Constraining Higgs sectors of BSM models – the case of 95 GeV "Higgs"

Wojciech Kotlarski, Jan Kalinowski

Motivation

- Many BSM models predict existence of new scalars, especially "Higgses"
- Realistic models must also contain a SM-like Higgs boson
- In lack of direct BSM signatures Higgs boson(s) might become our only handle on BSM physics
 - strong constraints on BSM models
 - requirement for an accurate prediction of Higgs boson properties in BSM models
 - and an easy way to compare them with experimental data

ATLA	S		Total 🗔 S	Stat.	<mark>—</mark> Sy	st. 🔳	SM
$m_{H} = 125$ $p_{SM} = 71$	5.09 GeV, y	9.8 lb < 2.5					
					Total	Stat.	Syst.
	γγ 🖷	þ		0.96	± 0.14	(±0.11	+ 0.09
	ZZ* 🗧			1.04	+ 0.16 - 0.15	(±0.14	, ±0.06
gg⊢	WW* H			1.08	± 0.19	(±0.11	, ±0.15
	ττ 🛏			0.96	+ 0.59 - 0.52	(+ 0.37 - 0.36	+ 0.46 , _ 0.38
	comb.	•		1.04	± 0.09	(± 0.07	+ 0.07
	γγ			1.39	+ 0.40 - 0.35	(+ 0.31 - 0.30	+ 0.26 , - 0.19
	ZZ*			2.68	+ 0.98 - 0.83	(+ 0.94 - 0.81	+ 0.27
VBE	WW* +===+			0.59	+ 0.36 - 0.35	(+ 0.29 - 0.27	, ±0.21
V DI	ττ Η			1.16	+ 0.58 - 0.53	(+ 0.42 - 0.40	+ 0.40
	bb			3.01	+ 1.67 - 1.61	(+ 1.63 - <u>1.57</u>	+ 0.39
	comb.	 I		1.21	+ 0.24	(+ 0.18 - 0.17	+ 0.16
	γγ 🛏			1.09	+ 0.58	(+ 0.53 - 0.49	+ 0.25
VH				0.68	+ 1.20 - 0.78	(+ 1.18 - 0.77	+ 0.18
	bb I			1.19	+ 0.27	(+ 0.18 - 0.17	+ 0.20 , - 0.18
	comb. I			1.15	+ 0.24	(± 0.16	· 0.16
	γγ Η			1.10	- 0.35	(- 0.33	+ 0.19 - 0.14 + 0.41
	VV*			1.50	- 0.55 + 1.13	(- 0.43 + 0.84	, - 0.38 + 0.75
tīH+tH				1.38	- 0.96	(- 0.76	, - 0.59
	comb.			0.79	- 0.59 + 0.26	(± 0.29)	, ±0.52 +0.20
					- 0.24	/	, _ 0.18
-2	0	2	4		6		8
	-	_			-		-

 $\sigma \times BR$ normalized to SM

Predicting Higgs boson properties

Mass

- fixed order
- effective field theory
- hybrid (fixed order + EFT)
- Decays
- Production
- Many tools (see for example a great overview by H. Rzehak from the "TOOLS" workshop)
 - model specific
 - generic (SAHAH+SPheno, FlexibleSUSY)

FlexibleSUSY in a nutshell

- There are codes like 2HDMC, SPHENO, SOFTSUSY or SUSPECT that calculate mass spectra and various observables for a predefined model (THDM in case of 2HDMC and MSSM/NMSSM in remaining cases).
- FLEXIBLESUSY is a spectrumgenerator generator - creates a code analogue to abovementioned programs but for an arbitrary BSM model.
- Use known results for a generic QFT. Don't recalculate what you don't have to from the ground.
- Streamlining study of BSM phenomenology, reducing time needed to study a new model from years to weeks.
 No hand written code, less place for errors.

Program flow

Analytic calculation: particle content + Lagrangian \Rightarrow tadpole equations, self-energies, mass matrices, RGEs, vertices etc.

- Creates code for numerical evaluation of various observables
 - 1-loop pole masses and mixing matrices (in specific models higher corrections are available)
 - − observables: muon $(g-2)_{\mu}$, lepton's EDMs, l→l'y, b→sy, scalar decays
 - soon: $l \rightarrow l'$ conversion in nuclei, $l \rightarrow 3l$

FLEXIBLEDECAY overview

- Fully automated scalar decays evaluation in an almost arbitrary BSM model. Tested on SM, real singlet extended SM, type II THDM, MSSM/CMSSM, MRSSM and many more.
- Works as an add-on to FLEXIBLESUSY spectrum-generator generator. Almost no extra configuration needed by a user.

```
FSCalculateDecays = True;
DecayParticles = {hh, Ah, Hpm, Su, Sd, Se, Sv};
turning on decays
for the MSSM
```

You run FS as before.

- Generic decays are handled at the leading order (**both** tree-level and loop-induced processes are handled)
- Special treatment of scalar and pseudoscalar Higgs decays
 - higher order SM corrections from literature
 - precision comparable with state of the art codes like HDECAY

What you get (singlet+SM example)

. . .

•••											
Block	DC	INFO									
	1	FlexibleSUS	SY								
	2	2.6.1									
	5	SSMMhInput									
	9	4.14.3									
DECAY	•	25	3.2084	6016E-03	#	hh(1) d	eca	ays			
	5.8	2089643E-01	2	-5		5	#	BR(hh(1)	->	barFd(3) F	Gd(3))
	2.1	0479150E-01	2	-24		24	#	BR(hh(1)	->	conjVWp VW	lp)
	8.5	6684916E-02	2	21		21	#	BR(hh(1)	->	VG VG)	
	6.1	9432803E-02	2	-15		15	#	BR(hh(1)	->	barFe(3) F	Fe(3))
	2.8	7673651E-02	2	-4		4	#	BR(hh(1)	->	barFu(2) F	^r u(2))
	2.6	7950080E-02	2	23		23	#	BR(hh(1)	->	VZ VZ)	
	2.2	9059815E-03	2	22		22	#	BR(hh(1))	->	VP VP)	
	1.4	8172847E-03	2	22		23	#	BR(hh(1)	->	VP VZ)	
	2.6	4726402E-04	2	-3		3	#	BR(hh(1)	->	barFd(2) F	^r d(2))
	2.1	9292886E-04	2	-13		13	#	BR(hh(1)	->	barFe(2) F	Fe(2))
DECAY		35	8.5661	7420E-01	#	hh(2) d	eca	ays			

7/23

HiggsTools

- Succesor of HiggsBounds and HiggsSignals
- Consists of two parts:
 - HiggsSignals: checks SM-like Higgs
 - HiggsBounds: checks BSM Higgses
- Example: SM-like Higgs with perturbed coupling to charm quarks
- Some care needed in interpreting χ² from HiggSignals

CP-even

HiggsTools interface

Using HiggsTools from FlexibleSUSY is totally transparent to the userHowto:

- install HiggsTools
- point FlexibleSUSY to it's location during configuration
- you're good to go

Block HIGGSSIGNALS

	1	1.5900000E+02	<pre># number of degrees of freedom</pre>
	2	1.57662766E+02	# χ^2
	3	1.51551655E+02	# SM χ^2 for mh = 125.250000 GeV
	4	4.70965484E-02	# p-value
Bloc	k HIGG	SBOUNDS	
25	1	2.38307377E-01	<pre># LHC13 [vbfH,HW,Htt,H,HZ]>[gamgam] from 1811.08459</pre>
25	2	5.84526557E-01	# expRatio
35	1	7.11468251E-01	<pre># LHC8 [vbfH,HW,Htt,H,HZ]>[bb,tautau,WW,ZZ,gamgam]</pre>
35	2	3.57914871E+00	# expRatio

LEP hints of a 95 GeV scalar

Higgsstrahlung excess in the bb channel [arXiv:0306033]

Can be accommodate by a intermediate state H [arXiv:1612.08522]

$$\mu_{b\bar{b}}^{\text{LEP}} = \frac{\sigma^{exp}(e^+e^- \to Z\phi \to Zb\bar{b})}{\sigma^{\text{SM}}(e^{+-} \to ZH \to Zb\bar{b})} = 0.117 \pm 0.057$$

LHC hints of a 95 GeV scalar

Recent ATLAS result based on the full Run 2 data set

$$\mu_{\gamma\gamma}^{\rm ATLAS} = \frac{\sigma^{\rm exp}(pp \to \phi \to \gamma\gamma)}{\sigma^{\rm SM}(pp \to H \to \gamma\gamma)} = 0.18^{+0.10}_{-0.10}$$

Consistent with the already existing CMS excess

$$\mu_{\gamma\gamma}^{\rm CMS} = \frac{\sigma^{\rm epx}(pp \to \phi \to \gamma\gamma)}{\sigma^{\rm SM}(pp \to H \to \gamma\gamma)} = 0.33^{+0.19}_{-0.12}$$

Combined (Biekotter, Heinemeyer, Weiglein [arXiv:2306.03889])

$$\mu_{\gamma\gamma}^{\rm ATLAS + CMS} = 0.24^{+0.09}_{-0.08}$$

Generic setup

Mostly gauge singlet state

$$h_1^2 = \frac{1}{10}s^2 + \dots$$

with mass 95.4 GeV. Such composition solves this

$$\mu_{b\bar{b}}^{\rm LEP} = \frac{\sigma^{\rm BMS}(e^+e^- \to Zh_1 \to Zb\bar{b})}{\sigma^{\rm SM}(e^+e^- \to ZH \to Zb\bar{b})} \approx 0.1$$

But it equally (by a factor 1/10) suppreses

$$\mu_{\gamma\gamma} = \frac{\sigma^{\rm BSM}(pp \to h_1 \to \gamma\gamma)}{\sigma^{\rm SM}(pp \to H \to \gamma\gamma)} \approx 0.1$$

You need a way to enhance

$$BR(\phi \to \gamma \gamma) \approx (2 - 2.5)BR(H \to \gamma \gamma)$$

R-symmetry

- R-symmetry is an additional symmetry of the SUSY algebra allowed by the Haag -Łopuszański - Sohnius theorem
- For N=1 SUSY it is a global U(1)_R symmetry under which the SUSY generators are charged

implies that the spinorial coordinates are also charged

$$Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$$

Lagrangian invariance

- Kähler potential K term is automatically invariant
- R-charge of the superpotential W must be 2

- soft-breaking terms must have R-charge 0

Low-energy R-symmetry realization

Bad: No Majorana masses for higgsinos and gauginos

	One way to fix it: <u>Dirac masses</u>						
	Minimal R-Symm Kribs et.al. arXiv:0712.2039	netric Super	symm	netric Star	ndardmod	el (MRS	SM)
				<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_{R}$
		Singlet	Ŝ	1	1	0	0
	Additional fields:	Triplet	Ť	1	3	0	0
		Octet	Ô	8	1	0	0
		R-Higgses	Â _u	1	2	-1/2	2
			Â _d	1	2	1/2	2

$$W = \mu_d R_d H_d + \mu_u R_u H_u$$

$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$$

$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

^

MSSM vs. MRSSM

MSSM superpotencial

 $\mu \hat{H}_u \hat{H}_d$ $-Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u$

MSSM soft-SUSY breaking terms

Q

- B_{μ} term
- soft scalar masses
- Majorana gaugino masses
- A terms

MRSSM superpotencial $\blacktriangleright \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$ $-Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u$ $\Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$ MRSSM soft-SUSY breaking terms - B_{μ} - term (though no B_{μ} , B_{μ}) soft scalar masses Dirac gaugino masses no A-terms One way to fix it: Dirac masses Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) $SU(3)_C$ $SU(2)_L$ $U(1)_Y$ $U(1)_{\rm R}$ Ŝ Singlet 1 1 0 0 Ť 1 3 0 Triplet 0 Additional fields: Ô Octet 8 1 0 0 Â_u 2 **R-Higgses** 1 -1/22 Ŕд 1 2 1/22

R-symmetry vs. matter parity

Consider R-symmetric transformation of a generic supermultiplet

$$R: \Phi(x,\theta,\bar{\theta}) \to \Phi'(x,e^{i\varphi}\theta,e^{-i\varphi}\bar{\theta}) = e^{i\varphi R_{\Phi}}\Phi(x,\theta,\bar{\theta})$$

In the MSSM one imposes the so-called matter parity

$$M_p = (-1)^{3(B-L)}$$

- this is equivalent to R-pairity which is defined on components of a supermultiplet as $P_R = (-1)^{3(B-L)+2s}$

- This is also equivalent to R-symmetry $R = e^{i\varphi R_{\Phi}}$ with $\varphi = \pi$ and $R_{\Phi} = 3(B - L)$

R-charges

- MSSM: $R_{\Phi} = 0, 1$
- MRSSM: $R_{\Phi} = 0, 1, 2$
- R-symmetry is more restrictive than matter parity

Particle content summary: MSSM vs. MRSSM

different number of physical state completely new states

		Higgs			R-H	liggs	
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	2

	neutrali no	gluino
MSSM	4	1
MRSS M	4	1

Majorana fermions

Dirac fermions

Light singlet setup

Two lightest Higgses are a mixture of H_u and S

$$\mathcal{M}_{u,S}^{\phi} = \begin{pmatrix} m_Z^2 + \Delta m_{rad}^2 & v_u \left(\sqrt{2}\lambda_u \mu_u^{\text{eff},-} + g_1 M_B^D\right) \\ v_u \left(\sqrt{2}\lambda_u \mu_u^{\text{eff},-} + g_1 M_B^D\right) & 4(M_B^D)^2 + m_S^2 + \frac{\lambda_u^2 v_u^2}{2} \end{pmatrix}$$

Obvious constraints:

- mixing has to be small
- $4(M_B^D)^2 + m_S^2 \approx (95 {\rm GeV})^2 \Rightarrow$ this setup enforces light DM candidate
- $\left|\lambda\right|_u \ll 1$

Light singlet setup

mostly singlet

mostly dublet

Example solution

Reminder: we've identified

 $\lambda_d \hat{S} \hat{R}_d \hat{H}_d$

as a crucial term to enhance $BR(h_1 \rightarrow \gamma \gamma)$

Parameters: $M_1 = 40$ GeV, $m_s = 45$ GeV, $\lambda_d = -1$

Masses:
$$h_1 = 95.4 \text{ GeV}, h_2 = 125.25 \text{ GeV}, A_1 = 38 \text{ GeV}$$

Properties:

$$\mu_{b\bar{b}}^{\rm LEP} = 0.117$$

$$\frac{\sigma(gg \to h_1)}{\sigma^{\rm SM}(gg \to H)} = 0.102 \qquad \times \qquad \frac{{\rm BR}(h_1 \to \gamma\gamma)}{{\rm BR}(H \to \gamma\gamma)} = 2.354 \qquad = 0.24$$

- both CP-even Higgses follow typical SM-like decay patters with small invisible decay widths. SM Higgs p-value 0.283.
 - A₁ is extreamly narrow (10⁻¹⁰ GeV) pseudoscalar A₁ with almost 100% BR to $\gamma\gamma$

Numerics

DM constraints

Including DM as a contraint worsens the fit. You can get point with

$$\Omega h^2 = 0.128$$

and allowed by direct detection

with LEP & CMS excess strengths of

$$\mu_{\gamma\gamma} = 0.217 \qquad \mu_{b\bar{b}} = 0.077$$

but with a SM-like Higgs p-value of 0.05

There seems to be a trade off in this setup between

Conclusions and outlook

- Streamlining comparison of Higgs sector of **your** favourite model with experimental data
- Example aplication: fitted MRSSM to the 95 GeV excess
- There's no publication for the associated code but it is public. You can grab it from here.

Norway grants