The Hubble parameter of the Local Distance Ladder from dynamical dark energy with no free parameters

Maurice H.P.M. van Putten

References:

van Putten, 2023, submitted Abchouyeh & van Putten, 2021 O'Colgain, van Putten & Yavartano (2019) van Putten (2017, 2019, 2021)

Corfu2023 Tensions in Cosmology Sept 12 2023

- Hubble parameter and data-structure of observables
- Evolution in quantum cosmology:

 $\clubsuit H_0$ bootstrapped from $\Lambda {\rm CDM}$ and $H_0\text{-tension}$

- $\bullet q_0$ inferred from baryonic Tully Fisher'
- Conclusions and Outlook

Hubble parameter and data structure

Cosmological expansion

Homogeneous and isotropic Universe

$$ds^{2} = -c^{2}dt^{2} + a(t)^{2}(dx^{2} + dy^{2} + dz^{2})$$

Friedmann scale factor a(t)

$$H = \frac{\dot{a}}{a}, q = -\frac{\ddot{a}a}{\dot{a}^2}$$

with closure density
$$\rho_c = \frac{3H^2}{8\pi G}$$

a(t) evolves by 2nd-order system:

Late-time cosmology parameterized by $ig(H_0,q_0ig)$

Sandage (1961, 1970)

Cosmological expansion - de Sitter 1936

"Who, however, inflates the balloon? What causes the Universe to expand or swell? That does the A. A different answer cannot be given."

Futures of cosmological expansion

Future is stable dS in Λ CDM, unstable dS favors higher H_0

van Putten (2017) O'Colgain, van Putten & Yavartano (2019) ACDM in swampland (Agrawal, Obied, Steinhardt & Vafa, 2018

 H_0 estimates are sensitive to future (in)stability of de Sitter space

Principle observables (H_0, q_0) with primary observational constraints:

• Baryon Acoustic Oscillations (BAO)

• Astronomical Age of the Universe

Model-dependent parameter $\Omega_{M,0}$ with secondary observational constraint S_8

Jedamzik, Pogosian & Zhang (2021), Di Valentino et al.(2021), Vagnozzi (2023), Cimatti & Moresco (2023), Dainotti et al.(2023), Murakami et al. (2023), D'Agostino & Nunes (2023), Basilakos et al.(2023), Riess & Breuval (2023), Wang et al.(2023), Valcin et al. (2020), O'Malley et al. (2017), Jimenez et al. (2019), Planck (2020), ...

Planck-ACDM versus Local Distance Ladder

Astronomical age of the Universe from oldest stars in globular clusters

 $T_U = 13.5^{0.16}_{0.14}$ Gyr(stat) $\pm 0.23(0.33)$ Gyr(sys)

Valcin et al. 2021 O'Malley et al 2017 Jimenez et al. 2019

Planck ACDM analysis of CMB

II 1.(-)

$$H(z) = H_0 h(z):$$

$$T_U = H_0^{-1} \int_0^\infty \frac{dz}{(1+z)h(z)} = H_0^{-1} (1-\epsilon) \simeq 13.8 \pm 0.02 \text{ Gyr}$$
Aghanim et al. 2020

Consistent ages within measurement uncertainties

How old is the Universe?

Universe today at 26.5 Gyr ? (Gupta 2022, 2023) Covarying decay $G\sim c^3\sim \hbar^3\sim k_B^{3/2}$ with cosmic time

Black holes provide an arrow of time by their entropy

$$S \sim k_B \left(\frac{M}{m_p}\right)^2$$

and the second law of thermodynamics $\delta S \ge 0$:

$$\frac{\dot{k}_B}{k_B} \ge 2\left(\frac{\dot{m}_p}{m_p}\right).$$

 For Partner
 For Partner

 For Partner
 For Partner

 Protection and relativistications
 Partner

 Protection and relativist

Nobel Prize 2020 awarded to Penrose, Genzel & Ghez for SMBH at SgrA*

Stephen W. Hawking (à g.) et Jacob David Bekenstein

https://www.israelscienceinfo.com/en/physique/ la-controverse-hawking-bekenstein-sur-le-trounoir-inspire-les-chercheurs-israeliens/

van Putten (2023, submitted)

Gupta's proposal implies $S \sim c^3$ decays with cosmic time $\Rightarrow \Leftarrow$

Matter density and S_8

$$S_8 = \sigma_8 \sqrt{\Omega_{M,0}/0.3}$$
:

Lessons from black hole thermodynamics

Closure density

Schwarzschild black hole of mass M shows equivalence of massenergy and holographic heat:

$$Q = Mc^2 = \int T_H dS$$

given the Hawking temperature T_H and Bekenstein-Hawking entropy S. Thermodynamics of the horizon defines the maximal mass-density

$$\rho = \frac{M}{\frac{4\pi}{3}R_S^3} = \frac{3c^2}{8\pi G R_S^2}$$

saturating the Bekenstein bound. A three-flat Universe $\Omega = 1$ satisfies the same scaling:

$$\rho_c = \frac{3H^2}{8\pi G} = \frac{3c^2}{8\pi R_H^2}.$$
Observational evidence from $\delta \simeq -2$ in data fits to
$$\rho_{\mathcal{U}} = cT^{4+\delta}, k_B T \sim H\hbar$$
: the holographic limit of unparticle
cosmology (Abchouyeh & van Putten (2021)

Closure density is an extremum by thermodynamic properties of a horizon.

van Putten, 2020, MNRAS, 491, L6

(c)2023 van Putten

Tensions in Cosmology

de Sitter temperature

Hubble horizon at $R_H = c/H$ is a relic of the Big Bang 1/H in the past. It breaks global symmetries in space and time. Global symmetries are approximate, e.g. Witten, 2018

Breaking asymptotic flatness at spatial infinity:

Cosmic time is no longer a Killing vector:

$$\left(\frac{k_B T_{dS}}{c}\right) R_H \simeq \frac{1}{2}\hbar \qquad \qquad k_B T_{dS} H^{-1} \sim \frac{1}{2}\hbar$$

 $k_B T_{dS} \sim H\hbar$ from broken global symmetries by the Big Bang

The de Sitter acceleration $a_{dS} = cH$ is the surface gravity of the Hubble horizon \mathcal{H} . With topology S^2 , \mathcal{H} assumes the Unruh temperature

$$k_B T_{dS} = \frac{a\hbar}{2\pi c} = \frac{H\hbar}{2\pi}.$$

Gibbons & Hawking (1977)

 T_{dS} derives from the de Sitter acceleration of cosmological spacetime

(c)2023 van Putten

de Sitter energy density

Hubble horizon with area $A_H = 4\pi R_H^2$ contains Planck sized units $l_p^2 = G\hbar/c^3$ of area

$$N = S/k_B = \frac{1}{4}A_H/l_p^2$$

Each excited at $k_B T_{dS} = H\hbar/2\pi$, collectively contain the heat

$$Q = Nk_B T_{dS} = \pi R_H^2 \left(\frac{H\hbar}{2\pi}\right) \left(\frac{c^3}{G\hbar}\right) = \frac{1}{2} R_H c^4 / G.$$

with equivalent density

$$\epsilon \equiv \frac{Q}{(4\pi/3)R_H^3} = \frac{3c^4}{8\pi G R_H^2} = \rho_c c^2$$

de Sitter heat carries an energy density at closure density

Modified de Sitter temperature

Hubble horizon has a surface gravity

$$a = \frac{H}{2} (1 - q).$$
 Cai & Kim (2005)

The Hubble horizon has ordinary point-set topology S^2 with associated Unruh temperature

$$k_B T_H = \frac{a\hbar}{2\pi c} = \frac{H\hbar}{2\pi c} \left(\frac{1-q}{2}\right) = T_{dS} \left(\frac{1-q}{2}\right).$$
 van Putten (2015)

In a holographic interpretation, this comes with a phantom pressure

$$-p = A_H^{-1} T_H \frac{dS}{dR} = \frac{k_B T_H}{2R_H l_p^2}.$$
 Easson, Framptomn & Smoot (2011)

Modified Friedmann equations

Hubble horizon is a Lorentz invariant, whereby $\rho_{\Lambda}=-\,p$ and so

$$\Omega_{\Lambda} = \frac{2}{3} \left(\frac{1-q}{2} \right).$$

van Putten (2015)

Now include $\Lambda = 8\pi\rho_{\Lambda} = (1-q)H^2$ in the Einstein equations:

$$G_{ab} = 8\pi T_{ab} - \left(1 - q\right) H^2 g_{ab}.$$

 ${\mathscr H}$ defined in geometric optics limit, is transparent to super-horizon scale fluctuations:

$$T_{ab} = \left[\left(1 - q \right) \pi_{ab}^{-} + q \pi_{ab}^{+} \right] \rho_c$$

is the Sum of on- and off-shell fluctuations $\pi^{\pm} = \text{dia} \left[1, \pm 1/3, \pm 1/3, \pm 1/3\right]$ with tr $\pi_{ab}^{\pm} = 1 \mp (-1)$ in the metric signature (-, +, +, +) from $\Omega_M = (1/3)(2+q)$, $\Omega_{\Lambda} = (1/3)(1-q)$ with phantom pressure $\Omega_p = p/\rho_c, q = 3\Omega_p = \Omega_M - 2\Omega_{\Lambda}$.

Modified Friedmann equations

Hubble horizon is a Lorentz invariant, whereby $\rho_{\Lambda}=-\,p$ and so

$$\Omega_{\Lambda} = \frac{2}{3} \left(\frac{1-q}{2} \right).$$

Now include $\Lambda = 8\pi\rho_{\Lambda} = \left(1-q\right)H^2$ in the Einstein equations:

$$G_{ab} = 8\pi T_{ab} - \left(1 - q\right) H^2 g_{ab}.$$

The first and second Friedmann equations become

$$\frac{\ddot{a}}{a} = 2h^2 - 3\Omega_{M,0}a^{-3}$$
$$q = \Omega_p.$$

The Hamiltonian energy constraint becomes secondorder in time - a singular perturbation away from ACDM

Phantom pressure

 $\tau = H_0 t, H(z) = H_0 h(z).$

van Putten (2015, 2020)

Dark energy from T-duality

Define the curvature operator $D(u) \equiv \frac{\ddot{u}u}{\dot{u}}$. With $\kappa = 1/a$, obtain

$$D(\kappa) = 3\Omega_M$$
$$D(a) = -3\Omega_p$$

with EOS
$$w = (2q - 1)/(1 - q)$$
.

This formulation satisfies

$$D(a) + D(\kappa) = 2.$$

van Putten (2021)

YITP Workshop Strings and Fields 2021 https://meetings.aps.org/Meeting/APR21/Session/L18.7 What happened?

Heat content at finite temperature by breaking global symmetries

Nature finds a new symmetry in T-duality in the Friedmann scale factor *a*

(c)2023 van Putten

Tensions in Cosmology

Analytic solution

Rewrite the first Friedmann equation in $y(z) = \log h(z)$:

$$y'(z) = 3(1+z)^2 \Omega_{M,0} e^{-2y(z)} - \frac{1}{1+z}$$

Solution:

$$h(z) = \frac{\sqrt{1 + \frac{6}{5}\Omega_{M,0}Z_5(z)}}{1 + z}$$

in $Z_n = (1 + z)^n - 1$

van Putten (2017, 2021) O'Colgain, van Putten & Yavartanoo (2019)

Evolution in quantum cosmology

Tensions in Cosmology

Quantum cosmology in the face of the Hubble horizon

The Hubble horizon is a relic of the Big Bang: *variational principle runs over two scales: sub- versus super-Hubble scale variations.*

Propagator $e^{i\Phi}$ derives from the action: $\Phi = S/\hbar$, $S = \int \mathscr{L}\sqrt{-g} d^4x$ e.g. Wald 1984

 $\mathscr{L} = R + \cdots$ by the Ricci scalar R and contributions from matter and fields. Sub-Hubble scale variations define the Einstein equations.

Super-Hubble scale variations $(k \sim 0)$ require a global phase reference $\Phi_0 = \Phi_0 [\mathcal{H}]$. With no asymptotically flat Minkowski spacetime in FLRW:

$$\Phi_0 \not\equiv 0$$

Normalized propagator:

$$e^{i(\Phi - \Phi_0)} = \frac{e^{i\Phi}}{e^{i\Phi_0}}$$

van Putten, 2020, MNRAS, 491, L6

(c)2023 van Putten

Tensions in Cosmology

$\Lambda \operatorname{from} \Phi_0$

On a background cosmology, write

$$\Phi_0\left[\mathscr{H}\right] = \int 2\Lambda \sqrt{-g} d^4 x$$

Global phase reference for super-Hubble scale variations $(k \sim 0)$:

$$\Lambda = \lambda R(a, \dot{a}) \equiv g(1 - q)H^2.$$

 Φ_0 has equivalent density with coupling $g \lesssim 1$ van Putten (2021)

In conventional action principle (variations on sub-Hubble scale), this Λ sources the Friedmann equations \ldots

Analytic solution

Generalized expression $\Lambda = \Lambda_0 + g(1 - q)H^2$:

$$H(z) = H_0 \frac{\sqrt{1 + A(z)}}{(1 + z)^{\frac{\gamma + 1}{2}}}$$

New solution with the same cosmological parameters as ACDM

$$A(z) = A_0(z) + A_r(z) + A_M(z) + A_K(z), Z_n = (1+z)^n - 1, \gamma = 6/g:$$

$$A_0(z) = \frac{3\Omega_{\Lambda_0}}{3 - 2g} Z_{1+\gamma}(z), \ A_r(z) = \Omega_r Z_{5+\gamma}(z), \ A_M(z) = \frac{6\Omega_{M,0}}{6 - g} Z_{4+\gamma}(z), \ A_K(z) = \frac{3\Omega_{K,0}}{3 - g} Z_{3+\gamma}(z)$$

What is the H_0 value? ΛCDM vs. new model

H_0 from Case A

 ΛCDM assumes stable dS, unstable dS favors higher H_0

van Putten (2017) O'Colgain, van Putten & Yavartano (2019)

 H_0 estimates are sensitive to future (in)stability of de Sitter space

\dots compare with Λ CDM

Our model

$$h(z) = \frac{\sqrt{1 + \frac{6}{5}\Omega_{M,0}Z_5(z)}}{1 + z}$$

VCDM

$$h(z) = \sqrt{1 + \Omega_{M,0} Z_3(z)}$$

Turning point in
$$H(z)$$
 at $z_* = \left(\frac{5 - 6\Omega_{M,0}}{9\Omega_{M,0}}\right)^{\frac{1}{5}} - 1 \gtrsim 0 \quad \left(\Omega_{M,0} \lesssim 1/3\right)^{\frac{1}{5}}$

O'Colgain, van Putten & Yavartanoo (2019)

... compare with ΛCDM

Our model

$$h(z) = \frac{\sqrt{1 + \frac{6}{5}\Omega_{M,0}Z_5(z)}}{1 + z}$$

ACDM

$$h(z) = \sqrt{1 + \Omega_{M,0} Z_3(z)}$$

van Putten (2017, 2019)

... reduced matter density

BAO angle $\theta_* = r_*/D(z_*)$ depends on h(z), not on H_0 .

Asymptotic behavior

$$\begin{split} h(z) &\sim \sqrt{\frac{6}{5}} \Omega_{M,0} \left(1+z\right)^{3/2} \simeq 0.9126 \sqrt{\Omega_{M,0}} \left(1+z\right)^{3/2} \\ h(z) &\sim \sqrt{\Omega_{M,0}'} \left(1+z\right)^{3/2} \quad \text{(ACDM)} \end{split}$$

Keeping similar shapes at high redshift:

Expect 10-20% reduction in $\Omega_{M,0}$ compared to $\Lambda {
m CDM}$

... confrontation with data

Data of Farooq et al. (2017):

... implications for S_8

$$S_8 = \sigma_8 \sqrt{\Omega_{M,0}/0.3}$$
 along $\Omega_{M,0} h^2 = 0.153$:

Principle observables (H_0, q_0) with primary observational constraints:

- Baryon Acoustic Oscillations (BAO)
- Astronomical Age of the Universe

Model-dependent parameter $\Omega_{M,0}$ with secondary observational constraint S_8

Estimate H_0

 H_0 -tension between Planck- Λ CDM and the Local Distance Ladder

Riess et al. 2022 Wong et al. 2020

$$H'_{0} = (67.4 \pm 0.5) \text{ km s}^{-1}\text{Mpc}^{-1} \text{ Planck-}\Lambda\text{CDM}$$
$$H_{0} = (73.2 \pm 1.3) \text{ km s}^{-1}\text{Mpc}^{-1} \text{ Local Distance Ladder (Riess et al. 2021)}$$

8.6% H_0 -tension:

$$\Gamma = \frac{H_0}{H'_0} = 1.0861 \times (1 \pm 0.019)$$

Primed values: Planck ACDM analysis of CMB

Primary constraints

Valcin et al., 2020, JCAP 12, 162 O'Malley et al., 2017, ApJ, 838, 162 Jimenez et al. 2019, JCAP, 03, 043 Planck ACDM analysis of CMB (2020)

BAO $\theta_{*,\text{Planck}} = (1.04109 \pm 0.00030) \times 10^{-2}$

 T_U from oldest Globular Clusters of the Milky Way

Primary constraints

Valcin et al., 2020, JCAP 12, 162 O'Malley et al., 2017, ApJ, 838, 162 Jimenez et al. 2019, JCAP, 03, 043 Planck ACDM analysis of CMB (2020)

$$\theta_{*,\text{Planck}} = (1.04109 \pm 0.00030) \times 10^{-2}$$

$$\theta_* = \frac{c^{-1} \int_{z_*}^{\infty} c_s h(z)^{-1} dz}{\int_0^{z_*} h(z)^{-1} dz} : \qquad \theta_* = \theta_{*,\text{Planck}} \qquad \text{Fixes } \Omega_{M,0} \text{ for a given modal}$$

Adapted from Jedamzik, Pogoslan & Zhang (2021)

Age of the Universe $T_U = H_0^{-1} t_U$

$$t_U = \int_0^\infty \frac{dz}{(1+z)h(z)} : \qquad \frac{t_U}{t'_U} = \frac{H_0}{H'_0} = \Gamma \qquad \text{Correlates } (H_0, \Omega_M)^*$$

Two constraints on
$$\left(g, \Omega_{M,0}
ight)$$

Numerical root finding

 $\Omega_{M,0} = 0.2480 \pm 0.014$ consistent with $\Omega_{M,0} = 0.2719 \pm 0.028$ (fit to late-time H(z)-data Farooq et al. 2017 in van Putten 2017)

Numerical root finding

 $H_0 = (73.37 \pm 0.54) \text{ km s}^{-1}\text{Mpc}^{-1}$ consistent with $H_0 = 74.9 \pm 2.6 \text{ km s}^{-1}\text{ Mpc}^{-1}$ (fit to late-time H(z)-data Farooq et al. 2017 in van Putten 2017)

Deceleration parameter

$$h(z) = \frac{\sqrt{1 + \frac{6}{5}\Omega_{M,0}Z_5(z)}}{1 + z}$$

ACDM in general relativity:
$$q_0 = \frac{1}{2}\Omega_{M,0} - \Omega_{\Lambda_0} \simeq -0.55$$

Modified to

$$q_0 = \Omega_{M,0} - 2\Omega_{\Lambda} \simeq 2q_{0,\Lambda{\rm CDM}} \simeq -1.1$$

Deceleration parameter

$$q_0 = 2q_{0,\Lambda \text{CDM}} \simeq -1$$
 $q_0 = -1.08 \pm 0.29$

Consistent with prediction but tension in q_0 is modest: 1.8 σ relative to Λ CDM due to large uncertainty. Can we do better?

*q*₀ from baryonic Tully-Fisher relation

Galaxies to probe cosmology

Anomalous galaxy dynamics below the de Sitter scale of acceleration $a_{dS} = cH$

$$r_t = \sqrt{R_H R_G} \simeq 4.5 \,\mathrm{kpc} \,\sqrt{M_{G,11}/H_{0,73}}$$

van Putten 2017 ApJ 848 28

Diagram of normalized accelerations

Spectroscopic versus photometric data on radial acceleration ($\alpha = V_c^2/r$) vs expected Newtonian acceleration $a_N = \frac{GM_b}{r^2}$ Newtonian dynamics Transition zone Expected a_N Anomalous dynamics Observed α $\zeta = 1$ a_{dS}

Results from SPARC

SPARC: Spitzer Photometry & Accurate Rotation Curves

 C^{0} -transition in galaxy dynamics across a_{dS} Crossing of Rindler and Hubble horizon

van Putten 2017 ApJ 848 28

SPARC versus MUGS₂ ACDM-galaxy models

van Putten 2018 MNRAS 481 L26

SPARC versus MUGS2 ACDM-galaxy models

ACDM galaxy models in MUGS2 versus SPARC:

van Putten 2018 MNRAS 481 L26

Asymptotic behavior

$$\frac{a_N}{\alpha} = \frac{\text{expected radial acceleration}}{\text{observed radial acceleration}} = \sqrt{2\pi} \left(1 - q_0\right)^{-1/4} \zeta^{1/2} \simeq 2.1 \zeta^{\frac{1}{2}}$$

(c)2023 van Putten

Milgrom parameter

q_0 -tension

Baryonic Tully Fisher relation

$$M_b = AV_c^4$$
 with
 $A = (47 \pm 6) M_{\odot} (\text{km s}^{-1})^{-4}$

Inverting $a_0(z)$:

$$q_0 = 1 - \left(\frac{2\pi}{GAa_{dS}}\right)^2 = -0.98^{+0.60}_{-0.42}$$

Local Distance Ladder:

$$q_0 = -1.08 \pm 0.29$$

van Putten (submitted)

Milgrom parameter

$$GAa_0 = 1$$
 McGaugh (2012)

$$q_0 = -1.03 \pm 0.17$$

3\$\sigma\$ departure from Planck value \$q_0 = -0.5275\$

Conclusions

 $\left(H_0,q_0,S_8
ight)$ -tensions due to finite-temperature cosmology with a de Sitter density of heat: $\Lambda=g\left(1-q
ight)H^2$

Primary constraints T_U and BAO imply $\xi = 0.49 \pm 0.1$ in $g = (1 - \xi \alpha)$.

For $\xi = 1/2$: $H_0 = (73.37 \pm 0.54) \text{ km s}^{-1}\text{Mpc}^{-1}$ Baryonic Tully-Fisher + supernova data: $q_0 = -1.03 \pm 0.17$ (3σ tension with Planck) S_8 -tension alleviated at reduced $\Omega_{M,0} \simeq 0.26 \pm 0.15$

van Putten (2021)

 $(73.30 \pm 1.04) \text{ km s}^{-1}\text{Mpc}^{-1}$ Riess et al. (2022)

van Putten (2023, submitted)

 $q_0 = -1.18 \pm 0.084$ in model fit to H(z) data of Farooq et al. (2017), van Putten (2017)

Cosmological expansion

"Who, however, inflates the balloon? What causes the Universe to expand or swell?

That does de Sitter heat in $\Lambda = g (1 - q) H^2$

Merci Gracias Danke Grazie Kòp kun DANKIE SPASIBO Blagodarya Gamsahabnida Hva DĚKUJ OAN Sepaas gozaaram tō qozaimasu Dziękuję Arigatō gozaimasu Tack XIÈXIÈ Nǐ Dhanyavaad Teşekkürler brigado Cảm ơn Efcharistó