Dark Energy from topology change at the foam level

Stylianos. A. Tsilioukas ^{1,2} tsilioukas@sch.gr

¹Department of Physics, University of Thessaly, 35100 Lamia, Greece ²National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece

Tensions in Cosmology, September 2023 Corfu

S.A. Tslioukas

Dark Energy from topology change at the foam level 1/26

 By dimensional arguments Dark Energy (DE) probably has a quantum origin [Antoniadis and Tsamis, 1984].

- By dimensional arguments Dark Energy (DE) probably has a quantum origin [Antoniadis and Tsamis, 1984].
- The Gauss-Bonnet (GB) action term plays a crucial role in quantum gravity, in M-theory's β-function and in the trace anomaly.

- By dimensional arguments Dark Energy (DE) probably has a quantum origin [Antoniadis and Tsamis, 1984].
- The Gauss-Bonnet (GB) action term plays a crucial role in quantum gravity, in M-theory's β -function and in the trace anomaly.
- The GB term appears in the effective low energy limit of string theory.

- By dimensional arguments Dark Energy (DE) probably has a quantum origin [Antoniadis and Tsamis, 1984].
- The Gauss-Bonnet (GB) action term plays a crucial role in quantum gravity, in M-theory's β-function and in the trace anomaly.
- The GB term appears in the effective low energy limit of string theory.
- The GB term is considered a topological invariant in 4D, thus it dosen't contribute to the equations of motion.

- By dimensional arguments Dark Energy (DE) probably has a quantum origin [Antoniadis and Tsamis, 1984].
- The Gauss-Bonnet (GB) action term plays a crucial role in quantum gravity, in M-theory's β-function and in the trace anomaly.
- The GB term appears in the effective low energy limit of string theory.
- The GB term is considered a topological invariant in 4D, thus it dosen't contribute to the equations of motion.
- Euclidean Quantum Gravity (EQG) predicts instatons, solutions at the foam level, of distinct topology from the background [Hawking, 1978].

• If according to EQG spacetime topology changes, then what happens to the variation of the GB term?

• If according to EQG spacetime topology changes, then what happens to the variation of the GB term?

The main idea

• If according to EQG spacetime topology changes, then what happens to the variation of the GB term?

The main idea

• Take EQG topology changing instatons seriously.

• If according to EQG spacetime topology changes, then what happens to the variation of the GB term?

The main idea

- Take EQG topology changing instatons seriously.
- Calculate the variation of the GB term during topology change.

• The GB curvature polynomial

• The GB curvature polynomial

$$\mathcal{G}=R^2-4R^{\mu
u}R_{\mu
u}+R^{\mu
u
ho\sigma}R_{\mu
u
ho\sigma},$$
(1)

The GB curvature polynomial

$${\cal G}={\cal R}^2-4{\cal R}^{\mu
u}{\cal R}_{\mu
u}+{\cal R}^{\mu
u
ho\sigma}{\cal R}_{\mu
u
ho\sigma},$$

• is the euler density in 4D, thus according to the Chern-Gauss-Bonnet theorem, its integral over a 4D manifold M, without boundary, yields the euler characteristic χ

The GB curvature polynomial

$${\cal G}=R^2-4R^{\mu
u}R_{\mu
u}+R^{\mu
u
ho\sigma}R_{\mu
u
ho\sigma},$$
 (1)

• is the euler density in 4D, thus according to the Chern-Gauss-Bonnet theorem, its integral over a 4D manifold M, without boundary, yields the euler characteristic χ

$$\chi(M) = \frac{1}{32\pi^2} \int_M d^4 x \sqrt{g} \mathcal{G}$$
 (2)

• The GB curvature polynomial

$${\cal G}={\cal R}^2-4{\cal R}^{\mu
u}{\cal R}_{\mu
u}+{\cal R}^{\mu
u
ho\sigma}{\cal R}_{\mu
u
ho\sigma},$$

• is the euler density in 4D, thus according to the Chern-Gauss-Bonnet theorem, its integral over a 4D manifold M, without boundary, yields the euler characteristic χ

$$\chi(M) = \frac{1}{32\pi^2} \int_M d^4 x \sqrt{g} \mathcal{G}$$
 (2)

• the essense of the theorem is that despite any deformations caused by smooth variations of the metric, the topology of the manifold remains constant, as it is characterized by the topological index χ

• In Euclidean Quantum gravity, for the path intergral to converge:

- In Euclidean Quantum gravity, for the path intergral to converge:
 - The time dimension is Wick rotated $t \rightarrow i \tau$

- In Euclidean Quantum gravity, for the path intergral to converge:
 - **①** The time dimension is Wick rotated $t \rightarrow i \tau$
 - The integration contour is deformed

- In Euclidean Quantum gravity, for the path intergral to converge:
 - **①** The time dimension is Wick rotated $t \rightarrow i \tau$
 - The integration contour is deformed
- Thus, the spacetime manifold is Euclideanized and its signature changes from (-,+,+,+) to (+,+,+,+)

- In Euclidean Quantum gravity, for the path intergral to converge:
 - **①** The time dimension is Wick rotated $t \rightarrow i\tau$
 - 2 The integration contour is deformed
- Thus, the spacetime manifold is Euclideanized and its signature changes from (-,+,+,+) to (+,+,+,+)
- then instatons, saddle point solutions, appear with different topology from the background.

• EQG instatons are spacetime manifolds with different euler character

• EQG instatons are spacetime manifolds with different euler character

Table: Euler character χ of spacetime manifolds as it has been calculated in [Gibbons and Hawking, 1979]

Spacetime	χ
Minkowski	0
Extreme BHs	0
Self-dual Taub-NUT	1
Schwarchild and Kerr BHs	2
Nariai $S_2 imes S_2$	4
Euclidean Wormhole $S_1 imes S_3$	0

• For connected sums the following relation holds for the euler character

$$\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) - 2, \qquad (3)$$

• For connected sums the following relation holds for the euler character

$$\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) - 2, \qquad (3)$$

• then following [Gibbons, 2011] the formation of a Euclidean wormhole with topology $(S_1 \times S_3)$

• For connected sums the following relation holds for the euler character

$$\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) - 2, \qquad (3)$$

• then following [Gibbons, 2011] the formation of a Euclidean wormhole with topology $(S_1 \times S_3)$

$$M \to M \# (S_1 \times S_3), \tag{4}$$

decreases χ by 2, thus $\delta\chi=-2$

• For connected sums the following relation holds for the euler character

$$\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) - 2, \qquad (3)$$

• then following [Gibbons, 2011] the formation of a Euclidean wormhole with topology $(S_1 \times S_3)$

$$M \to M \# (S_1 \times S_3),$$
 (4)

decreases χ by 2, thus $\delta\chi=-2$

• while the formation of a Nariai instanton with topology $(S_2 \times S_2)$

• For connected sums the following relation holds for the euler character

$$\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) - 2, \qquad (3)$$

• then following [Gibbons, 2011] the formation of a Euclidean wormhole with topology $(S_1 \times S_3)$

$$M \to M \# (S_1 \times S_3),$$
 (4)

decreases χ by 2, thus $\delta\chi=-2$

• while the formation of a Nariai instanton with topology $(S_2 \times S_2)$

$$M \to M \# (S_2 \times S_2),$$
 (5)

increases χ by 2 thus $\delta \chi = 2$.

Effective Topological Variation Conjecture (ETVC)

Effective Topological Variation Conjecture (ETVC)

• We are going to conjecture that the variation of the quantum field fluctuations δh cause a variation in the topology of the spacetime manifold $\delta \chi$.

Effective Topological Variation Conjecture (ETVC)

• We are going to conjecture that the variation of the quantum field fluctuations δh cause a variation in the topology of the spacetime manifold $\delta \chi$.

$$\begin{array}{l} \mathcal{M}(g_1,\chi_1) \xrightarrow{\text{eff}_{\mathcal{T}C}} \mathcal{M}'(g_2,\chi_2), \\ \text{eff}_{\mathcal{T}C} : \delta h \longrightarrow \delta \chi. \end{array}$$

$$\tag{6}$$
Effective Topological Variation Conjecture (ETVC)

• We are going to conjecture that the variation of the quantum field fluctuations δh cause a variation in the topology of the spacetime manifold $\delta \chi$.

$$M(g_1, \chi_1) \xrightarrow{\text{eff}_{TC}} M'(g_2, \chi_2),$$

eff_{TC} : $\delta h \longrightarrow \delta \chi.$ (6)

A 3D analogue of Chern's theorem aside with effTC

A 3D analogue of Chern's theorem aside with effTC

Method

• the background field approximation

- the background field approximation
- the expansion of the EH action

- the background field approximation
- the expansion of the EH action
- the expansion of the GB action under the ETVC

- the background field approximation
- the expansion of the EH action
- the expansion of the GB action under the ETVC
- the semiclassical approach, where the effective action will be the sum of EH and the GB action

- the background field approximation
- the expansion of the EH action
- the expansion of the GB action under the ETVC
- the semiclassical approach, where the effective action will be the sum of EH and the GB action
- the extremization of the effective action by the tadpole condition

The linear split of the metric

The linear split of the metric

$$g^{\mu\nu} = \tilde{g}^{\mu\nu} + h^{\mu\nu}, \qquad (7)$$

The linear split of the metric

$$g^{\mu\nu} = \tilde{g}^{\mu\nu} + h^{\mu\nu}, \qquad (7)$$

• where \tilde{g} is the background field and h is the quantum fluctuation field, which is not a metric and lacks a geometrical meaning.

The linear split of the metric

$$g^{\mu\nu} = \tilde{g}^{\mu\nu} + h^{\mu\nu}, \qquad (7)$$

 where g̃ is the background field and h is the quantum fluctuation field, which is not a metric and lacks a geometrical meaning.

Background independence

The linear split of the metric

$$g^{\mu\nu} = \tilde{g}^{\mu\nu} + h^{\mu\nu}, \qquad (7)$$

 where g̃ is the background field and h is the quantum fluctuation field, which is not a metric and lacks a geometrical meaning.

Background independence

 Physical observables must be background independent and the action must be diffeomorphic invariant [Pawlowski and Reichert, 2021]

$$g(\tilde{g}, h) \rightarrow g(\tilde{g} + \delta \tilde{g}, h + \delta h) = g(\tilde{g}, h).$$
 (8)

The tadpole condition

The tadpole condition

• If one incorporates background independence into the extremization condition of the effective action, for the linear split, then one obtains the tadpole condition [Becker and Reuter, 2021]

The tadpole condition

• If one incorporates background independence into the extremization condition of the effective action, for the linear split, then one obtains the tadpole condition [Becker and Reuter, 2021]

$$\frac{\delta}{\delta h_{\mu\nu}} \Gamma[h, \tilde{g}] \bigg|_{h=0, \ \tilde{g}=\tilde{g}^{SC}} = 0.$$
(9)

The tadpole condition

• If one incorporates background independence into the extremization condition of the effective action, for the linear split, then one obtains the tadpole condition [Becker and Reuter, 2021]

$$\frac{\delta}{\delta h_{\mu\nu}} \Gamma[h, \tilde{g}] \bigg|_{h=0, \ \tilde{g}=\tilde{g}^{SC}} = 0.$$
(9)

• The tadpole condition provides a bridge for energy transfer between the quantum and the classical scale.

• We define the effective action up to one loop order

• We define the effective action up to one loop order

$$\Gamma = S_{EH} + S_{GB} + \Gamma_{1L} + O_{(2-Loop)}. \tag{10}$$

• We define the effective action up to one loop order

$$\Gamma = S_{EH} + S_{GB} + \Gamma_{1L} + O_{(2-Loop)}. \tag{10}$$

• where the EH and the GB action are Euclideanized

• We define the effective action up to one loop order

$$\Gamma = S_{EH} + S_{GB} + \Gamma_{1L} + O_{(2-Loop)}. \tag{10}$$

• where the EH and the GB action are Euclideanized

$$S_{EH} = -\int d^4 x \sqrt{g} R \qquad (11)$$

$$S_{GB} = -\alpha \int d^4 x \sqrt{g} \left(R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} \right), \qquad (12)$$

• We define the effective action up to one loop order

$$\Gamma = S_{EH} + S_{GB} + \Gamma_{1L} + O_{(2-Loop)}. \tag{10}$$

• where the EH and the GB action are Euclideanized

$$S_{EH} = -\int d^4 x \sqrt{g} R \qquad (11)$$

$$S_{GB} = -\alpha \int d^4 x \sqrt{g} \left(R^2 - 4 R^{\mu\nu} R_{\mu\nu} + R^{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma} \right), \qquad (12)$$

• and Γ_{1L} corresponds to the gauge fixing and ghost terms

$$\Gamma_{1L} = \Gamma_{GF} + \Gamma_{Fgh}, \tag{13}$$

Expansion of the EH action

Expansion of the EH action

• By the liear split in Eq. (7) one can expand the S_{EH} ['t Hooft and Veltman, 1974]

Expansion of the EH action

• By the liear split in Eq. (7) one can expand the S_{EH} ['t Hooft and Veltman, 1974]

$$S_{0} = -\int d^{4}x \sqrt{\tilde{g}} \tilde{R}$$

$$S_{1} = \int d^{4}x \sqrt{\tilde{g}} \left(\tilde{R}_{\mu\nu} - \frac{1}{2}\tilde{g}_{\mu\nu}\tilde{R}\right) h^{\mu\nu}$$

$$S_{2} = -\int d^{4}x \sqrt{\tilde{g}} \left\{\frac{1}{4}h^{\mu\nu}\nabla^{2}h_{\mu\nu} - \frac{1}{8}h\nabla^{2}h\right.$$

$$\left. + \frac{1}{2}\left(\nabla^{\nu}h_{\nu\mu} - \frac{1}{2}\nabla_{\mu}h\right)^{2} + \frac{1}{2}h^{\mu\lambda}h^{\nu\sigma}\tilde{R}_{\mu\lambda\nu\sigma}$$

$$\left. + \frac{1}{2}\left(h^{\mu\lambda}h^{\nu}_{\lambda} - hh^{\mu\nu}\right)\tilde{R}_{\mu\nu} + \frac{1}{8}\left(h^{2} - 2h^{\mu\nu}h_{\mu\nu}\right)\tilde{R}\right\}.$$
(14)

Topological variation of the GB action I

Topological variation of the GB action I

• We are going to vary the S_{GB} , with respect to the quantum fluctuation h, under the ETVC conjecture Eq. (6) with respect to Chern's theorem in 4D Eq. (2)

Topological variation of the GB action I

• We are going to vary the S_{GB} , with respect to the quantum fluctuation h, under the ETVC conjecture Eq. (6) with respect to Chern's theorem in 4D Eq. (2)

$$\delta_{h}S_{GB} = \delta_{h}\left(-\alpha \int_{M} d^{4}x \sqrt{g} \left(R^{2} - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}\right)\right)$$
$$= -32\pi^{2}\alpha \frac{\delta\chi}{\delta h^{\mu\nu}} \delta h^{\mu\nu}, \qquad (15)$$

Topological variation of the GB action II

Topological variation of the GB action II

• keeping in mind that $\delta \chi = \pm 2$ is an integer that corresponds to a formation of microscopic wormhole, we will implement the substitution $\delta \chi \rightarrow \partial \chi$. Then, by applying the chain rule

Topological variation of the GB action II

• keeping in mind that $\delta \chi = \pm 2$ is an integer that corresponds to a formation of microscopic wormhole, we will implement the substitution $\delta \chi \rightarrow \partial \chi$. Then, by applying the chain rule

$$\delta_{h}S_{GB} = -16\pi^{2}\alpha \frac{\partial\chi}{\partial V} \frac{\delta V}{\delta h^{\mu\nu}} \delta h^{\mu\nu} = -16\pi^{2}\alpha \frac{\partial\chi}{\partial V} \delta_{h} \left(\int_{M} d^{4}x \sqrt{g} \right)$$
$$= -16\pi^{2}\alpha \frac{\partial\chi}{\partial V} \int_{M} d^{4}x \frac{\delta\sqrt{g}}{\delta h^{\mu\nu}} \delta h^{\mu\nu}.$$
(16)
• Under the expansion of the determinant of the metric, according to the metric split Eq. (7), the fuctional derivative into the integral becomes

• Under the expansion of the determinant of the metric, according to the metric split Eq. (7), the fuctional derivative into the integral becomes

$$\begin{split} \frac{\delta\sqrt{g}}{\delta h^{\mu\nu}} &= \frac{\delta}{\delta h^{\mu\nu}} \left(\sqrt{\tilde{g}} + \frac{1}{2} \sqrt{\tilde{g}} \tilde{g}_{\mu\nu} h^{\mu\nu} - \frac{1}{4} \sqrt{\tilde{g}} h^{\mu\nu} h_{\mu\nu} \right. \\ &+ \frac{1}{8} \sqrt{\tilde{g}} (h^{\mu}_{\mu})^2 + \mathcal{O}(h^3) \right) \\ &= 0 + \frac{1}{2} \sqrt{\tilde{g}} \tilde{g}_{\mu\nu} + \mathcal{O}(h), \end{split}$$
(17)

• plugging Eq. (17) back to Eq. (16) yields

• plugging Eq. (17) back to Eq. (16) yields

$$\delta_{h}S_{GB} = -16\pi^{2}\alpha \frac{\partial\chi}{\partial V} \int_{M} d^{4}x \sqrt{-\tilde{g}}\tilde{g}_{\mu\nu}\delta h^{\mu\nu}, \qquad (18)$$

• plugging Eq. (17) back to Eq. (16) yields

$$\delta_h S_{GB} = -16\pi^2 \alpha \frac{\partial \chi}{\partial V} \int_M d^4 x \sqrt{-\tilde{g}} \tilde{g}_{\mu\nu} \delta h^{\mu\nu}, \qquad (18)$$

 Under the approximation that for an appropriate small integration volume the topology change per volume remains constant, ^{∂χ}/_{∂V} = c it can enter the integral

• plugging Eq. (17) back to Eq. (16) yields

$$\delta_h S_{GB} = -16\pi^2 \alpha \frac{\partial \chi}{\partial V} \int_M d^4 x \sqrt{-\tilde{g}} \tilde{g}_{\mu\nu} \delta h^{\mu\nu}, \qquad (18)$$

 Under the approximation that for an appropriate small integration volume the topology change per volume remains constant, ^{∂χ}/_{∂V} = c it can enter the integral

$$\delta_h S_{GB} = -16\pi^2 \alpha \int_M d^4 x \sqrt{-\tilde{g}} \ \frac{\partial \chi}{\partial V} \ \tilde{g}_{\mu\nu} \ \delta h^{\mu\nu}.$$
(19)

• plugging Eq. (17) back to Eq. (16) yields

$$\delta_h S_{GB} = -16\pi^2 \alpha \frac{\partial \chi}{\partial V} \int_M d^4 x \sqrt{-\tilde{g}} \tilde{g}_{\mu\nu} \delta h^{\mu\nu}, \qquad (18)$$

 Under the approximation that for an appropriate small integration volume the topology change per volume remains constant, ^{∂χ}/_{∂V} = c it can enter the integral

$$\delta_h S_{GB} = -16\pi^2 \alpha \int_M d^4 x \sqrt{-\tilde{g}} \ \frac{\partial \chi}{\partial V} \ \tilde{g}_{\mu\nu} \ \delta h^{\mu\nu}.$$
(19)

 Equivalently, one can express the topological variation of the Gauss-Bonnet term as

$$\frac{1}{\sqrt{\tilde{g}}}\frac{\delta S_{GB}}{\delta h^{\mu\nu}} = -16\pi^2 \alpha \frac{\partial \chi}{\partial V} \tilde{g}_{\mu\nu} + \mathcal{O}(h).$$
(20)

• If one calculates the functional derivative of the effective action Eq. (10) by employing Eq. (14) and Eq. (20)

• If one calculates the functional derivative of the effective action Eq. (10) by employing Eq. (14) and Eq. (20)

$$\frac{1}{\sqrt{\tilde{g}}} \frac{\delta\Gamma}{\delta h^{\mu\nu}} = \frac{1}{\sqrt{\tilde{g}}} \frac{\delta S_{EH}}{\delta h^{\mu\nu}} + \frac{1}{\sqrt{\tilde{g}}} \frac{\delta S_{GB}}{\delta h^{\mu\nu}} + \frac{1}{\sqrt{\tilde{g}}} \frac{\delta\Gamma_{1L}}{\delta h^{\mu\nu}} \\
= \tilde{R}_{\mu\nu} - \frac{1}{2} \tilde{g}_{\mu\nu} \tilde{R} - 16\pi^2 \alpha \frac{\partial\chi}{\partial V} \tilde{g}_{\mu\nu} + \frac{1}{\sqrt{\tilde{g}}} \frac{\delta\Gamma_{1L}}{\delta h^{\mu\nu}} + \mathcal{O}(h),$$
(21)

• If one calculates the functional derivative of the effective action Eq. (10) by employing Eq. (14) and Eq. (20)

$$\frac{1}{\sqrt{\tilde{g}}} \frac{\delta\Gamma}{\delta h^{\mu\nu}} = \frac{1}{\sqrt{\tilde{g}}} \frac{\delta S_{EH}}{\delta h^{\mu\nu}} + \frac{1}{\sqrt{\tilde{g}}} \frac{\delta S_{GB}}{\delta h^{\mu\nu}} + \frac{1}{\sqrt{\tilde{g}}} \frac{\delta\Gamma_{1L}}{\delta h^{\mu\nu}} \\
= \tilde{R}_{\mu\nu} - \frac{1}{2} \tilde{g}_{\mu\nu} \tilde{R} - 16\pi^2 \alpha \frac{\partial\chi}{\partial V} \tilde{g}_{\mu\nu} + \frac{1}{\sqrt{\tilde{g}}} \frac{\delta\Gamma_{1L}}{\delta h^{\mu\nu}} + \mathcal{O}(h),$$
(21)

 then by demanding the tadpole condition Eq. (9), one retrieves the Einstein equations for the classical background as in [Becker and Reuter, 2021] with an extra Λ_{eff} term

• If one calculates the functional derivative of the effective action Eq. (10) by employing Eq. (14) and Eq. (20)

$$\frac{1}{\sqrt{\tilde{g}}} \frac{\delta\Gamma}{\delta h^{\mu\nu}} = \frac{1}{\sqrt{\tilde{g}}} \frac{\delta S_{EH}}{\delta h^{\mu\nu}} + \frac{1}{\sqrt{\tilde{g}}} \frac{\delta S_{GB}}{\delta h^{\mu\nu}} + \frac{1}{\sqrt{\tilde{g}}} \frac{\delta\Gamma_{1L}}{\delta h^{\mu\nu}} \\
= \tilde{R}_{\mu\nu} - \frac{1}{2} \tilde{g}_{\mu\nu} \tilde{R} - 16\pi^2 \alpha \frac{\partial\chi}{\partial V} \tilde{g}_{\mu\nu} + \frac{1}{\sqrt{\tilde{g}}} \frac{\delta\Gamma_{1L}}{\delta h^{\mu\nu}} + \mathcal{O}(h),$$
(21)

 then by demanding the tadpole condition Eq. (9), one retrieves the Einstein equations for the classical background as in [Becker and Reuter, 2021] with an extra Λ_{eff} term

$$\tilde{R}_{\mu\nu} - \frac{1}{2}\tilde{g}_{\mu\nu}\tilde{R} + \tilde{g}_{\mu\nu}\Lambda_{eff} = 8\pi G T_{\mu\nu}, \qquad (22)$$

Semiclassical Einstein equation with $\Lambda_{\it eff}$ of topological origin

Semiclassical Einstein equation with Λ_{eff} of topological origin

$$ilde{R}_{\mu
u}-rac{1}{2} ilde{g}_{\mu
u} ilde{R}+ ilde{g}_{\mu
u}\Lambda_{ ext{eff}}=8\pi\,GT_{\mu
u},$$

 where the stress tensor originates from the one loop part of the effective action, containing the matter like correction terms in the right side of the equation.

$$T^{\mu\nu} = -\frac{2}{\sqrt{g}} \frac{\delta}{\delta h^{\mu\nu}} \Gamma_{1L} \big|_{h=0}, \qquad (23)$$

Semiclassical Einstein equation with Λ_{eff} of topological origin

$$ilde{R}_{\mu
u}-rac{1}{2} ilde{g}_{\mu
u} ilde{R}+ ilde{g}_{\mu
u}\Lambda_{ ext{eff}}=8\pi\,GT_{\mu
u},$$

• where the stress tensor originates from the one loop part of the effective action, containing the matter like correction terms in the right side of the equation.

$$T^{\mu\nu} = -\frac{2}{\sqrt{g}} \frac{\delta}{\delta h^{\mu\nu}} \Gamma_{1L} \big|_{h=0}, \qquad (23)$$

 and the dynamical topological term appears in the equation of motion as an effective cosmological constant

$$\Lambda_{eff} = -16\pi^2 \alpha \frac{\partial \chi}{\partial V}.$$
 (24)

Λ_{eff} interpretation

• Since $\delta \chi = 2$ corresponds to the formation of a Nariai instanton and $\delta \chi = -2$ to the formation of an Euclidean Wormhole, the term $\frac{\partial \chi}{\partial V}$ can be interpreted as the density of EW's or instantons per four-volume $\rho_w = \frac{N_w}{V}$

• Since $\delta \chi = 2$ corresponds to the formation of a Nariai instanton and $\delta \chi = -2$ to the formation of an Euclidean Wormhole, the term $\frac{\partial \chi}{\partial V}$ can be interpreted as the density of EW's or instantons per four-volume $\rho_w = \frac{N_w}{V}$

$$\Lambda_{eff} = -16\pi^2 \alpha \rho_w = -16\pi^2 \alpha \frac{N_w}{V}.$$
 (25)

 There is a concesus over the various string models that the α constant of the GB term should be α = l_p².

- There is a concesus over the various string models that the α constant of the GB term should be α = l_p².
- If one inserts the observed present value of the cosmological constant $\Lambda_{obs} = 10^{-52} m^{-2}$ in (s.i) units to Eq. (25), then the model predicts $\rho_w = 10^{16}$ wormholes per cubic meter per second, which seems natural.

- There is a concesus over the various string models that the α constant of the GB term should be α = l_p².
- If one inserts the observed present value of the cosmological constant $\Lambda_{obs} = 10^{-52} m^{-2}$ in (s.i) units to Eq. (25), then the model predicts $\rho_w = 10^{16}$ wormholes per cubic meter per second, which seems natural.
- The upper bound for the density will be for one wormhole per Planck volume, that is $\rho_{Mw} = \frac{1}{l_{a}^{4}} \sim 10^{140}$

- There is a concesus over the various string models that the α constant of the GB term should be α = l_p².
- If one inserts the observed present value of the cosmological constant $\Lambda_{obs} = 10^{-52} m^{-2}$ in (s.i) units to Eq. (25), then the model predicts $\rho_w = 10^{16}$ wormholes per cubic meter per second, which seems natural.
- The upper bound for the density will be for one wormhole per Planck volume, that is $\rho_{Mw} = \frac{1}{l_2^4} \sim 10^{140}$
- Thus, the range of the theoretical value of Λ_{eff} can be $0 \leq \Lambda_{eff} \leq \Lambda_M$ and the ratio $\frac{\Lambda_M}{\Lambda_{obs}} = 10^{124}$ of the model spans the 120 orders of magnitude, of the known discrepancy.

Sign of Λ_{eff}

Since the sign of Λ_{eff} is determined by the type of instanton that is created, positive for Nariai and negative for EW's one can develop a spectrum of models mixing the two basic scenarios:

Since the sign of Λ_{eff} is determined by the type of instanton that is created, positive for Nariai and negative for EW's one can develop a spectrum of models mixing the two basic scenarios:

 the creation of EWs provides a positive repulsive cosmological constant of topological origin, that can be the unique source of cosmic acceleration Since the sign of Λ_{eff} is determined by the type of instanton that is created, positive for Nariai and negative for EW's one can develop a spectrum of models mixing the two basic scenarios:

- the creation of EWs provides a positive repulsive cosmological constant of topological origin, that can be the unique source of cosmic acceleration
- the creation of Nariai instatons corresponds to a negative component of the net effective cosmological constant, absorbing up to 120 orders of vacuum energy, like a sponge absorbing water [Padmanabhan, 2003], thus providing a mechanism for the ending of the inflation period.

Why does it worth exploring Λ_{eff} of topological origin?

- Why does it worth exploring Λ_{eff} of topological origin?
- Since it has an arbitrary sign and its value spans the 120 orders of magnitude, it has a potential for a dynamical dark energy sector for the late time universe as well for inflation.

- Why does it worth exploring Λ_{eff} of topological origin?
- Since it has an arbitrary sign and its value spans the 120 orders of magnitude, it has a potential for a dynamical dark energy sector for the late time universe as well for inflation.

Thank you for your attention!!!

- Why does it worth exploring Λ_{eff} of topological origin?
- Since it has an arbitrary sign and its value spans the 120 orders of magnitude, it has a potential for a dynamical dark energy sector for the late time universe as well for inflation.

Thank you for your attention!!! tsilioukas@sch.gr

Ignatios Antoniadis and N. C. Tsamis. On the Cosmological Constant Problem. *Phys. Lett. B*, 144:55–60, 1984. doi: 10.1016/0370-2693(84)90175-8.

- Maximilian Becker and Martin Reuter. Background independent field quantization with sequences of gravity-coupled approximants. II. Metric fluctuations. *Phys. Rev. D*, 104(12):125008, 2021. doi: 10.1103/PhysRevD.104.125008.
- G. W. Gibbons. Topology change in classical and quantum gravity. 10 2011.
- G. W. Gibbons and S. W. Hawking. Classification of Gravitational Instanton Symmetries. *Commun. Math. Phys.*, 66:291–310, 1979. doi: 10.1007/BF01197189.

Bibliography II

S.W. Hawking. Spacetime foam. Nuclear Physics B, 144(2): 349-362, 1978. ISSN 0550-3213. doi: https://doi.org/10.1016/0550-3213(78)90375-9. URL https://www.sciencedirect.com/science/article/ pii/0550321378903759.

- T. Padmanabhan. Cosmological constant: The Weight of the vacuum. *Phys. Rept.*, 380:235–320, 2003. doi: 10.1016/S0370-1573(03)00120-0.
- Jan M. Pawlowski and Manuel Reichert. Quantum Gravity: A Fluctuating Point of View. *Front. in Phys.*, 8:551848, 2021. doi: 10.3389/fphy.2020.551848.
- Gerard 't Hooft and M. J. G. Veltman. One loop divergencies in the theory of gravitation. *Ann. Inst. H. Poincare Phys. Theor. A*, 20:69–94, 1974.