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Introduction

By dimensional arguments Dark Energy (DE) probably
has a quantum origin [Antoniadis and Tsamis, 1984].

The Gauss-Bonnet (GB) action term plays a crucial role
in quantum gravity, in M-theory’s β-function and in the
trace anomaly.

The GB term appears in the effective low energy limit of
string theory.

The GB term is considered a topological invariant in 4D,
thus it dosen’t contribute to the equations of motion.

Euclidean Quantum Gravity (EQG) predicts instatons,
solutions at the foam level, of distinct topology from the
background [Hawking, 1978].
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The research question into the gap

If according to EQG spacetime topology changes, then
what happens to the variation of the GB term?

The main idea
Take EQG topology changing instatons seriously.

Calculate the variation of the GB term during topology
change.
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Topological significance of the GB term

The GB curvature polynomial

G = R2 − 4RµνRµν + RµνρσRµνρσ, (1)

is the euler density in 4D, thus according to the
Chern-Gauss-Bonnet theorem, its integral over a 4D
manifold M , without boundary, yields the euler
characteristic χ

χ(M) =
1

32π2

∫
M

d4x
√
g G (2)

the essense of the theorem is that despite any
deformations caused by smooth variations of the metric,
the topology of the manifold remains constant, as it is
characterized by the topological index χ
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EQG instatons of distinct topology

In Euclidean Quantum gravity, for the path intergral to
converge:

1 The time dimension is Wick rotated t → iτ
2 The integration contour is deformed

Thus, the spacetime manifold is Euclideanized and its
signature changes from (-,+,+,+) to (+,+,+,+)

then instatons, saddle point solutions, appear with
different topology from the background.
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EQG Instatons of distinct topology

EQG instatons are spacetime manifolds with different
euler character

Table: Euler character χ of spacetime manifolds as it has
been calculated in [Gibbons and Hawking, 1979]

Spacetime χ

Minkowski 0
Extreme BHs 0
Self-dual Taub-NUT 1
Schwarchild and Kerr BHs 2
Nariai S2 × S2 4
Euclidean Wormhole S1 × S3 0
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Topology change in EQG

For connected sums the following relation holds for the
euler character

χ (M1#M2) = χ(M1) + χ(M2)− 2, (3)

then following [Gibbons, 2011] the formation of a
Euclidean wormhole with topology (S1 × S3)

M → M#(S1 × S3), (4)

decreases χ by 2, thus δχ = −2

while the formation of a Nariai instanton with topology
(S2 × S2)

M → M#(S2 × S2), (5)

increases χ by 2 thus δχ = 2.
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Effective Topological Variation Conjecture (ETVC)

We are going to conjecture that the variation of the
quantum field fluctuations δh cause a variation in the
topology of the spacetime manifold δχ.

M(g1, χ1)
effTC−−→ M

′
(g2.χ2),

effTC : δh −→ δχ. (6)

M ′(g2, χ2)

effTC

M(g1, χ1)
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A 3D analogue of Chern’s theorem

aside with effTC

effTC

δh

M(g1, χ1) M ′(g2, χ2)

M ′(g′2, χ2)M(g′1, χ1)

effTC

δh

δg δg
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Method

We are going to employ:

the background field approximation

the expansion of the EH action

the expansion of the GB action under the ETVC

the semiclassical approach, where the effective action will
be the sum of EH and the GB action

the extremization of the effective action by the tadpole
condition
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Background field approximation I

The linear split of the metric

gµν = g̃µν + hµν , (7)

where g̃ is the background field and h is the quantum
fluctuation field, which is not a metric and lacks a
geometrical meaning.

Background independence
Physical observables must be background independent
and the action must be diffeomorphic invariant
[Pawlowski and Reichert, 2021]

g(g̃ , h) → g(g̃ + δg̃ , h + δh) = g(g̃ , h). (8)
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Background field approximation II

The tadpole condition
If one incorporates background independence into the
extremization condition of the effective action, for the
linear split, then one obtains the tadpole condition
[Becker and Reuter, 2021]

δ

δhµν
Γ[h, g̃ ]

∣∣∣∣
h=0, g̃=g̃SC

= 0. (9)

The tadpole condition provides a bridge for energy
transfer between the quantum and the classical scale.
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The effective action in the semiclassical approach

We define the effective action up to one loop order

Γ = SEH + SGB + Γ1L + O(2−Loop). (10)

where the EH and the GB action are Euclideanized

SEH = −
∫

d4x
√
gR (11)

SGB = −α

∫
d4x

√
g
(
R2 − 4RµνRµν + RµνρσRµνρσ

)
,

(12)

and Γ1L corresponds to the gauge fixing and ghost terms

Γ1L = ΓGF + ΓFgh, (13)
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Expansion of the EH action

By the liear split in Eq. (7) one can expand the SEH

[’t Hooft and Veltman, 1974]

S0 = −
∫

d4x
√
g̃ R̃

S1 =

∫
d4x

√
g̃

(
R̃µν −

1

2
g̃µνR̃

)
hµν

S2 = −
∫

d4x
√
g̃

{
1

4
hµν∇2hµν −

1

8
h∇2h

+
1

2

(
∇νhνµ −

1

2
∇µh

)2

+
1

2
hµλhνσR̃µλνσ

+
1

2

(
hµλhνλ − hhµν

)
R̃µν +

1

8

(
h2 − 2hµνhµν

)
R̃

}
.

(14)
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Topological variation of the GB action I

We are going to vary the SGB , with respect to the
quantum fluctuation h, under the ETVC conjecture
Eq. (6) with respect to Chern’s theorem in 4D Eq. (2)

δhSGB =

δh

(
−α

∫
M

d4x
√
g
(
R2 − 4RµνR

µν + RµνρσR
µνρσ

))
=− 32π2α

δχ

δhµν
δhµν , (15)
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Topological variation of the GB action II

keeping in mind that δχ = ±2 is an integer that
corresponds to a formation of microscopic wormhole, we
will implement the substitution δχ → ∂χ. Then, by
applying the chain rule

δhSGB = −16π2α
∂χ

∂V

δV

δhµν
δhµν = −16π2α

∂χ

∂V
δh

(∫
M

d4x
√
g

)
= −16π2α

∂χ

∂V

∫
M

d4x
δ
√
g

δhµν
δhµν . (16)
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Expansion of the GB topological variation term I

Under the expansion of the determinant of the metric,
according to the metric split Eq. (7), the fuctional
derivative into the integral becomes

δ
√
g

δhµν
=

δ

δhµν

(√
g̃ +

1

2

√
g̃ g̃µνh

µν − 1

4

√
g̃hµνhµν

+
1

8

√
g̃(hµµ)

2 +O(h3)

)
= 0 +

1

2

√
g̃ g̃µν +O(h), (17)
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Expansion of the GB topological variation term II

plugging Eq. (17) back to Eq. (16) yields

δhSGB = −16π2α
∂χ

∂V

∫
M

d4x
√

−g̃ g̃µνδh
µν , (18)

Under the approximation that for an appropriate small
integration volume the topology change per volume
remains constant, ∂χ

∂V
= c it can enter the integral

δhSGB = −16π2α

∫
M

d4x
√

−g̃
∂χ

∂V
g̃µν δhµν . (19)

Equivalently, one can express the topological variation of
the Gauss-Bonnet term as

1√
g̃

δSGB

δhµν
= −16π2α

∂χ

∂V
g̃µν +O(h). (20)
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Semiclassical approach for SEH + SGB

If one calculates the functional derivative of the effective
action Eq. (10) by employing Eq. (14) and Eq. (20)

1√
g̃

δΓ

δhµν
=

1√
g̃

δSEH

δhµν
+

1√
g̃

δSGB

δhµν
+

1√
g̃

δΓ1L
δhµν

= R̃µν −
1

2
g̃µνR̃ − 16π2α

∂χ

∂V
g̃µν +

1√
g̃

δΓ1L
δhµν

+O(h),

(21)

then by demanding the tadpole condition Eq. (9), one
retrieves the Einstein equations for the classical
background as in [Becker and Reuter, 2021] with an extra
Λeff term

R̃µν −
1

2
g̃µνR̃ + g̃µνΛeff = 8πGTµν , (22)
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Semiclassical Einstein equation with Λeff

of topological origin

R̃µν −
1

2
g̃µνR̃ + g̃µνΛeff = 8πGTµν ,

where the stress tensor originates from the one loop part
of the effective action, containing the matter like
correction terms in the right side of the equation.

T µν = − 2
√
g

δ

δhµν
Γ1L

∣∣
h=0

, (23)

and the dynamical topological term appears in the
equation of motion as an effective cosmological constant

Λeff = −16π2α
∂χ

∂V
. (24)
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Λeff interpretation

Since δχ = 2 corresponds to the formation of a Nariai
instanton and δχ = −2 to the formation of an Euclidean
Wormhole, the term ∂χ

∂V
can be interpreted as the density

of EW’s or instantons per four-volume ρw = Nw

V

Λeff = −16π2αρw = −16π2α
Nw

V
. (25)
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Bounds of Λeff

There is a concesus over the various string models that
the α constant of the GB term should be α = l2p .

If one inserts the observed present value of the
cosmological constant Λobs = 10−52m−2 in (s.i) units to
Eq. (25), then the model predicts ρw = 1016 wormholes
per cubic meter per second, which seems natural.

The upper bound for the density will be for one wormhole
per Planck volume, that is ρMw = 1

l4p
∼ 10140

Thus, the range of the theoretical value of Λeff can be
0 ≤ Λeff ≤ ΛM and the ratio ΛM

Λobs
= 10124 of the model

spans the 120 orders of magnitude, of the known
discrepancy.
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Sign of Λeff

Since the sign of Λeff is determined by the type of
instanton that is created, positive for Nariai and negative
for EW’s one can develop a spectrum of models mixing
the two basic scenarios:

1 the creation of EWs provides a positive repulsive
cosmological constant of topological origin, that can be
the unique source of cosmic acceleration

2 the creation of Nariai instatons corresponds to a
negative component of the net effective cosmological
constant, absorbing up to 120 orders of vacuum energy,
like a sponge absorbing water [Padmanabhan, 2003],
thus providing a mechanism for the ending of the
inflation period.
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The potential of the topological Λeff

Why does it worth exploring Λeff of topological origin?

Since it has an arbitrary sign and its value spans the 120
orders of magnitude, it has a potential for a dynamical
dark energy sector for the late time universe as well for
inflation.

Thank you for your
attention!!!

tsilioukas@sch.gr
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