Tackling the tensions of cosmology with a negative dark energy density (and nonmonotonicity)

Emre Özülker

Istanbul Technical University

Corfu2023 Tensions in Cosmology, September 2023

Theoretical situation

E. Auburg [BOSS] et al. 1411.1074

000

Theoretical situation

L. A. Escamilla et al. 2305.16290

Phenomenological motivation (Λ_s CDM)

Data set	Planck+BAOtr
	+PP&SH0ES+KiDS-1000
Model	Λ _s CDM
	ΛCDΜ
z_{\dagger}	$1.72^{+0.09}_{-0.12}(1.70)$
$M_B[mag]$	$-19.282 \pm 0.017(-19.280)$
	$-19.372 \pm 0.011 (-19.369)$
H_0 [km/s/Mpc]	$73.16 \pm 0.64(73.36)$
	$69.83 \pm 0.37(69.96)$
Ω	$0.2646 \pm 0.0052(0.2622)$
m	$0.2837 \pm 0.0045(0.2816)$
G	
38	$0.774 \pm 0.009(0.773)$
- 2	$0.781 \pm 0.008(0.782)$
$\chi^{z}_{ m min}$	4185.34
	4226.50
$\ln \mathcal{B}_{ij}$	-19.77

$$\rho_{\rm DE}(z) = \Lambda_{s0} \text{sgn}[z_{\dagger} - z]$$

Hubble function:

$$3H^2(z) = \rho_{\rm m0}(1+z)^3 + \rho_{\rm r0}(1+z)^4 + \rho_{\rm DE}(z)$$

Hubble function:

$$3H^2(z) = \rho_{\rm m0}(1+z)^3 + \rho_{\rm r0}(1+z)^4 + \rho_{\rm DE}(z)$$

Continuity equation:

$$\nabla^{\nu} T_{\mu\nu} = 0 \Rightarrow \frac{\mathrm{d}\rho(z)}{\mathrm{d}z} = \frac{3}{1+z} [1+w(z)]\rho(z)$$

Hubble function:

$$3H^2(z) = \rho_{\rm m0}(1+z)^3 + \rho_{\rm r0}(1+z)^4 + \rho_{\rm DE}(z)$$

Continuity equation:

$$\nabla^{\nu} T_{\mu\nu} = 0 \Rightarrow \frac{\mathrm{d}\rho(z)}{\mathrm{d}z} = \frac{3}{1+z} [1+w(z)]\rho(z)$$

Comoving angular diameter distance in flat space:

$$D_M(z) = \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

Hubble function:

$$3H^2(z) = \rho_{\rm m0}(1+z)^3 + \rho_{\rm r0}(1+z)^4 + \rho_{\rm DE}(z)$$

Continuity equation:

$$\nabla^{\nu} T_{\mu\nu} = 0 \Rightarrow \frac{\mathrm{d}\rho(z)}{\mathrm{d}z} = \frac{3}{1+z} [1+w(z)]\rho(z)$$

Comoving angular diameter distance in flat space:

$$D_M(z) = \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

Some well-measured quantities

Hubble function:

$$3H^2(z) = \rho_{\rm m0}(1+z)^3 + \rho_{\rm r0}(1+z)^4 + \rho_{\rm DE}(z)$$

Continuity equation:

$$\nabla^{\nu} T_{\mu\nu} = 0 \Rightarrow \frac{\mathrm{d}\rho(z)}{\mathrm{d}z} = \frac{3}{1+z} [1+w(z)]\rho(z)$$

Comoving angular diameter distance in flat space:

$$D_M(z) = \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

Some well-measured quantities

•
$$\rho_{m,rec}$$

• ρ_{r0}

Hubble function:

$$3H^2(z) = \rho_{\rm m0}(1+z)^3 + \rho_{\rm r0}(1+z)^4 + \rho_{\rm DE}(z)$$

Continuity equation:

$$\nabla^{\nu} T_{\mu\nu} = 0 \Rightarrow \frac{\mathrm{d}\rho(z)}{\mathrm{d}z} = \frac{3}{1+z} [1+w(z)]\rho(z)$$

Comoving angular diameter distance in flat space:

$$D_M(z) = \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

Some well-measured quantities

- $\rho_{\rm m,rec}$
- ρ_{r0}
- $H(z_i)r_d$
- $D_M(z_i)/r_{\rm d}$
- $D_M(z_i)/f(M_B)$

Theoretical situation

Theoretical situation

$$D_M(z_*) = \frac{r_*}{\theta_*} = \int_0^{z_*} \frac{\mathrm{d}z}{H(z)}$$
$$D_M(z_*) = F(\rho_{\mathrm{m0}}, \rho_{\mathrm{r0}}, z_*, \text{extra params})$$

Theoretical situation

$$--)\theta_*$$
 $D_M(z_*)$ r_*

$$D_M(z_*) = \frac{r_*}{\theta_*} = \int_0^{z_*} \frac{\mathrm{d}z}{H(z)}$$
$$D_M(z_*) = F(\rho_{\mathrm{m}0}, \rho_{\mathrm{r}0}, z_*, \text{extra params})$$
Example (Λ_{s} CDM):

$$ho_{
m DE} = \Lambda_{
m s0} \, {
m sgn}[z_{\dagger} - z]$$
 $D_M(z_*) = F(
ho_{
m m0},
ho_{
m r0}, z_*, z_{\dagger})$

$$\rho_{\rm DE} = \Lambda_{\rm s0} \operatorname{sgn}[z_{\dagger} - z]$$
$$D_M(z_*) = F(\rho_{\rm m0}, \rho_{\rm r0}, z_*, z_{\dagger})$$

	Wiggles 0●00			
Inevitable v	wiggles and	wavelets	O. Akarsu, E. O. Colgain, E and L. Yin, Phys. Rev. D 2207.10609	. Ozulker, S. Thakur 107, 123526 (2023).

$$D_M(z_*) = \frac{r_*}{\theta_*} = \int_0^{+} \frac{\mathrm{d}z}{H(z)}$$

	Wiggles 0●00			
Inevitable	wiggles and	wavelets	O. Akarsu, E. O. Colgain, E and L. Yin, Phys. Rev. D 2207.10609	. Ozulker, S. Thakur 107, 123526 (2023).

$$D_M(z_*) = \frac{r_*}{\theta_*} = \int_0^{z_*} \frac{\mathrm{d}z}{H(z)}$$
$$\psi(z) \equiv \frac{1}{H(z)} - \frac{1}{H_{\Lambda \mathsf{CDM}}(z)}$$

	Wiggles 0●00			
Inevitable	wiggles and	wavelets	O. Akarsu, E. O. Colgain, E and L. Yin, Phys. Rev. D 2207.10609	. Ozulker, S. Thakur 107, 123526 (2023).

$$D_M(z_*) = \frac{r_*}{\theta_*} = \int_0^{z_*} \frac{\mathrm{d}z}{H(z)}$$
$$\psi(z) \equiv \frac{1}{H(z)} - \frac{1}{H_{\Lambda\mathsf{CDM}}(z)}$$
$$\int_0^{z_*} \psi(z) \,\mathrm{d}z = 0$$

Inevitable wiggles and wavelets

O. Akarsu, E. O. Colgain, E. Ozulker, S. Thakur and L. Yin, Phys. Rev. D **107**, 123526 (2023). 2207.10609

Inevitable wiggles and wavelets

O. Akarsu, E. O. Colgain, E. Ozulker, S. Thakur and L. Yin, Phys. Rev. D **107**, 123526 (2023). 2207.10609

.

Inevitable wiggles and wavelets

Admissible wavelets can generically be obtained by derivating probability density functions, e.g.,

from Gaussian distribution: $\psi_{\mathrm{G0}}(z) = -\frac{lpha}{2eta} e^{-eta(z-z_{\dagger})^2}$

$$\begin{split} \psi_{G1}(z) &= -2\beta(z - z_{\dagger})\psi_{G0}(z), \\ \psi_{G2}(z) &= 4\beta \left[\beta(z - z_{\dagger})^2 - \frac{1}{2}\right]\psi_{G0}(z), \\ \psi_{G3}(z) &= -8\beta^2 \left[\beta(z - z_{\dagger})^3 - \frac{3}{2}(z - z_{\dagger})\right]\psi_{G0}(z), \\ \psi_{G4}(z) &= 16\beta^2 \left[\frac{3}{4} + (z - z_{\dagger})^4\beta^2 - 3\beta(z - z_{\dagger})^2\right]\psi_{G0}(z), \end{split}$$

Theoretical situation

Inevitable wiggles and wavelets

Varying gravitational coupling

Inevitable wiggles and wavelets

Varying gravitational coupling

		Singular EoS ●○		
--	--	--------------------	--	--

Scalar-Tensor Theory S. Tsujikawa *et al.* 0803.1106

	Singular EoS ●○	

Braneworld Model V. Sahni et al. 1406.2209

	Singular EoS ●○	

Vacuum Phase Transition E. Di Valentino *et al.* 1710.02153

	Singular EoS ●○	

		Singular EoS ○●		
Negative	e DE and s	ingular EoS	E. Ozulker, Phys. Rev. 2203.04167	D 106 , 063509 (2022).

$$\frac{\mathrm{d}\rho(z)}{\mathrm{d}z} = \frac{3}{1+z}[1+w(z)]\rho(z)$$

		Singular EoS ⊙●		
Negative	e DE and si	ingular EoS	E. Ozulker, Phys. Rev. 2203.04167	D 106 , 063509 (2022).

$$\frac{\mathrm{d}\rho(z)}{\mathrm{d}z} = \frac{3}{1+z} [1+w(z)]\rho(z)$$

$$\downarrow$$

$$\rho_{\mathrm{DE}}(z_2) = \rho_{\mathrm{DE}}(z_1)e^{\int_{z_1}^{z_2} 3\frac{1+w_{\mathrm{DE}}(z)}{1+z}\mathrm{d}z}$$

		Singular EoS ⊙●		
Negative	e DE and si	ingular EoS	E. Ozulker, Phys. Rev. 2203.04167	D 106 , 063509 (2022).

$$\frac{\mathrm{d}\rho(z)}{\mathrm{d}z} = \frac{3}{1+z} [1+w(z)]\rho(z)$$

$$\downarrow$$

$$|\rho_{\mathrm{DE}}(z_2)| = |\rho_{\mathrm{DE}}(z_1)|e^{\int_{z_1}^{z_2} 3\frac{1+w_{\mathrm{DE}}(z)}{1+z}\mathrm{d}z}$$

	Singular EoS ⊙●	

E. Ozulker, Phys. Rev. D **106**, 063509 (2022). 2203.04167

$$\frac{\mathrm{d}\rho(z)}{\mathrm{d}z} = \frac{3}{1+z} [1+w(z)]\rho(z)$$

$$\downarrow$$

$$|\rho_{\mathrm{DE}}(z_2)| = |\rho_{\mathrm{DE}}(z_1)|e^{\int_{z_1}^{z_2} 3\frac{1+w_{\mathrm{DE}}(z)}{1+z}\mathrm{d}z}$$

$$\downarrow$$

$$\lim_{z \to z_{\dagger}^{\pm}} w_{\mathrm{DE}}(z) = \pm \infty$$

		Omnipotent DE ●0	
<u> </u>			Di Valantina R. C. Nunaa

S. A. Adil, O. Akarsu, E. Di Valentino, R. C. Nunes, E. Ozulker, A. A. Sen and E. Specogna, 2306.08046

Combining negative DE and nonmonotonicity

Density	EoS	Scaling in z	Scaling in \mathbf{a}	Naming
$\rho > 0$	w > -1	$\mathrm{d}\rho /\mathrm{d}z > 0$	$\mathrm{d}\rho /\mathrm{d}a < 0$	p-quintessence
	w = -1	$\mathrm{d}\rho /\mathrm{d}z = 0$	$\mathrm{d}\rho /\mathrm{d}a = 0$	positive-CC
	w < -1	$\mathrm{d}\rho /\mathrm{d}z < 0$	$\mathrm{d}\rho /\mathrm{d}a > 0$	p-phantom
$\rho < 0$	w > -1	$\mathrm{d}\rho /\mathrm{d}z < 0$	$\mathrm{d}\rho /\mathrm{d}a > 0$	n-quintessence
	w = -1	$\mathrm{d}\rho /\mathrm{d}z = 0$	$\mathrm{d}\rho /\mathrm{d}a = 0$	negative-CC
	w < -1	$\left \mathrm{d}\rho /\mathrm{d}z > 0 \right $	$\mathrm{d}\rho /\mathrm{d}a < 0$	n-phantom

DMS20 Parametrization

S. A. Adil, O. Akarsu, E. Di Valentino, R. C. Nunes, E. Ozulker, A. A. Sen and E. Specogna, 2306.08046

	Planck	Planck+BAO	
Parameters	+PantheonPlus&SH0ES	+PantheonPlus&SH0ES	
$\Omega_c h^2$	0.1176 ± 0.0011	0.1198 ± 0.0011	
$10^2 \Omega_b h^2$	2.257 ± 0.014	2.243 ± 0.014	
$100\theta_{MC}$	1.04207 ± 0.00029	1.04191 ± 0.00029	
τ	$0.0490^{+0.0081}_{-0.0071}$	0.0502 ± 0.0076	
n_s	0.9714 ± 0.0041	0.9659 ± 0.0038	
$\ln(10^{10}A_s)$	$3.027^{+0.016}_{-0.014}$	3.035 ± 0.015	
a_m	$0.957^{+0.016}_{-0.023}$	$0.922^{+0.041}_{-0.035}$	
α	$7.0^{+1.6}_{-2.0}$	< 2.77	
β	$16.5^{+3.4}_{-4.3}$	$6.5^{+1.9}_{-3.4}$	
$H_0 [\mathrm{km/s/Mpc}]$	73.49 ± 0.98	70.05 ± 0.64	
$\Omega_{\rm m}$	0.2610 ± 0.0077	0.2912 ± 0.0057	
σ_8	0.861 ± 0.012	0.835 ± 0.010	
S_8	0.803 ± 0.011	0.823 ± 0.011	
$r_{\rm drag} [{\rm Mpc}]$	147.50 ± 0.26	147.07 ± 0.25	
t_0 [Gyr]	13.454 ± 0.056	13.679 ± 0.031	

$$\label{eq:rho} \begin{split} \rho_{\rm DE}(a) &= \rho_{\rm DE0} \frac{1+\alpha(a-a_m)^2+\beta(a-a_m)^3}{1+\alpha(1-a_m)^2+\beta(1-a_m)^3}\\ & \text{E. Di Valentino, et al. 2005.12587} \end{split}$$

			Theoretical situation ●0
Should w	e worry?	E. Ozulker, Phys. F 2203.04167	Rev. D 106 , 063509 (2022).

Energy conditions for a perfect fluid

$$\begin{split} \mathsf{NEC}:&\rho + p \ge 0 \Rightarrow w \ge -1\\ \mathsf{WEC}:&\rho \ge 0 \And [\rho + p \ge 0 \Rightarrow w \ge -1]\\ \mathsf{SEC}:&\rho \ge |p| \Rightarrow w \frac{|p|}{p} \le 1\\ \mathsf{DEC}:&[\rho + p \ge 0 \Rightarrow w \ge -1] \And [\rho + 3p \ge 0 \Rightarrow w \ge -1/3] \end{split}$$

Should we worry?

Theoretical mechanisms realizing negative DE Background Dynamics

Simplest:

- Closed universe $\Omega_k < 0$
- AdS+p-phantom field

Modified Gravity:

- Kaluza-Klein
- Unimodular Gravity $\nabla^{\nu}T_{\mu\nu} = \frac{1}{4}\nabla^{\nu}(R+T)g_{\mu\nu}$
- Brans-Dicke Theory (Scalar-Tensor Theories)
- Braneworld models
- $f(T^{\mu\nu}T_{\mu\nu})$ gravity
- f(T) gravity
- Bimetric gravity

Quantum Gravity:

- String Theory Landscape
- Loop Quantum Gravity $3H^2 = \rho(1-\rho/M)$
- Everpresent Λ (causal set theory)

From Entropy:

- Tsallis entropy
- Running Barrow entropy

Others:

- Nonminimally IDE $\nabla_{\nu} T^{\mu\nu}_{\rm DE} = -\nabla_{\nu} T^{\mu\nu}_{\rm DM}$
- Lifshitz Cosmology