Higgs criticality in and beyond the Standard Model

Thomas Steingasser

Massachusetts Institute of Technology, Black Hole Initiative at Harvard University

Overview

Assumptions:

- 1. Higgs parameters are tuned towards critical values marking transitions between different "phases" of the potential.
- 2. This is due to a mechanism favoring criticality.

Question: *How could such a mechanism affect BSM physics?* Results:

- 1. Some fine-tunings **can** be considered plausible.
- 2. A model-independent* **conjecture** for the Wilson coefficient C_6 ,

$$C_6 \simeq rac{|eta_\lambda(\mu_l)|}{12\sqrt{e}} \cdot rac{\Lambda_{\mathrm{UV}}^2}{\mu_l^2}, \ \ ext{with} \ \lambda(\mu_l) = 0.$$

All details: [2307.10361]

- 1. Higgs criticality: Both parameters of the Higgs potential seem fine-tuned
- 2. Large parameter spaces of many BSM models, need to identify interesting regions
- 3. Cosmological consequences & measurements

The near-criticality of the Higgs sector

Higgs potential:

$$V(H) \sim -m^2 H^2 + \lambda H^4 + V_0 \tag{1}$$

All parameters in this potential can be understood as fine-tuned:

 $m^2 \Leftrightarrow$ hierarchy problem

 $\lambda \Leftrightarrow$ meta-stability of the electroweak vacuum

 $V_0 \Leftrightarrow$ cosmological constant problem

(Well motivated) assumption: "More fundamental" physics at some high energy Λ_{UV}

Natural value for the Higgs mass parameter: $m^2 \sim \Lambda_{UV}^2$

Observations: No signs of new physics near the electroweak scale

 \rightarrow often requires fine-tuning of UV-parameters

Renormalization group: Parameters in the Higgs potential are scale dependent

Running of λ is determined by its Beta function,

$$\beta_{\lambda} \sim (4\pi)^{-2} (\lambda^2 - y_t^4 + \dots)$$

Matching with LHC data:

Metastability of the electroweak vacuum

 \rightarrow effective potential $V_{eff} \sim -m^2(H)H^2 + \lambda(H)H^4$:

 \Rightarrow Higgs can tunnel through the potential barrier

Best* estimate for lifetime: 10⁹⁸³ years [2108.09315]

Metastability of the electroweak vacuum - fine-tuning?

Standard Model phase diagram [arXiv:1307.3536]:

Near-criticality and phases of the potential

Both "tunings" correspond to transitions between different phases of the potential!

Cosmological constant: Close to transition from dS to AdS!

Dynamical criticality

Fine-tuning: Unexpected in fundamental parameters, but common feature of dynamical systems!¹

Idea: Higgs-parameters set through dynamical process...

- ... during inflation.
- ... on the landscape.

¹Self-organized criticality: An Explanation of 1/f noise (P. Bak, C. Tang, K. Wiesenfeld)

Developed in [2105.08617] (Giudice, McCullough, You)

Idea: Additional light scalar field(s) ϕ ,

$$m^2 \to m^2(\phi), \ \lambda \to \lambda(\phi), \ \Lambda \to \Lambda(\phi),$$

and vice versa.

Focker-Planck equation + several assumptions + long computations \Rightarrow Probability distribution for ϕ peaked near phase transitions

 \Rightarrow Phase transitions as attractors

Developed in [1907.07693], [1912.06706], [2003.12594], [2106.12590], [2108.09315] (Khoury, Parrikar, Kartvelishvili, Sharma, TS)

Idea: Landscape as a network, vacuum decay as jump between nodes

Eternal inflation + "early" times \Rightarrow metastability favored

General theorem: metastability \Rightarrow large hierarchy [2108.09315]

Bigger picture: Mechanisms leading to tuning against phase transitions feasible

Our interpretation: Fine-tunings might be plausible if they correspond to critical behavior/phase transitions!

Possible ways forward:

- 1. Take another perspective
- 2. Work on concrete mechanisms
- 3. Classify fine-tunings
- 4. Make mechanism-independent statements

Our approach

General UV theories: Many possible phases, critical points \Rightarrow EFT?

Simplest extension: $V_{\rm eff} \rightarrow V_{\rm eff} + \frac{C_6}{\Lambda_{\rm UV}^2} H^6 + \dots$

Motivation:

- 1. Universality*
- 2. Simple \Rightarrow development of computational tools!
- 3. Only Higgs \rightarrow observational consequences?

Phases with a dimension-six term

Single parameter \rightarrow phases easy to identify!

Computation

Idea: Different phases \Leftrightarrow different number of extrema \Rightarrow Rewrite $\partial_H V_{eff} = 0$ as parameter = R(H)

Critical dimension-six term

Result :
$$C_{6,crit} \simeq \frac{|\beta_{\lambda}(\mu_l)|}{12\sqrt{e}} \cdot \frac{\Lambda_{UV}^2}{\mu_l^2}$$
, with $\lambda(\mu_l) = 0$.
Plateau : $H_0^2 = \sqrt{e}\mu_l^2 = \frac{|\beta_{\lambda}(\mu_l)|}{12 \cdot C_6} \cdot \Lambda_{UV}^2$,
 $V(H_0) = \frac{e}{48}|\beta_{\lambda}(\mu_l)| \cdot \mu_l^4$.

 \Rightarrow Validity of EFT controlled by C_6 and $\Lambda_{\rm UV}$

- \Rightarrow Scale of new physics near the instability scale μ_l
- \Rightarrow Properties of plateau controlled by μ_l

Observational consequences

Upper end: Plateau influences Higgs inflation \Rightarrow PBHs! Lower end: RHNs can lower μ_l to O(10)TeV [2304.08542] Conclusion

- $\cdot\,$ New perspective on fine-tuning: Result of dynamical mechanism
- \Rightarrow Tunings might be well-motivated if linked to phase transitions
- \Rightarrow Corresponding parameters interesting to study
- \Rightarrow Effect on BSM physics way to test "criticality paradigm"
 - Effective approach: At least one possible phase transition for wide class of models

Thank you for your attention!

Questions: tstngssr@mit.edu