

and Astronomy

Hunting Invisibles: Dark sectors, Dark matter and Neutrinos

Neutrino Mixing Sum Rules and Littlest seesaw models

Steve King

2nd September

2023

Corfu Summer Institute

Hellenic School and Warkshops on Elementary Particle Physics and Gravity

We focus on Mixing

CKM Matrix

PMNS Matrix

Dirac vs Majorana with GWs at end

Experimental open questions

Precision also required (this talk)

See Lisi talk

NuFIT 5.2 (2022)

This is very impressive, but much more precise measurements of these parameters are required to match theoretical predictions based on symmetry (or maybe exclude the symmetry approach)

		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.3)$		
		$bfp \pm 1\sigma$	3σ range	$bfp \pm 1\sigma$	$\frac{3\sigma}{3\sigma}$ range		
-u	$\sin^2 heta_{12}$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$		
data	$ heta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$		
ieric	$\sin^2 heta_{23}$	$0.572^{+0.018}_{-0.023}$	0.406 ightarrow 0.620	$0.578\substack{+0.016\\-0.021}$	0.412 ightarrow 0.623		
ospł	$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5_{-1.2}^{+0.9}$	$39.9 \rightarrow 52.1$		
at <mark>R</mark>	$\sin^2 \theta_{13}$	$0.02203^{+0.00056}_{-0.00059}$	$0.02029 \to 0.02391$	$0.02219\substack{+0.00060\\-0.00057}$	0.02047 o 0.02396		
SK	$ heta_{13}/^{\circ}$	$8.54_{-0.12}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57\substack{+0.12\\-0.11}$	$8.23 \rightarrow 8.90$		
thout	$\delta_{ m CP}/^{\circ}$	197^{+42}_{-25}	$108 \rightarrow 404$	286^{+27}_{-32}	$192 \rightarrow 360$		
Ţ.	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$		
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.511^{+0.028}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498^{+0.032}_{-0.025}$	$-2.581 \rightarrow -2.408$		
		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 6.4)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
	$\sin^2 heta_{12}$	$0.303\substack{+0.012\\-0.012}$	0.270 ightarrow 0.341	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$		
lata	$ heta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$		
eric d	$\sin^2 heta_{23}$	$0.451^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	$0.560^{+0.016}$	$0.419 \rightarrow 0.612$		
phe		0.010	0.100 / 0.000	$0.009_{-0.021}$	$0.412 \rightarrow 0.013$		
	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$\begin{array}{c} 0.309_{-0.021} \\ 49.0_{-1.2}^{+1.0} \end{array}$	$\begin{array}{c} 0.412 \rightarrow 0.013 \\ 39.9 \rightarrow 51.5 \end{array}$		
atm esp	$rac{ heta_{23}/^\circ}{\operatorname{rst}\operatorname{Octa}}\ \sin^2 heta_{13}$	$42.2^{+1.1}_{-0.9}$ $0.02225^{+0.00056}_{-0.00059}$	$39.7 \rightarrow 51.0$ $0.02052 \rightarrow 0.02398$	$0.003_{-0.021} \\ 49.0_{-1.2}^{+1.0} \\ 0.02223_{-0.00058}^{+0.00058}$	$0.412 \rightarrow 0.013$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$		
SK atmer	$egin{aligned} & \theta_{23}/^\circ \ \mathbf{rst} \ \mathbf{Octa} \ \sin^2 heta_{13} \ & \theta_{13}/^\circ \end{aligned}$	$\begin{array}{c} 42.2^{+1.1}_{-0.9} \\ 0.02225^{+0.00056}_{-0.00059} \\ 8.58^{+0.11}_{-0.11} \end{array}$	$39.7 \rightarrow 51.0$ $0.02052 \rightarrow 0.02398$ $8.23 \rightarrow 8.91$	$0.303_{-0.021}$ $49.0_{-1.2}^{+1.0}$ $0.02223_{-0.00058}^{+0.00058}$ $8.57_{-0.11}^{+0.11}$	$0.412 \rightarrow 0.013$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$ $8.23 \rightarrow 8.94$		
with SK atme	$\theta_{23}/^{\circ}$ rst Octa $\sin^2 \theta_{13}$ $\theta_{13}/^{\circ}$ $\delta_{\rm CP}/^{\circ}$	$42.2^{+1.1}_{-0.9}$ $0.02225^{+0.00056}_{-0.00059}$ $8.58^{+0.11}_{-0.11}$ 232^{+36}_{-26}	$39.7 \rightarrow 51.0$ $0.02052 \rightarrow 0.02398$ $8.23 \rightarrow 8.91$ $144 \rightarrow 350$	$0.303_{-0.021}$ $49.0_{-1.2}^{+1.0}$ $0.02223_{-0.00058}^{+0.00058}$ $8.57_{-0.11}^{+0.11}$ 276_{-29}^{+22}	$0.412 \rightarrow 0.013$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$ $8.23 \rightarrow 8.94$ $194 \rightarrow 344$		
with SK atmen	$\frac{\theta_{23}/^{\circ}}{\text{rst Octa}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{\text{CP}}/^{\circ}$ $\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$42.2_{-0.9}^{+1.1}$ $0.02225_{-0.00059}^{+0.00056}$ $8.58_{-0.11}^{+0.11}$ 232_{-26}^{+36} $7.41_{-0.20}^{+0.21}$	$39.7 \rightarrow 51.0$ $0.02052 \rightarrow 0.02398$ $8.23 \rightarrow 8.91$ $144 \rightarrow 350$ $6.82 \rightarrow 8.03$	$\begin{array}{c} 0.303_{-0.021} \\ 49.0_{-1.2}^{+1.0} \\ 0.02223_{-0.00058}^{+0.00058} \\ 8.57_{-0.11}^{+0.11} \\ 276_{-29}^{+22} \\ 7.41_{-0.20}^{+0.21} \end{array}$	$0.412 \rightarrow 0.013$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$ $8.23 \rightarrow 8.94$ $194 \rightarrow 344$ $6.82 \rightarrow 8.03$		

Other Simple Mixing

Non-commuting Z_N and Z_2 Non-Tri Z_N motivates non-abelian discrete symmetry $\begin{array}{cccc} c_{12} & s_{12} & 0 \\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \end{array}$ $\phi = (1 + \sqrt{5})/2$ $\checkmark \sin \theta_{13} = 0$ $\sin\theta_{23} = \frac{1}{\sqrt{2}}$ **Golden Ratio a** $\tan \theta_{12} = 1/\phi \circ \theta_{12} = 31.7^{\circ}$ $\cos \theta_{12} = \phi/2$, $\theta_{12} = 36^{\circ}$ **Excluded** Allowed at $\cos \theta_{12} = \phi/\sqrt{3} \quad \theta_{12} \approx 20.9^{\circ}$ at 3 sigma 3 sigma **Bimaximal** $\theta_{12} = 45^{\circ}$

X Hexagonal $\theta_{12} = 30^{\circ}$

Non-Abelian Discrete Symmetry

TBM from S₄

$$\left(\begin{array}{ccc} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{array}\right) \mathbf{TE}$$

TBM excluded so break S,T,U

Charged lepton corrections

More precise measurements required to exclude these cases

> Yellow and green are one sigma ranges

> At 3 sigma the entire range is allowed

Preserving a column of TBM

Preserving a column of TBM

Preserving a column of TBM

Sum rules from preserved columns

C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798

Solar angle predictions from preserved columns

TM1	$\cos \theta_{12} = \sqrt{\frac{2}{3}} \frac{1}{\cos \theta_{13}}$	TM2	$\sin\theta_{12} = \frac{1}{\sqrt{3}\cos\theta_{13}}$
BM1	$\cos\theta_{12} = \frac{1}{\sqrt{2}\cos\theta_{13}}$	BM2	$\cos\theta_{12} = \frac{1}{\sqrt{2}\cos\theta_{13}}$
GRa1	$\cos \theta_{12} = \frac{\cos \theta}{\cos \theta_{13}}$	GRa2	$\cos\theta_{12} = \frac{\sin\theta}{\cos\theta_{13}}$
GRb1	$\cos\theta_{12} = \frac{1+\sqrt{5}}{4\cos\theta_{13}}$	GRb2	$\sin\theta_{12} = \frac{\sqrt{5+\sqrt{5}}}{4\cos\theta_{13}}$
GRc1	$\cos \theta_{12} = \frac{1 + \sqrt{5}}{2\sqrt{3}\cos \theta_{13}}$	GRc2	$\sin\theta_{12} = \frac{1+\sqrt{5}}{2\sqrt{3}\cos\theta_{13}}$
HEX1	$\cos\theta_{12} = \frac{\sqrt{3}}{2\cos\theta_{13}}$	HEX2	$\sin\theta_{12} = \frac{1}{2\sqrt{2}\cos\theta_{12}}$

CP phase predictions from preserved columns of simple mixing patterns

SFK 9806440, 9912492, 0204360 Sequential Dominance (SD)

Motivation: naturalness and minimality

Assume red RHN dominates seesaw Assume black RHN is Assume primed RHN is subdominant

irrelevant

Heavy Majorana

$$M_{RR} = \begin{pmatrix} Y & 0 & 0 \\ 0 & X & 0 \\ 0 & 0 & X' \end{pmatrix}$$
 $M_{LR} = \begin{pmatrix} d & a & d' \\ e & b & b' \\ f & c & c' \end{pmatrix}$

Predicts normal hierarchy

$$m_1 = 0$$

 $m_3 \sim (e^2 + f^2)/Y \quad \tan\theta_{23} \sim e/f$ $m_2 \sim a^2/(s_{12}^2 X) \quad \tan \theta_{12} \sim \sqrt{2}a/(b-c)$

Further assuming d=0 $\theta_{13} \leq m_2/m_3$

Predicted before measurement!

More precise results depend on phases

Constrained Sequential Dominance

Heavy Majorana

$$M_{RR} = \begin{pmatrix} Y & 0 & 0 \\ 0 & X & 0 \\ 0 & 0 & X' \end{pmatrix}$$
 $M_{LR} = \begin{pmatrix} d & a & f \\ e & b \\ f & c & c \end{pmatrix}$
 $\frac{\Delta m_{21}^2}{\Delta m_{31}^2} = \frac{m_2^2}{m_3^2}$

We can add further constraints to enhance predictivity
CSD

$$d=0 \quad e = f$$

 $a = b = -c$
 $\tan \theta_{23} \sim e/f \sim 1$
 $\tan \theta_{12} \sim \sqrt{2}a/(b-c) \sim 1/\sqrt{2}$

It turns out that this gives exact tri-bimaximal mixing with $\theta_{13} = 0$ Accidentally occurs due to orthogonality of two columns

More general examples called CSD(n) can give approximate TBM with $\theta_{13} \neq 0$

Constrained Sequential Dominance

$$M_{RR} = \begin{pmatrix} Y & 0 & 0 \\ 0 & X & 0 \\ 0 & 0 & X' \end{pmatrix} \qquad m_{LR} = \begin{pmatrix} d & a & d' \\ e & b & b' \\ f & c & c' \end{pmatrix}$$

More generally assume the two columns of the Dirac matrix are proportional to

$$\begin{pmatrix} d \\ e \\ f \end{pmatrix} \propto \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ n \\ n-2 \end{pmatrix} \text{ (n=real number)}$$
(can be enforced by symmetry - see later)
$$\tan \theta_{23} \sim e/f \sim 1 \qquad \theta_{13} \neq 0 \qquad \text{Approximate TBM}$$
independently of n

$$\tan\theta_{12} \sim \sqrt{2}a/(b-c) \sim 1/\sqrt{2}$$

Μ n (which cancels) but depends on phases

The case n=1 corresponds to the exact TBM case previously But precise results for general n depend on relative phase of columns

CSD(n) possibilities

Two possibilities:NormalFlipped
$$\begin{pmatrix} d \\ e \\ f \end{pmatrix} \propto \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ n \\ n-2 \end{pmatrix}$ or $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ n-2 \\ n \end{pmatrix}$

The two predictions only differ in atmospheric angle and CP phase (solar angle, reactor angle and neutrino mass unchanged) (n= real number)

Octant flipped $\tan \theta_{23} \to \cot \theta_{23}$ $\delta \to \delta + \pi$

Alternatively we could use the following (only differs by unphysical phases):

$$\begin{pmatrix} d \\ e \\ f \end{pmatrix} \propto \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ n \\ 2-n \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ 2-n \\ n \end{pmatrix}$$

CSD(n) results **Original case:** $\begin{pmatrix} d \\ e \\ f \end{pmatrix} \propto \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ n \\ n-2 \end{pmatrix}$ $m_{(n)}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & n & n-2 \\ n & n^2 & n(n-2) \\ n-2 & n(n-2) & (n-2)^2 \end{pmatrix}$

_	Shows n~3 is viable! Bjorkeroth, SFK 1412.6996											$\sim (n-1) \frac{\sqrt{2}}{3} \frac{m_2}{m_3}$
	n	m_a (meV)	m_b (meV)	$\eta \ ({ m rad})$	$ heta_{12} \ (^\circ)$	$ heta_{13}$ (°)	$ heta_{23}$ (°)	$ert \delta_{ ext{CP}} ert$ (°)	m_2 (meV)	m_3 (meV)	χ^2	$m_1 = 0$
	1	24.8	2.89	3.14	35.3	0	45.0	0	8.66	49.6	485	CSD(I)=TBM
	2	19.7	3.66	0	34.5	7.65	56.0	0	8.85	48.8	95.1	CSD(2) Antusch 1108.4278
	3	27.3	2.62	2.17	34.4	8.39	44.5	92.2	8.69	49.5	3.98	CSD(3) SFK 1304.6264
	4	36.6	1.95	2.63	34.3	8.72	38.4	120	8.61	49.8	8.82	CSD(4) SFK 1305.4846
	5	45.9	1.55	2.88	34.2	9.03	34.4	142	8.53	50.0	33.8	

De Anda, SFK 2304.05958

Littlest Modular Seesaw $n = 1 + \sqrt{6}$ I0d model with orbifold $(\mathbb{T}^2)^3/(\mathbb{Z}_4 \times \mathbb{Z}_2)$

De Anda, SFK 2304.05958 I.de Medeiros Varzielas, S.F.K. and M.Levy, 2211.00654

Littlest Modular Seesaw n = 1 + 1

T 1	$1 \qquad \alpha A$	αR	αC	01	01	01	T								
Fiel	$a S_4^{r}$	$S_4^{\mathcal{D}}$	S_4°	$2\kappa_A$	$2\kappa_B$	$2\kappa_C$		Yuk/I	Mass	S_4^A	S_4^B	S_4^C	$2k_A$	$2k_B$	$2k_C$
L	1	1	3	0	0	0	\mathbb{T}_C^2	$Y_e(\tau_3)$		1	1	3	0	0	6
e^{c}	1	1	1	0	0	-6	\mathbb{T}^2_C	$Y_{\mu}(\tau_3)$)	1	1	3	0	0	4
μ^{c}		1	1	0	0	-4	\mathbb{T}^2_C	$Y_{\tau}(\tau_3)$)	1	1	3	0	0	2
τ^{c}		1	1	0	0	-2	\mathbb{T}^2_C	$Y_a(\tau_2)$)	1	3	1	0	4	0
N_a^c		1	1	0	-4	0	\mathbb{I}_{B}^{2}	$Y_s(\tau_1)$		3	1	1	2	0	0
N_s^c		1	1	-2	0	0	\mathbb{I}_A^2	$M_a(\tau_2)$	2)	1	1	1	0	8	0
Φ_{BC}		3	3	0	0	0	Bulk	$M_s(\tau_1$)	1	1	1	4	0	0
Φ_{AC}	y 3	1	3	0	0	0	Bulk						1		
	G.J.	Ding	, S.F	.Κ, >	K.G.L	iu a	nd J.N	Lu,19	10.03	460				$[L\Phi]$	\mathcal{V}
-	G.J.D)ing	, S.F	.K. (and	C.Y.)	(ao, 2	103.16	311				Λ		BCI
	au			Ý	${\bf f}_{\bf 3}^{(2)}(au$	$(), Y_{3,}^{(0)}$	${}^{5)}_{\mathbf{I}}(au)$		$Y_{3}^{(4)}$	(au),	$Y_{3'}^{(6)}($	$\tau)$	+ [LY_{c}	e^{c} +
τ_1	i		((1,	$1 + \sqrt{1 + 1}$	$\sqrt{6}, 1$	$-\sqrt{6})$			$1, -\frac{1}{2}$	$,-\frac{1}{2})$		1	- C	, · ·
	i + i	1	(1, -	$-\frac{\omega}{3}(1 - $	$+i\sqrt{2}$	$(\overline{2}), -\overline{2}$	$\frac{\omega^2}{3}(1+$	$i\sqrt{2}))$		(0, 1,	$-\omega)$		$+\frac{1}{c}$	$\frac{1}{2}M_a$	N_a^c
τ_2	i+2	2	$(1, \frac{1}{2})$	$\frac{1}{3}(-1)$	+i	$(2), \frac{1}{3}($	(-1+i)	$(\sqrt{2}))$		(0, 1,	-1)			linn	od
	i + i	3	($1, \omega(1$	+	$\overline{6}), \omega$	$(1-\sqrt{2})$	$\overline{6}))$	(1	$,-\frac{\omega}{2},$	$-\frac{\omega^2}{2}$)		ΠPP	eu
	au		$Y_{3}^{(}$	$(2)(\tau)$		$Y_{3}^{(4)}$	$(\tau), Y_{3'}^{(4)}$	(τ)	$Y_{31}^{(6)}$	$\overline{T}(\tau),$	$\overline{Y^{(6)}_{3'}}($	$\overline{\tau}$	$\int y$	e () (
$ au_3$	ω		(0,	, 1, 0)		((0, 0, 1)			(1, 0)	,0)		0) y	и C
	$\omega +$	1	(1, 1)	$1, -\frac{1}{2}$)	(]	$1, -\frac{1}{2}, 1$)		1, -2	, -2)		$\int C$) () y
	$\omega +$	2	(1, -	$-\frac{\omega^2}{2}, \omega$)	(1	$,\omega^2,-\frac{\omega^2}{2}$	$\left(\frac{\omega}{2}\right)$	(1,	$-2\omega^2$	$2^{2}, -2\omega$	$\omega)$	Ì	hai	ner
-	$\omega +$	3	$(1, \omega$	$v, -\frac{\omega^2}{2}$)	(1	$,-\frac{\omega}{2},\omega$	²)	(1,	-2ω ,	-2ω	$^{2})$		lont	get
Ĺ	$\omega = e$	$\frac{2\pi i}{3}$											l	ept	0113

 αR

 αC

 $\begin{bmatrix} \mathbf{D} \cdot \mathbf{1} \mathbf{1} \end{bmatrix} = \mathbf{C} \mathbf{A}$

Yukawa couplings are modular forms evaluated at the fixed points of the moduli fields (the lattice vectors)

$$\begin{bmatrix}
L\Phi_{BC}Y_aN_a^c + L\Phi_{AC}Y_sN_s^c]H_u \\
-[LY_ee^c + LY_\mu\mu^c + LY_\tau\tau^c]H_d \\
-\frac{1}{2}M_aN_a^cN_a^c + \frac{1}{2}M_sN_s^cN_s^c.
\end{bmatrix}$$
Flipped case (2nd octant)
$$\begin{bmatrix}
y_e & 0 & 0 \\
0 & y_\mu & 0 \\
0 & 0 & y_\tau
\end{bmatrix}$$

$$\begin{bmatrix}
0 & b \\
a & b(1 - \sqrt{6}) \\
-a & b(1 + \sqrt{6})
\end{bmatrix}$$
Charged
Dirac
neutrinos

Conclusions

- □ Mixing sum rules are relics of simple mixing patterns enforced by symmetry and predict $\cos \delta$ (not δ)
- Discussed minimal predictive Type Ia seesaw CSD(n)
- \square "Littlest Seesaw" $n\approx 3$ predicts θ_{12} , θ_{23} and δ
- \Box n=1 + $\sqrt{6} \approx$ 3.45 enforced by modular symmetry
- Such theories motivate precision measurements

SFK, Marfatia, Rahat 2306.05389

Majorana vs. Dirac Seesaw

$$-\mathcal{L}_M \supset \mathcal{Y} \ \bar{\ell} H \bar{N} + \bar{N} \bar{N}^T \phi$$

$$\mathcal{M}_M = \frac{1}{\sqrt{2}} v^2 \ \mathcal{Y} \ \mathcal{M}_N^{-1} \ \mathcal{Y}^T$$

$$\mathcal{L}_{D} \supset \mathcal{Y}_{L} \overline{\ell} H \Delta_{R} + \mathcal{Y}_{R} \overline{\Delta}_{L} \sigma \nu_{R} + \mathcal{M}_{\Delta} \overline{\Delta} \Delta$$

$$\overline{\ell} \qquad \nu_{R} \quad \text{odd}$$

$$\mathcal{J}_{\Delta} \times \overline{\Delta} \qquad Z_{2}$$

$$H \qquad \sigma \quad \text{odd}$$

$$\mathcal{M}_D = \frac{1}{\sqrt{2}} v \ u \ \mathcal{Y}_L \mathcal{M}_\Delta^{-1} \mathcal{Y}_R$$

U(I)_L preserved Z₂ broken Domain Walls GWs

SFK, Marfatia, Rahat 2306.05389

Majorana vs. Dirac

Flat GW spectrum from cosmic strings

Majorana vs Dirac can be distinguished from shape of GW spectrum

Benchmark Point	$u \; [\text{GeV}]$	$V_{\rm bias} \; [{ m GeV}^4]$	$y_{\rm max}(M_\Delta < M_{\rm Pl})$
1	$0.97 imes 10^6$	0.86	2.70
(2)	5.2×10^7	7.14×10^{10}	0.37
3	2.7×10^9	9.3×10^{20}	0.051
4	3.63×10^{11}	1.38×10^{34}	0.004

 $V(\sigma) = \frac{\lambda}{4} (\sigma^2 - u^2)^2 \qquad \Delta V(\sigma) = \epsilon u \sigma \left(\frac{\sigma^2}{3} - u^2\right)$

SFK, Marfatia, Rahat 2306.05389

NANOGrav 15-year data

