mode graviton)

can mediate the annihilation of DM into SM fields. Even if both couplings to the B1 brane are equal,

cr(z1) = c1(z1) = 1/⇢̃1, the coupling of the graviton to the BT brane is much smaller that that of the

radion, c1(zT )/cr(zT ) ' (3⇢̃1/⇢̃T )
2
⌧ 1 for ⇢̃1 ⌧ ⇢̃T . Moreover, given that we are using radion masses much

smaller than the DM mass mr ⌧ m�, the ratio of annihilation cross sections into the SM mediated by KK

gravitons is further suppressed with respect to that mediated by the radion by a factor ⇠ (2m�/m
h
1)

4
'

7 ⇥ 10�2(m�/⇢1)4 ⌧ 1, as we are considering m� < ⇢1. We will then consider the radion as the messenger

between the DM and the SM.

As the radion couples to the SM through the trace of the energy momentum tensor, the first candidates

for DM annihilation into SM fields are fermions f with mass mf . m�/2 and massless gauge bosons, the

gluon and the photon. In fact the coupling between � in the B1 brane and the radion, gr��̄, and the coupling

between the SM fermion f in the BT brane and the radion, grff̄ , are such that

gr��̄grff̄ '
m�mf

6⇢̃2T
. (3.3)

The total cross-section for the process ��̄ ! ff̄ mediated by the radion, is given by

�f = (gr��̄grff̄ )
2 1

16⇡s

 
1�

4m2
�

s

!1/2 
1�

4m2
f

s

!3/2

, (3.4)

where we have neglected the radion mass, as s � m
2
r . Using Eq. (3.4) and s > 4m2

�, mf < m�/2, we find

an upper bound for �f as

�f . 10�4 m
2
�

⇢̃
4
T

. (3.5)

Using now the considered range ⇢̃T & 1 TeV and m� . 10 GeV, and v < 1, we get the upper bound

�fv . 10�14 GeV�2, much smaller than the value of �cv in Eq. (3.1).

Moreover, the radion is also coupled to the gluon with an e↵ective vertex given by [43]

L = cr(zT )

 
b3 �

1

2

X

q

F1/2(⌧q)

!
↵3

8⇡
r(x)Gµ⌫G

µ⌫
, (3.6)

3
The Møller velocity v (sometimes referred to as vMøl) is related to the velocities of incoming particles ~v1 and ~v2 by v =

(|~v1 � ~v2|
2
� |~v1 ⇥ ~v2|

2
)
1/2

[42], where ~vi ⌘ ~pi/Ei. In the center of mass system v = 2|~v1|.

10

The thermal average h�vi is defined as

h�vi =
1

8m4
�TK

2
2 (m�/T )

Z 1

4m2
�

(s� 4m2
�)
p
sK1(

p
s/T )�(s)ds , (3.2)

where v is the Møller velocity 3, and Eq. (3.2) is valid for T . 3m� [42].

3.1 Annihilation into SM fields

Both the radion and the KK gravitons connect the DM, localized in B1, with the SM localized in the BT

brane, so in principle both (or in particular the radion and the first –the lightest– KK mode graviton)

can mediate the annihilation of DM into SM fields. Even if both couplings to the B1 brane are equal,

cr(z1) = c1(z1) = 1/⇢̃1, the coupling of the graviton to the BT brane is much smaller that that of the

radion, c1(zT )/cr(zT ) ' (3⇢̃1/⇢̃T )
2
⌧ 1 for ⇢̃1 ⌧ ⇢̃T . Moreover, given that we are using radion masses much

smaller than the DM mass mr ⌧ m�, the ratio of annihilation cross sections into the SM mediated by KK

gravitons is further suppressed with respect to that mediated by the radion by a factor ⇠ (2m�/m
h
1)

4
'

7 ⇥ 10�2(m�/⇢1)4 ⌧ 1, as we are considering m� < ⇢1. We will then consider the radion as the messenger

between the DM and the SM.

As the radion couples to the SM through the trace of the energy momentum tensor, the first candidates

for DM annihilation into SM fields are fermions f with mass mf . m�/2 and massless gauge bosons, the

gluon and the photon. In fact the coupling between � in the B1 brane and the radion, gr��̄, and the coupling

between the SM fermion f in the BT brane and the radion, grff̄ , are such that

gr��̄grff̄ '
m�mf

6⇢̃2T
. (3.3)

The total cross-section for the process ��̄ ! ff̄ mediated by the radion, is given by

�f = (gr��̄grff̄ )
2 1

16⇡s

 
1�

4m2
�

s

!1/2 
1�

4m2
f

s

!3/2

, (3.4)

where we have neglected the radion mass, as s � m
2
r . Using Eq. (3.4) and s > 4m2

�, mf < m�/2, we find

an upper bound for �f as

�f . 10�4 m
2
�

⇢̃
4
T

. (3.5)

Using now the considered range ⇢̃T & 1 TeV and m� . 10 GeV, and v < 1, we get the upper bound

�fv . 10�14 GeV�2, much smaller than the value of �cv in Eq. (3.1).

Moreover, the radion is also coupled to the gluon with an e↵ective vertex given by [43]

L = cr(zT )

 
b3 �

1

2

X

q

F1/2(⌧q)

!
↵3

8⇡
r(x)Gµ⌫G

µ⌫
, (3.6)

3
The Møller velocity v (sometimes referred to as vMøl) is related to the velocities of incoming particles ~v1 and ~v2 by v =

(|~v1 � ~v2|
2
� |~v1 ⇥ ~v2|

2
)
1/2

[42], where ~vi ⌘ ~pi/Ei. In the center of mass system v = 2|~v1|.

10

The thermal average h�vi is defined as

h�vi =
1

8m4
�TK

2
2 (m�/T )

Z 1

4m2
�

(s� 4m2
�)
p
sK1(

p
s/T )�(s)ds , (3.2)

where v is the Møller velocity 3, and Eq. (3.2) is valid for T . 3m� [42].

3.1 Annihilation into SM fields

Both the radion and the KK gravitons connect the DM, localized in B1, with the SM localized in the BT

brane, so in principle both (or in particular the radion and the first –the lightest– KK mode graviton)

can mediate the annihilation of DM into SM fields. Even if both couplings to the B1 brane are equal,

cr(z1) = c1(z1) = 1/⇢̃1, the coupling of the graviton to the BT brane is much smaller that that of the

radion, c1(zT )/cr(zT ) ' (3⇢̃1/⇢̃T )
2
⌧ 1 for ⇢̃1 ⌧ ⇢̃T . Moreover, given that we are using radion masses much

smaller than the DM mass mr ⌧ m�, the ratio of annihilation cross sections into the SM mediated by KK

gravitons is further suppressed with respect to that mediated by the radion by a factor ⇠ (2m�/m
h
1)

4
'

7 ⇥ 10�2(m�/⇢1)4 ⌧ 1, as we are considering m� < ⇢1. We will then consider the radion as the messenger

between the DM and the SM.

As the radion couples to the SM through the trace of the energy momentum tensor, the first candidates

for DM annihilation into SM fields are fermions f with mass mf . m�/2 and massless gauge bosons, the

gluon and the photon. In fact the coupling between � in the B1 brane and the radion, gr��̄, and the coupling

between the SM fermion f in the BT brane and the radion, grff̄ , are such that

gr��̄grff̄ '
m�mf

6⇢̃2T
. (3.3)

The total cross-section for the process ��̄ ! ff̄ mediated by the radion, is given by

�f = (gr��̄grff̄ )
2 1

16⇡s

 
1�

4m2
�

s

!1/2 
1�

4m2
f

s

!3/2

, (3.4)

where we have neglected the radion mass, as s � m
2
r . Using Eq. (3.4) and s > 4m2

�, mf < m�/2, we find

an upper bound for �f as

�f . 10�4 m
2
�

⇢̃
4
T

. (3.5)

Using now the considered range ⇢̃T & 1 TeV and m� . 10 GeV, and v < 1, we get the upper bound

�fv . 10�14 GeV�2, much smaller than the value of �cv in Eq. (3.1).

Moreover, the radion is also coupled to the gluon with an e↵ective vertex given by [43]

L = cr(zT )

 
b3 �

1

2

X

q

F1/2(⌧q)

!
↵3

8⇡
r(x)Gµ⌫G

µ⌫
, (3.6)

3
The Møller velocity v (sometimes referred to as vMøl) is related to the velocities of incoming particles ~v1 and ~v2 by v =

(|~v1 � ~v2|
2
� |~v1 ⇥ ~v2|

2
)
1/2

[42], where ~vi ⌘ ~pi/Ei. In the center of mass system v = 2|~v1|.

10

The thermal average h�vi is defined as

h�vi =
1

8m4
�TK

2
2 (m�/T )

Z 1

4m2
�

(s� 4m2
�)
p
sK1(

p
s/T )�(s)ds , (3.2)

where v is the Møller velocity 3, and Eq. (3.2) is valid for T . 3m� [42].

3.1 Annihilation into SM fields

Both the radion and the KK gravitons connect the DM, localized in B1, with the SM localized in the BT

brane, so in principle both (or in particular the radion and the first –the lightest– KK mode graviton)

can mediate the annihilation of DM into SM fields. Even if both couplings to the B1 brane are equal,

cr(z1) = c1(z1) = 1/⇢̃1, the coupling of the graviton to the BT brane is much smaller that that of the

radion, c1(zT )/cr(zT ) ' (3⇢̃1/⇢̃T )
2
⌧ 1 for ⇢̃1 ⌧ ⇢̃T . Moreover, given that we are using radion masses much

smaller than the DM mass mr ⌧ m�, the ratio of annihilation cross sections into the SM mediated by KK

gravitons is further suppressed with respect to that mediated by the radion by a factor ⇠ (2m�/m
h
1)

4
'

7 ⇥ 10�2(m�/⇢1)4 ⌧ 1, as we are considering m� < ⇢1. We will then consider the radion as the messenger

between the DM and the SM.

As the radion couples to the SM through the trace of the energy momentum tensor, the first candidates

for DM annihilation into SM fields are fermions f with mass mf . m�/2 and massless gauge bosons, the

gluon and the photon. In fact the coupling between � in the B1 brane and the radion, gr��̄, and the coupling

between the SM fermion f in the BT brane and the radion, grff̄ , are such that

gr��̄grff̄ '
m�mf

6⇢̃2T
. (3.3)

The total cross-section for the process ��̄ ! ff̄ mediated by the radion, is given by

�f = (gr��̄grff̄ )
2 1

16⇡s

 
1�

4m2
�

s

!1/2 
1�

4m2
f

s

!3/2

, (3.4)

where we have neglected the radion mass, as s � m
2
r . Using Eq. (3.4) and s > 4m2

�, mf < m�/2, we find

an upper bound for �f as

�f . 10�4 m
2
�

⇢̃
4
T

. (3.5)

Using now the considered range ⇢̃T & 1 TeV and m� . 10 GeV, and v < 1, we get the upper bound

�fv . 10�14 GeV�2, much smaller than the value of �cv in Eq. (3.1).

Moreover, the radion is also coupled to the gluon with an e↵ective vertex given by [43]

L = cr(zT )

 
b3 �

1

2

X

q

F1/2(⌧q)

!
↵3

8⇡
r(x)Gµ⌫G

µ⌫
, (3.6)

3
The Møller velocity v (sometimes referred to as vMøl) is related to the velocities of incoming particles ~v1 and ~v2 by v =

(|~v1 � ~v2|
2
� |~v1 ⇥ ~v2|

2
)
1/2

[42], where ~vi ⌘ ~pi/Ei. In the center of mass system v = 2|~v1|.

10

The thermal average h�vi is defined as

h�vi =
1

8m4
�TK

2
2 (m�/T )

Z 1

4m2
�

(s� 4m2
�)
p
sK1(

p
s/T )�(s)ds , (3.2)

where v is the Møller velocity 3, and Eq. (3.2) is valid for T . 3m� [42].

3.1 Annihilation into SM fields

Both the radion and the KK gravitons connect the DM, localized in B1, with the SM localized in the BT

brane, so in principle both (or in particular the radion and the first –the lightest– KK mode graviton)

can mediate the annihilation of DM into SM fields. Even if both couplings to the B1 brane are equal,

cr(z1) = c1(z1) = 1/⇢̃1, the coupling of the graviton to the BT brane is much smaller that that of the

radion, c1(zT )/cr(zT ) ' (3⇢̃1/⇢̃T )
2
⌧ 1 for ⇢̃1 ⌧ ⇢̃T . Moreover, given that we are using radion masses much

smaller than the DM mass mr ⌧ m�, the ratio of annihilation cross sections into the SM mediated by KK

gravitons is further suppressed with respect to that mediated by the radion by a factor ⇠ (2m�/m
h
1)

4
'

7 ⇥ 10�2(m�/⇢1)4 ⌧ 1, as we are considering m� < ⇢1. We will then consider the radion as the messenger

between the DM and the SM.

As the radion couples to the SM through the trace of the energy momentum tensor, the first candidates

for DM annihilation into SM fields are fermions f with mass mf . m�/2 and massless gauge bosons, the

gluon and the photon. In fact the coupling between � in the B1 brane and the radion, gr��̄, and the coupling
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where we have neglected the radion mass, as s � m
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�, mf < m�/2, we find
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�f . 10�4 m
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. (3.5)

Using now the considered range ⇢̃T & 1 TeV and m� . 10 GeV, and v < 1, we get the upper bound

�fv . 10�14 GeV�2, much smaller than the value of �cv in Eq. (3.1).

Moreover, the radion is also coupled to the gluon with an e↵ective vertex given by [43]
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3
The Møller velocity v (sometimes referred to as vMøl) is related to the velocities of incoming particles ~v1 and ~v2 by v =

(|~v1 � ~v2|
2
� |~v1 ⇥ ~v2|

2
)
1/2

[42], where ~vi ⌘ ~pi/Ei. In the center of mass system v = 2|~v1|.
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No DM relic density but freeze-out from SM

Relic density
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Figure 1: Left panel: Decoupling temperature Td of � from the SM as a function of m�. Right panel: Thermal average
of cross-sections at the decoupling temperature as a function of m�. We have considered the channels ��̄ ! ff̄ ,
��̄ ! gg and ��̄ ! ��, as functions of m�. For every value of m� the cross section

P
f �f is dominated by the

heaviest fermion such that mf < m�. We have used ⇢̃T = 1 TeV.

The decoupling temperature Td, for which �� ' H, is exhibited in the left panel of Fig. 1. We can see that

for m� < 10 GeV, the DM decouples from the SM at temperatures Td < 1.2 GeV, well in the non-relativistic

regime. In the right panel of Fig. 1 we show the dependence of the thermal averaged cross section at the

decoupling temperature Td. We can see there that its typical values are such that h�vi ⌧ h�vic. From

the previous analysis we can deduce that, when � goes out of equilibrium with the SM its annihilation

cross section is too small to generate the observed cosmic DM density observed today. The DM would then

overclose the universe unless there is another more e�cient annihilation channel. As we will see now this

happens with the rr channel.

3.2 Annihilation into radions

On top of the arguments presented in the previous section, here we also assume that the DM mass is

m� ⌧ m
h
n suggesting that DM cannot annihilate non-relativistically into KK gravitons. Therefore, given the

interaction between � and the radion field r, there is an additional channel where the DM annihilates into a

couple of radions, ��̄ ! rr, with the exchange of the fermion � in the t- and u-channels, as well as the contact

interaction term �̄�rr. Unlike the previous channels into SM fields, the global square coupling is sensitive

to the value of ⇢1. The Feynman rules for the relevant couplings in the process �(p) + �̄(p0) ! r(k) + r(k0),
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  mχ < 10 GeV
Td < 1.2 GeV

But (again) DM + radion still in equilibrium
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Figure 2: Left panel: Contour levels of the freeze-out parameter xFO = m�/TFO (black solid lines) and the cosmic
density ⌦⌫h

2 = 0.12 (red solid line) for the radion production ��̄ ! rr in the plane (m�, ⇢̃1). Right panel: Detail of
the left panel in logarithmic coordinates, for the region where the confinement/deconfinement phase transition leading
to the PTA signal takes place.

where p, p
0 (k, k0) are incoming (outcoming) momenta, are [17]

�(p)�̄(q)r(k) ) �i
8m� � 3(/p+ /q)

2
p
6⇢̃1

⌘ �i
5m� � 3/q

2
p
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,
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8m� � 3(/q � /p

0)

2
p
6⇢̃1

⌘ �i
5m� � 3/q

2
p
6⇢̃1

, (3.13)

�̄(p)�(p0)r(k)r(k0) ) +i
m�

12⇢̃21
,

where q = p�k and the Dirac equation has been used for on-shell fermions /pu(p) = m�u(p) and anti-fermions

v̄(p0)/p0 = �m�v̄(p0).

The total cross section is given by

�r =
1

1152⇡

m
2
�

⇢̃
4
1


z
2(7� 11z2 � z

4)

(1� z2)
tanh�1(

p
1� z2) +

169� 121z2 � 8z4

8(1� z2)1/2

�
with z

2 =
4m2

�

s
, (3.14)

where we are neglecting the radion mass mr. 4

In the left panel of Fig. 2 we display, in the plane (m�, ⇢̃1), contour lines of the freeze-out parameter

xFO = m�/TFO corresponding to the radion production ��̄ ! rr, where we can check that the freeze-out

happens when the � fermion is non-relativistic, as xFO � 1. The prediction for ⌦�h
2 = 0.12 is provided by

the red solid line. In general, we see that the correct relic abundance is obtained for m� ⌧ ⇢̃1. In particular,

4
Note that since the two radions in the final state are identical we integrate ✓ in the interval 0  ✓  ⇡/2.
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Direct detection

Scattering off  nuclei

Radion mediation

For radion mediation the e↵ective Lagrangian is given by Eq. (2.19), which becomes now

Le↵ = br(�̄�)(Q̄Q) with br = arm�mQ =
m�mQ

6m2
r ⇢̃

2
T

, (4.5)

and has a similar structure to the second term in Eq. (4.3). In fact the radion contribution will dominate

the graviton contribution provided that the condition

mr ⌧ 1.3 (k/MPl)⇢̃T = 1.3 ⇢T (4.6)

holds, which is always true. Therefore from here on we will only consider the e↵ective Lagrangian from the

radion exchange in Eq. (4.5).

4.1 Bounds from nuclear recoil

We will assume that ⇢̃T is O(TeV), and for concreteness we will fix it as ⇢̃T ' 1 TeV, while m� . ⇢1 will

be considered as a free parameter in the mass range 0.5 GeV . m� . 10 GeV. Finally mr ⌧ ⇢1 (for the

consistency of the e↵ective theory) is also considered as a free parameter.

The quark level should be matched into nucleon N level operators. In particular the matrix elements of

the light quarks (Q = u, d, s) can be computed in chiral perturbation theory as [46]

hN |mQQ̄Q|Ni = mNf
(N)
TQ

(4.7)

for N = p, n given by the proton (p) or neutron (n). As for the heavy quarks Q = c, b, t they connect to the

gluons inside the nucleon through a loop diagram, giving

hN |mQQ̄Q|Ni =
2

27
mN

0

@1�
X

Q=u,d,s

f
(N)
TQ

1

A , (4.8)

where f (p)
Tu

= 0.018(5), f (p)
Td

= 0.027(7), f (p)
Ts

= 0.037(7) and f
(n)
Tu

= 0.013(3), f (n)
Td

= 0.040(10), f (n)
Ts

= 0.027(7)

[47] determine the WIMP coupling fN to nucleons, given by

fN

mN
=

X

Q=u,d,s

br

mQ
f
(N)
TQ

+
2

27

0

@1�
X

Q=u,d,s

f
(N)
TQ

1

A
X

Q=c,b,t

br

mQ
, (4.9)

which, using (4.5), gives for protons and neutrons

fN

mN
= cN

m�

6m2
r⇢

2
T

, cp ' 0.29, cn ' 0.28 . (4.10)

Then, the DM-nucleon spin-independent total cross-section is given by

�N =
µ
2
N�

⇡
f
2
N , (4.11)
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Figure 3: Left panel: Lower bound (red region) in the plane (m�,mr) from the spin-independent DM-nucleon cross
section, for heavy DM m� & 0.3 GeV, as a function of DM mass. The blue region stands for the neutrino coherent
scattering limit. Data taken from Ref. [1]. We have considered ⇢̃T = 1TeV, and we have assumed N = proton, although
the neutron case would lead to an indistinguishable figure. In the region mr > 2m� the decay r ! ��̄ can take place.
Right panel: The same from the DM-electron scattering, for light DM m� . 1 GeV.

Then, the DM-nucleon spin-independent total cross-section is given by

�N =
µ
2
N�

⇡
f
2
N , (4.11)

where µN� is the reduced DM-nucleon mass µN� = mNm�/(mN +m�).

Eq. (4.11) can be compared with the experimental limits on direct detections. In the range 3 GeV .
m� . 10 GeV the strongest bounds are given by XENON1T [48, 49], in the range 1 GeV . m� . 3 GeV by

DarkSide50 [50] and for 0.5 GeV . m� . 1 GeV by CREST [51]. The dependence �N / 1/m4
r implies that

for a given value of m� the experimental upper limits set a lower bound for the radion mass. This bound is

displayed in the pink region in Fig. 3 (left panel).

The blue region corresponds to the upper bound imposed by the neutrino floor to be detected by direct

searches. The region inside the blue region is not excluded, but direct detection there seems most problematic

as it is inside the neutrino floor. Values of the radion mass mr . m� turn out to be compatible with the

current experimental limits when considering m� . 2GeV.

Notice that the actual value of ⇢1 (or similarly the value of ⇢̃1) is not involved in Fig. 3, only the value

of m�, which is naturally smaller than ⇢1. Moreover in this paper we are considering the region where

mr . m�, so that in particular the decay of the radion into ��̄ cannot take place. This region is favored by

direct measurements, as we can see from the left panel of Fig. 3 where the region mr > 2m� (for which the

decay r ! ��̄ could take place) is inside the neutrino floor area and thus inaccesible to future experimental
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Accelerator searches

1) DM searches at the LHC for our model: 
missing energy events and mono-Z/jets 

ATLAS collab. 1211.6096, 1502.01518

putting upper bounds on it depending on the DM mass. In particular for 50 MeV . m� . 1 GeV it is

mainly constrained by XENON1T data [53], for 15 MeV . m� . 50 MeV by DarkSide data [54], and for

1 MeV . m� . 15 MeV by SENSEI at SNOLAB data [55]. For mr > ↵me the average cross section is

approximated by
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2
e

m4
r

, (4.17)

and the considered experimental data are those for which the form factor with FDM(q) ' 1 does apply. This

is the region shown in the right panel of Fig. 3. On the other hand, for mr < ↵me the average cross section

is approximated by

�̄e '
µ
2
e�

144⇡⇢̃4T

m
2
�

↵4m2
e
, (4.18)

and the corresponding experimental data are those for which the form factor FDM(q) ' ↵me/q2 applies. In

this region, not shown in Fig. 3, the experimental result do not impose any constraints in the parameter

space of our model.

5 Accelerator searches

The most promising dark matter searches at the LHC in our model are in events with missing energy and a

Z boson [56]. This analysis is based on an e↵ective Lagrangian description between quarks and DM, which

in our model is given by

L =
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Using now data from ATLAS on ZZ production [57] a lower bound on ⇤ is found as a function of m�. In

the region 1GeV . m� . 10 GeV the 90% CL bound ⇤ & 0.1 GeV is found [56]. For the model we are

considering in this paper it translates into the bound

mr & 10�5GeV
⇣

m�

1GeV

⌘1/2
, (5.2)

which is easily satisfied and consistent with all other constraints.

In the mass range me . mr . mp the fixed-target experiments can provide the advantage of high-energy

particle beams and relatively large intensities: in particular the NA64 experiment at CERN SPS [58] and the

future LDMX experiment at SLAC [59]. Here we can apply the search for a new generic boson, the radion

in our case, particle produced in the 100 GeV electron scattering o↵ nuclei (A,Z), e�Z ! e
�
Zr, followed

by its invisible decay in the NA64 experiment at CERN. Defining the coupling of the radion to electron

L = �greer ē e with gree =
me⇢̃1
p
6⇢̃2T

, (5.3)

and NA64 data [58, 60], one can put upper bounds on the value of the coupling gree: gree . 5 · 10�6 for

mr = 10�3 GeV, and gree . 3 · 10�3 for mr = 1 GeV [60]. In our case

gree = 2⇥ 10�10

✓
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, for ⇢̃1 < 10GeV , (5.4)
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the detector. The region of the parameters in the plane (mr, ⇢̃1) is exhibited in Fig. 4. Below the solid line

in Fig. 4 the radion decays outside the detector.

Finally notice that, using the rough bounds mf < mr/2 < ⇢̃1/2 < 50 GeV we can set the absolute
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smaller, which justifies neglecting the width �r in all previous calculations where the radion is propagating.
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Indirect constraints 
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Before solving numerically Eq. (6.4) we can see some analytical properties. For very high temperatures,
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r the � abundance at the freeze-out will di↵er from its equilibrium value

at the freeze-out temperature TFO, a situation we have not considered in this paper. Imposing now that
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Bounds from CMB, Cosmic Rays, Galactic Center: 
    for   χχ̄ → l+l−, qq̄, γγ 0.1 GeV ≲ mχ ≲ 10 GeV ⟨σχv⟩ ≪ ⟨σboundv⟩ ∼ 10−27 cm3/s

Bounds from BBN
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Figure 6: Left panel: Contour lines of � for mr > 1 MeV. We also display the area of m� . 2GeV where PTA results
can be reproduced (shadowed gray area), and the forbidden region for the spin-independent DM-nucleon cross section
(shadowed red area). The dashed straight lines correspond to fixed values of mr/m�. Right panel: Contour plots of �
for mr < 1 MeV. The forbidden region for the DM-electron collision is also displayed (shadowed red area).

temperature TFO, � will freeze-out and will go out of equilibrium with radions, stabilizing the value of Y�.

Concerning the mr < 1 MeV region, as we will see, is almost excluded by BBN conditions.

Notice that, for mr > 1 MeV, from the left panel of Fig. 6 it follows that TFI & Td, being Td the

temperature at which � and the SM go out of equilibrium, i.e. for which �0/x
2(Td) ⌧ 1. Still as �� � �0 the

parameter ��/x
2(Td) is not negligible, the density Y� does not stabilize yet at T = Td and decreases roughly

as its equilibrium distribution, until the freeze-out temperature TFO < Td for which ��/x
2(TFO) ⌧ 1. Then

at the temperature TFO the distribution Y�, provided by Eq. (6.3), goes to a constant value ⇠ 2x2(TFO)/��.

To solve numerically the system (6.3) we can make some approximations. Given that �r ⌧ �� and

�0 ⌧ �� one can safely neglect the corresponding terms in (6.3). Moreover even if the cross-section ��

is p-wave suppressed, the inequality �0 ⌧ �� holds as, for the cross-section � ' a + b v we can write

h�vi ' a + 6b/x and, given that the freeze-out temperature is TFO ' m�/24 and x(TFO) ' 24mr/m�, the

p-wave suppression �� is much milder than the �0 suppression from the factor cr(zT ). We then can write

�� ⌘ �
0
�/x and approximate the Boltzmann equations as
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Figure 6: Left panel: Contour lines of � for mr > 1 MeV. We also display the area of m� . 2GeV where PTA results
can be reproduced (shadowed gray area), and the forbidden region for the spin-independent DM-nucleon cross section
(shadowed red area). The dashed straight lines correspond to fixed values of mr/m�. Right panel: Contour plots of �
for mr < 1 MeV. The forbidden region for the DM-electron collision is also displayed (shadowed red area).
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The Boltzmann equation for the radion number density nr and the DM number density n� can be

written as
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where �r ⌘ �(r ! SM+SM) ⇠ c
2
r is the decay width defined in Eqs. (5.6), (5.7) and (5.8) 8, while the

di↵erent cross-sections are defined as: �r ⌘ �(rr ! SM+SM) ⇠ c
4
r , �� ⌘ �(��̄ ! rr) ⇠ c
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r and �0 ⌘ �(��̄ !

SM+SM) ⇠ c
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r , where we have indicated the respective orders in the small parameter cr(zT ). Eq. (6.1) can
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where H(mr) is the Hubble constant at the temperature T = mr, Y
eq
r,� are given by Eq. (3.10), and the

cross-sections �i (i = r,�) are p-wave suppressed so that �i = �
0
i
v, and h�ivi = 2�0

i
+ O(x2) for x ⌧ 1.

Taking into account the dependence of the di↵erent couplings on the small parameter cr(zT ), we find the

following hierarchy among them: �r ⌧ �0, �0 ⌧ ��. For instance we can consider the di↵erent cross-section

and decay rates into SM fermions f . In this case we find that, parametrically in terms of the couplings

�0

��

' grff ,
�0

��

' grff ,
�r

��

' g
2
rff , grff =

mf⇢1
p
6⇢2

T

(6.4)

where e.g. for f = e the coupling is typically gree ' 10�10. Similar suppression is obtained for processes into

photons and/or gluons.

Some analytical properties of Eq. (6.3) are in order before exploring it numerically. For very high

temperatures (x ⌧ 1), for which �i/x
2
� 1, the equilibrium solution Yr = Y

eq
r and Y� = Y

eq
� follows.

Concerning the radion abundance, for a value of the temperature T0 ' m�, corresponding to x0 = mr/T0 < 1,

such that �r/x
2
0 . O(1) (i.e. x0 & �

1/2
r ), the radion goes out of equilibrium while � stays in equilibrium as

��/x
2
0 � 1. One can easily check using numerical analysis that the solution we find is an attractor, which

does not depend on the initial conditions as the equilibrium solution for Yr = Y
eq
r is quickly recovered 9,

8h�ri stands for the thermally averaged (time dilation included) decay width of the radion, which is computed as

h�ri =
P1

n=1

1

nK1(nx)P1
n=1

1

nK2(nx)
�r , (6.2)

where �r is the decay width of the radion at rest.
9
This behavior, with re-equilibration at low temperature, was already observed for the case of ALPs a from the three-point

function a $ �� [62].
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function a $ �� [62].
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Figure 6: Left panel: Contour lines of � for mr > 1 MeV. We also display the area of m� . 2GeV where PTA results
can be reproduced (shadowed gray area), and the forbidden region for the spin-independent DM-nucleon cross section
(shadowed red area). The dashed straight lines correspond to fixed values of mr/m�. Right panel: Contour plots of �
for mr < 1 MeV. The forbidden region for the DM-electron collision is also displayed (shadowed red area).

temperature TFO, � will freeze-out and will go out of equilibrium with radions, stabilizing the value of Y�.

Concerning the mr < 1 MeV region, as we will see, is almost excluded by BBN conditions.

Notice that, for mr > 1 MeV, from the left panel of Fig. 6 it follows that TFI & Td, being Td the

temperature at which � and the SM go out of equilibrium, i.e. for which �0/x
2(Td) ⌧ 1. Still as �� � �0 the

parameter ��/x
2(Td) is not negligible, the density Y� does not stabilize yet at T = Td and decreases roughly

as its equilibrium distribution, until the freeze-out temperature TFO < Td for which ��/x
2(TFO) ⌧ 1. Then

at the temperature TFO the distribution Y�, provided by Eq. (6.3), goes to a constant value ⇠ 2x2(TFO)/��.

To solve numerically the system (6.3) we can make some approximations. Given that �r ⌧ �� and

�0 ⌧ �� one can safely neglect the corresponding terms in (6.3). Moreover even if the cross-section ��

is p-wave suppressed, the inequality �0 ⌧ �� holds as, for the cross-section � ' a + b v we can write

h�vi ' a + 6b/x and, given that the freeze-out temperature is TFO ' m�/24 and x(TFO) ' 24mr/m�, the

p-wave suppression �� is much milder than the �0 suppression from the factor cr(zT ). We then can write

�� ⌘ �
0
�/x and approximate the Boltzmann equations as

dYr

dx
= ��x [Yr � Y

eq
r ] +
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1) Region  and for mr > 2me mr ≳ few MeV

BBN not perturbed when 

 and radion freezes-in before DM freezes-outσ ≫ 1

Figure 5: Left panel: Plot of Yr for �0 = 10 (solid lines) corresponding for initial conditions Y
0
r = 10�4 (upper solid

line), 10�8 and 10�12 (lower solid line), and comparison with the equilibirum distribution Y
eq
r (dashed line). Right

panel: The same as in right panel, but for �0 = 0.1.

The region mr > 2me

In the region mr > 2me ' 1 MeV, the radion can decay into photon and fermion channels, the former being

subleading in the total width �r. If � � 1, x(TFO) � xFI so that at T = TFO, Yr ' Y
eq
r and the Botzmann

equation (6.6) can be solved giving rise to the solution in Sec. 3.2. We show in the left panel of Fig. 5

the numerical solution of Yr(x) for the case where �0 = 10 and di↵erent values of Yr(0) out-of-equilibrium.

The typical feature of the freeze-in mechanism [62] is that Yr(0) ⌧ 1 (either by inflation or some other

mechanism). In Fig. 5 we show that the equilibrium distribution is an attractor and for the di↵erent values

of the initial condition the solutions merge to each other way before they reach the equilibrium value. In

the left panel of Fig. 6 we plot contour lines of � = TFI/TFO where it is shown that for mr & few MeV the

condition � � 1 is fulfilled, and so the relic abundance computed in Sec. 3.2 follows.

Moreover, BBN is not perturbed provided that ⌧r . 10 sec [63]. In particular, in the region where the

radion width is dominated by the channel r ! ee, the radion lifetime is given by

⌧r ' 0.4 sec

✓
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◆4✓GeV
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◆2✓MeV

mr

◆
, (6.8)

which easily satisfies the BBN bound. For heavier radion masses, where heavier fermions contribute to the

decay r ! ff̄ , as the width is proportional to mrm
2
f the radion lifetime is shorter and the BBN bound is

more easily satisfied, as it is shown in Fig. 7 (left panel), from where it follows that the BBN condition holds

in the region where mr & 1 MeV.

The region mr < 2me

For mr < 2me the process r ! �� is given in (5.8) for which bQED '
7
90

m2
r

m2
e
, which is zero to leading order

for m2
r/m

2
e ⌧ 1, and we have only considered the leading e↵ect from non-decoupling in the electron channel.

23

Figure 5: Left panel: Plot of Yr for �0 = 10 (solid lines) corresponding for initial conditions Y
0
r = 10�4 (upper solid

line), 10�8 and 10�12 (lower solid line), and comparison with the equilibirum distribution Y
eq
r (dashed line). Right

panel: The same as in right panel, but for �0 = 0.1.
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r and the Botzmann

equation (6.6) can be solved giving rise to the solution in Sec. 3.2. We show in the left panel of Fig. 5

the numerical solution of Yr(x) for the case where �0 = 10 and di↵erent values of Yr(0) out-of-equilibrium.

The typical feature of the freeze-in mechanism [62] is that Yr(0) ⌧ 1 (either by inflation or some other

mechanism). In Fig. 5 we show that the equilibrium distribution is an attractor and for the di↵erent values

of the initial condition the solutions merge to each other way before they reach the equilibrium value. In

the left panel of Fig. 6 we plot contour lines of � = TFI/TFO where it is shown that for mr & few MeV the

condition � � 1 is fulfilled, and so the relic abundance computed in Sec. 3.2 follows.

Moreover, BBN is not perturbed provided that ⌧r . 10 sec [63]. In particular, in the region where the

radion width is dominated by the channel r ! ee, the radion lifetime is given by

⌧r ' 0.4 sec
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which easily satisfies the BBN bound. For heavier radion masses, where heavier fermions contribute to the

decay r ! ff̄ , as the width is proportional to mrm
2
f the radion lifetime is shorter and the BBN bound is

more easily satisfied, as it is shown in Fig. 7 (left panel), from where it follows that the BBN condition holds

in the region where mr & 1 MeV.

The region mr < 2me

For mr < 2me the process r ! �� is given in (5.8) for which bQED '
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, which is zero to leading order
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r/m
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e ⌧ 1, and we have only considered the leading e↵ect from non-decoupling in the electron channel.
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Figure 7: Left panel: Contour lines of ⌧r/sec for mr > 1 MeV. Right panel: Contour lines of ⌧r/⌧universe for mr < 1
MeV.

Contour lines of the parameter � are plotted in the right panel of Fig. 6, where it is shown that � ⌧ 1,

which leads to the condition TFO � TFI for which Yr ⌧ Y
eq
r , see right plot of Fig. 5. In that case we can
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Contour lines of the parameter � are plotted in the right panel of Fig. 6, where it is shown that � ⌧ 1,

which leads to the condition TFO � TFI for which Yr ⌧ Y
eq
r , see right plot of Fig. 5. In that case we can

24

	 F. Abu-Ajamieh, J. S. Lee and J. Terning,  
	 JHEP 10 (2018) 050  

	 M. Kawasaki, K. Kohri, T. Moroi and Y. 
Takaesu, Phys. Rev. D 97 (2018) 023502 



20

Indirect constraints 

0.2

1

-1-0.5

0

0.5
1

1.5

2

3

4
4.5

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Log10HmcêGeVL

Lo
g 1
0Hm

rêG
eV
L

Log10 s

PTA

c-N excluded

-22

-19

-16

-13

-10

-7

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6
-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

Log10HmcêGeVL
Lo
g 1
0Hm

rêG
eV
L

Log10 s

c-e excluded

Figure 6: Left panel: Contour lines of � for mr > 1 MeV. We also display the area of m� . 2GeV where PTA results
can be reproduced (shadowed gray area), and the forbidden region for the spin-independent DM-nucleon cross section
(shadowed red area). The dashed straight lines correspond to fixed values of mr/m�. Right panel: Contour plots of �
for mr < 1 MeV. The forbidden region for the DM-electron collision is also displayed (shadowed red area).

temperature TFO, � will freeze-out and will go out of equilibrium with radions, stabilizing the value of Y�.

Concerning the mr < 1 MeV region, as we will see, is almost excluded by BBN conditions.

Notice that, for mr > 1 MeV, from the left panel of Fig. 6 it follows that TFI & Td, being Td the

temperature at which � and the SM go out of equilibrium, i.e. for which �0/x
2(Td) ⌧ 1. Still as �� � �0 the

parameter ��/x
2(Td) is not negligible, the density Y� does not stabilize yet at T = Td and decreases roughly

as its equilibrium distribution, until the freeze-out temperature TFO < Td for which ��/x
2(TFO) ⌧ 1. Then

at the temperature TFO the distribution Y�, provided by Eq. (6.3), goes to a constant value ⇠ 2x2(TFO)/��.

To solve numerically the system (6.3) we can make some approximations. Given that �r ⌧ �� and

�0 ⌧ �� one can safely neglect the corresponding terms in (6.3). Moreover even if the cross-section ��

is p-wave suppressed, the inequality �0 ⌧ �� holds as, for the cross-section � ' a + b v we can write

h�vi ' a + 6b/x and, given that the freeze-out temperature is TFO ' m�/24 and x(TFO) ' 24mr/m�, the

p-wave suppression �� is much milder than the �0 suppression from the factor cr(zT ). We then can write

�� ⌘ �
0
�/x and approximate the Boltzmann equations as

dYr
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Figure 7: Left panel: Plots of Yr(x) and Y�(x) from Eq. (6.6) for �0 = 102 and �
0
� = 1011. Right panel: The same as

in the left panel for �0 = 1. We have considered m� = 1GeV and mr = 0.2GeV in both panels.

The relation between the constant value of Y� when it freezes-out, and the relic density, is given by

⌦� =
⇢�,0

⇢crit,0
=

m�Y�s0

3M2
P
H

2
0

, (6.7)

where s0 = (2⇡2
/45)gS,0T 3

0 is the entropy density today, with today’s entropy number of degrees of freedom

gS,0 = 3.94, T0 ' 2.4⇥10�13 GeV the universe temperature today, and H0 ' 2.14⇥10�42
h GeV the Hubble

constant today. Putting numbers we get

⌦�h
2
'

3.5⇥ 1011

�0
�

⇣
mr

GeV

⌘✓
mr

m�

◆
. (6.8)

The numerical solution of Eqs. (6.6) is provided in Fig. 7 for mr = 0.2 GeV, m� = 1 GeV, �0 = 102,

�
0
� = 1011 (left panel), and �0 = 1, �0

� = 1011 (right panel). As anticipated, we can see from the results of

both panels of Fig. 7 that the stabilizing value of the distribution Y� is not very sensitive to the actual value

of �0, i.e. on the value of �. More details of this solution will be given elsewhere.

The region mr > 2me

In the region mr > 2me ' 1 MeV, the radion can decay into photon, gluon and fermion channels, the former

being subleading in the total width �r. As we already have discussed, the condition mr > 1 MeV is su�cient

for getting the correct relic abundance of �. Moreover, BBN is not perturbed provided that ⌧r . 10 sec [63].

In particular, in the region where the radion width is dominated by the channel r ! ee, the radion lifetime

is given by

⌧r ' 0.4 sec

✓
⇢̃T

TeV

◆4✓GeV

⇢̃1

◆2✓MeV

mr

◆
, (6.9)
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Figure 8: Left panel: Contour lines of ⌧r/sec for mr > 1 MeV. The dashed straight lines correspond to fixed values of
mr/m�. Right panel: Contour lines of ⌧r/⌧universe for mr < 1 MeV.

which easily satisfies the BBN bound. For heavier radion masses, where heavier fermions contribute to the

decay r ! ff̄ , as the width is proportional to mrm
2
f
the radion lifetime is shorter and the BBN bound is

more easily satisfied, as it is shown in Fig. 8 (left panel), from where it follows that the BBN constraint

holds in the region where mr & 1 MeV.

The region mr < 2me

For mr < 2me the process r ! �� is given in (5.8) for which bQED '
7
90

m
2
r

m2
e
, which is zero to leading order

for m2
r/m

2
e ⌧ 1, and we have only considered the leading e↵ect from non-decoupling of the electron.

Contour lines of the parameter � are plotted in the right panel of Fig. 6, where it is shown that � ⌧ 1.

In that case the second term of the right-hand side of Eq. (6.6) gets larger than the equilibrium values,

and the solution provided in previous sections should be revised. We plan to further study this situation

in a di↵erent work. In this region we find that xFI � 1, or TFI ⌧ mr, so that the radion reenters thermal

equilibrium non-relativistically.

In the region mr < 1 MeV the total decay width of the radion is dominated by the channel r ! �� so

that the BBN condition ⌧r < 10 sec is never fulfilled, and thus it is excluded by the BBN constraint. Still

the radion can be stable if its lifetime is larger than the universe lifetime, so it behaves as a stable particle,

as it is shown in the right panel of Fig. 8 which shows that in our model ⌧r > ⌧universe for mr . 10 keV. In

that case the radion could be an extra candidate to dark matter (see e.g. Ref. [64] for earlier work). This

possibility will be further pursued elsewhere. Nevertheless, we complete this section with a discussion of

cosmological bounds on such light long-lived radions.

Radions keep thermal equilibrium until the freeze-out temperature T0, at which they go out of equi-
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2b) For  light long-lived radions exist with  mr ≲ 10 keV τr > tuniverse

For  to be safe  radions should decouple from SM at 
 

ΔNeff
≲ 0.07

T0 ≳ ΛQCD

A relic background of  radions from the time of  their 
decoupling exists with temperature  Tr(T0) ≈ 1.16 K < TCMB
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• DM interacts only gravitationally via radions and massive KK gravitons. Strong annihilations into 
radions can trigger the observed relic density after the non-relativistic freeze-out 

• Interactions of  radions with the SM are weak enough to evade constraints from direct 
measurements, but not so weak as to also evade the neutrino floor, leaving a wide window for 
future experimental detection, mainly from nuclear recoil 

• The dark matter mass window, , consistent with all direct and indirect 
constraints will allow to sharply concentrate the experimental searches 

• A spinoff  is the prediction of  a light radion which, in the future, can be detected in present 
fixed target experiments, as NA64 at the CERN SPS, and the future LDMX at SLAC 

• Finally, assuming that the PTA experiments have found a new physics scale around the  
( ) scale, our proposal would suggest that the new scale can be provided by the dark 
matter sector in our universe

mχ ∈ [0.15 GeV, 2 GeV]

GeV
ΛPTA ∼ GeV

Conclusions
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THANK YOU!!!


