REAL EFFECTIVE POTENTIALS FOR PHASE TRANSITIONS IN MODELS WITH EXTENDED SCALAR SECTORS

Károly Seller Department for Theoretical Physics

ELTE Eötvös Loránd University

TABLE OF CONTENTS

- 1. Introduction & Motivation
- 2. Optimized Perturbation Theory Scheme
- 3. Phase Transitions in Singlet Scalar Extensions of the SM

Based on:

K. Seller, Z. Szép and Z. Trócsanyi, "Real effective potentials for phase transitions in models with extended scalar sectors," JHEP **04** (2023), 096 [arXiv:2301.07961 [hep-ph]].

INTRODUCTION & MOTIVATION

EFFECTIVE POTENTIAL

- Widely used phenomenological tool to study phase transitions:
 - 1. approximate the critical temperature(s) and
 - 2. estimate the order of phase transition(s).
- The effective potential defined via Legendre transformation is:
 - 1. the effective action evaluated for homogeneous field configurations,
 - 2. a real and convex function of the field expectation value(s) v_k .
- Perturbative expansion depends on the model, at one-loop:

$$V_{\text{eff}}^{[1]}(\{v_k\}, T) = V_{\text{cl}}(\{v_k\}) + \sum_{i \in \mathbf{P}} \left[V_i^{(1)}(\{v_k\}) + V_{\text{T},i}^{(1)}(\{v_k\}, T) \right]$$

 \rightarrow **P** denotes the set of particles coupled to the scalar field(s)

Effective Potential in SM at T = 0

• Fully renormalized potential at one-loop, our result from [arXiv:2301.07961]:

$$\begin{aligned} V_{\text{eff}}^{[1]}(\mathbf{v}) &= \frac{\lambda}{4} (\mathbf{v}^2 - \mathbf{v}_0^2)^2 + \sum_{i \neq G} \frac{\Delta_{\bar{\Pi},i}\lambda}{4} (\mathbf{v}^2 - \mathbf{v}_0^2)^2 \\ &+ \sum_{i \neq G} \frac{s_i n_i}{64\pi^2} \left[m_i^4(\mathbf{v}) \left(\ln \frac{m_i^2(\mathbf{v})}{m_i^2(\mathbf{v}_0)} - \frac{3}{2} \right) + 2m_i^2(\mathbf{v}_0) m_i^2(\mathbf{v}) \right] \\ &+ \frac{n_G m_G^4(\mathbf{v})}{64\pi^2} \left(\ln \frac{m_G^2(\mathbf{v})}{m_h^2(\mathbf{v}_0)} + \frac{3}{2} \right) \end{aligned}$$

- $\rightarrow \Delta_{\Pi,i} \lambda$ are finite constants
- \rightarrow Has no free parameters
- \rightarrow Independent of regularization scale \rightarrow Improvement compared to [hep-ph/9206235]

THE COMPLEX NATURE OF THE PERTURBATIVE RESULT

$$V_{\text{eff}}^{[1]}(\mathbf{v}) \supset \frac{n_h}{64\pi^2} \left[m_h^4(\mathbf{v}) \left(\ln \frac{m_h^2(\mathbf{v})}{M_h^2} - \frac{3}{2} \right) + 2M_h^2 m_h^2(\mathbf{v}) \right] + \frac{n_G m_G^4(\mathbf{v})}{64\pi^2} \left(\ln \frac{m_G^2(\mathbf{v})}{M_h^2} + \frac{3}{2} \right) + 2M_h^2 m_h^2(\mathbf{v}) \right]$$

- $\mu^2 < 0 \rightarrow m_h^2(\mathbf{v}) = \mu^2 + 3\lambda \mathbf{v}^2$ and $m_G^2(\mathbf{v}) = \mu^2 + \lambda \mathbf{v}^2$ can be negative \rightarrow In particular $m_G^2(\mathbf{v}) < 0$ for $\mathbf{v} < \mathbf{v}_0 \equiv |\mu^2|/\lambda$ $\rightarrow \boxed{V_{\text{eff}}^{[1]}(\mathbf{v} < \mathbf{v}_0) \text{ is complex!}}$
- The perturbative expansion implicitly assumes a convex classical potential
- For non-convex potentials that have multiple saddle points:
 - ightarrow One has to take into account contributions from multiple saddle points
 - \rightarrow [R. J. Rivers, Z. Phys. C 22 (1984) 137]
- Non-convexity and complexity are a consequence of loop expansion

THE COMPLEX EFFECTIVE POTENTIAL

Complexity problem at finite temperature

Optimized perturbation theory

OBJECTIVE

• <u>Goal</u>: Obtain a real $V_{\text{eff}}^{[1]}$ for any $v_k \longrightarrow$ Minimization possible at finite T

$$V_{\mathsf{eff}}^{[1]}(\{v_k\}, T) = V_{\mathsf{Cl}}(\{v_k\}) + \sum_{i \in \mathbf{P}} \left[V_i^{(1)}(\{v_k\}) + V_{\mathsf{T},i}^{(1)}(\{v_k\}, T) \right]$$

- All terms should be real separately!
 - \rightarrow Classical potential is real
 - \rightarrow One-loop T = 0 potential is complex for scalars at $v < v_0$
 - \rightarrow Finite T potential is also complex due to the same problem with imaginary masses
- Renormalization in the Optimized Perturbation Theory scheme is shown in [arXiv:hep-ph/9803226]

🐌 ELTE Eötvös Loránd University

OPTIMIZED PERTURBATION THEORY APPROACH

• The root of the problem is $\mu^2 < 0
ightarrow$ Introduce a shifted mass parameter $m^2 > 0$

$$\mathcal{L} \supset \mathcal{V}_{\mathsf{OPT}}[\phi] = m^2 |\phi|^2 + \lambda |\phi|^4 + \left[(\mu^2 - m^2) |\phi|^2 \right] \qquad [\mathsf{arXiv:hep-ph/9803226}]$$

• Important to keep in mind:

- Treat the last term as an interaction or finite part of counter-term
- Tree level masses defined above are now shifted as $\mu^2
 ightarrow m^2$

$$V_{\text{OPT}}^{[1]}(v;\mu^2,m^2) = \underbrace{V_{\text{cl}}(v;m^2) + \underbrace{\frac{\mu^2 - m^2}{2}v^2}_{V_{\text{cl}}(v;\mu^2)} + V^{(1)}(v;m^2)}_{V_{\text{cl}}(v;\mu^2)}$$

Parametrization conditions in SM at T = 0

• Need physical conditions ightarrow fix the values of parameters $\{\mu^2, m^2, \lambda\}$

Condition 1:
$$\frac{\partial V_{\text{OPT}}^{[1]}(v;\mu^2,m^2)}{\partial v}\Big|_{v=v_0} = 0 \quad \leftarrow \text{ Position of minimum}$$

Condition 2:
$$\frac{\partial^2 V_{\text{OPT}}^{[1]}(v;\mu^2,m^2)}{\partial v^2}\Big|_{v=v_0} = M_h^2 \quad \leftarrow \text{ Curvature of } V \text{ is the Higgs mass}$$

Condition 3:
$$\frac{\partial V_{\text{OPT}}^{[1]}(v;\mu^2,m^2)}{\partial m^2}\Big|_{v=v_0} = 0 \quad \leftarrow \text{ Principle of minimum sensitivity}$$

• System is solvable for SM with parameter values:

 $m^2 = 69\ 094.6\ {
m GeV}^2, \qquad \lambda = 0.12\ 861, \qquad \mu^2 = -8\ 847.85\ {
m GeV}^2$

SM effective potential at T = 0

Scalar potential in SM+singlet scalar models

• Adding a new singlet scalar to the potential:

$$\mathcal{V}[\phi,\chi] = \mu_{\phi}^2 |\phi|^2 + \lambda_{\phi} |\phi|^4 + \mu_{\chi}^2 |\chi|^2 + \lambda_{\chi} |\chi|^4 + \underbrace{\lambda' |\phi|^2 |\chi|^2}_{\text{scalar mixing}}$$

$$\mathcal{V}_{\mathsf{OPT}}[\phi,\chi] = \mathcal{V}[\phi,\chi] \big|_{\mu_{\phi}^2 \to m_{\phi}^2, \, \mu_{\chi}^2 \to m_{\chi}^2} + (\mu_{\phi}^2 - m_{\phi}^2) |\phi|^2 + (\mu_{\chi}^2 - m_{\chi}^2) |\chi|^2$$

• The one-loop effective potential:

$$V_{\mathsf{OPT}}^{[1]}(\mathbf{v}, \mathbf{w}; \mu_{\phi}^2, \mu_{\chi}^2, m_{\phi}^2, m_{\chi}^2) = V_{\mathsf{Cl}}(\mathbf{v}, \mathbf{w}; \mu_{\phi}^2, \mu_{\chi}^2) + V^{(1)}(\mathbf{v}, \mathbf{w}; m_{\phi}^2, m_{\chi}^2)$$

GENERALIZING THE OPT APPROACH

• The previous parametrization conditions fix 6 out of 7 parameters

• We investigate the parametrization in the free parameter λ'

PARAMETRIZATION OF THE SINGLET MODEL

PHASE TRANSITIONS

FINITE TEMPERATURE CORRECTIONS

• One-loop effective potential \longrightarrow No new parameters at T > 0

$$V_{\mathsf{eff}}^{[1]}(\{v_k\}, T) = V_{\mathsf{cl}}(\{v_k\}) + \sum_{i \in \mathbf{P}} \left[V_i^{(1)}(\{v_k\}) + V_{\mathsf{T}, i}^{(1)}(\{v_k\}, T) \right]$$

19

FINITE TEMPERATURE CORRECTIONS

• One-loop effective potential \longrightarrow No new parameters at T > 0

$$V_{\mathsf{T}}^{(1)}(\{v_k\}, T) = \frac{T^4}{2\pi^2} \sum_{i \in \mathbf{P}} n_i J_{\pm}^{(i)}(m_i^2(\{v_k\}), T) \qquad [\text{arXiv:hep-ph/9212235}]$$

$$J_{\pm}\left(m_{i}^{2},T\right) = \begin{cases} \mathcal{I}_{-}\left(\frac{m_{i}^{2}}{T^{2}}\right) - \frac{\pi}{6}\left(\frac{\overline{m}_{i}^{3}}{T^{3}} - \frac{m_{i}^{3}}{T^{3}}\right), & \text{if } i = \text{ scalars, longitudinal modes,} \\ \mathcal{I}_{\pm}\left(\frac{m_{i}^{2}}{T^{2}}\right), & \text{if } i = \text{ fermions/transverse modes.} \end{cases}$$

- 1) $\mathcal{I}_{\pm}(m_i^2/T^2)$ and m_i^3 is real if $m_i^2 > 0$ \rightarrow OPT gives $m_i^2 > 0 \checkmark$
- 2) \overline{m}_i is the thermal mass $\rightarrow \overline{m}_i^2 > 0$ is required at all T for \overline{m}_i^3 to be real $\rightarrow \overline{m}_{scalar}^2 < 0$ is possible above a high T if $\lambda' < 0$ because $\overline{m}_{scalar}^2 \supset c\lambda' T^2$

EXAMPLE PHASE TRANSITION

CRITICAL TEMPERATURES IN A SPECIFIC MODEL

Superweak extension of SM: [arXiv:1812.11189] or talk by Z. Trócsányi on Tuesday 10:30-11:00

CONCLUSIONS

- We presented a simple method for obtaining a real effective potential
 - 1. Proof of concept: SM effective potential
 - 2. Example: Singlet scalar extension of SM & Superweak extension of SM
- At finite *T* there are 3 sources of imaginary parts in the effective potential:
 - 1. T = 0 part for $m_i^2 < 0 \rightarrow \text{solved } \checkmark$
 - 2. T > 0 part for $m_i^2 < 0 \rightarrow \text{solved } \checkmark$
 - 3. T > 0 part for T > T' if $\lambda' < 0 \rightarrow$ Model issue, not of perturbation theory

• THANK YOU FOR YOUR ATTENTION! •