Phenomenology with trans-Planckian asymptotic safety

Kamila Kowalska

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

in collaboration with A. Chikkaballi, W. Kotlarski, D. Rizzo, E. M. Sessolo, Y. Yamamoto

Eur.Phys.J.C 81 (2021) 4, 272 (arXiv: 2007.03567) Phys. Rev. D 103, 115032 (2021) (arXiv: 2012.15200) JHEP 01 (2023) 164 (arXiv: 2209.07971) Eur.Phys.J.C 83 (2023) 7, 644 (arXiv: 2304.08959)

Workshop on Standard Model and Beyond, Corfu 31.08.2023

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Asymptotic safety in a nutshell

Looking for hints from the UV for the IR model builling

cosmological constant

Kamila Kowalska

Trans-Planckian AS with matter

Gravity affects matter:

RGE system coupled to gravity

Modification to RGEs @ $k > M_{\rm Pl}$

$$\beta_{g} = \beta_{g}^{\text{SM+NP}} - g f_{g}$$
$$\beta_{y} = \beta_{y}^{\text{SM+NP}} - y f_{y}$$
$$\beta_{\lambda} = \beta_{\lambda}^{\text{SM+NP}} - \lambda f_{\lambda}$$

Quantum-gravitational contribution (in principle via FRG)

[Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16,Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski et al. '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18 ...]

EXAMPLE : U(1) + Φ + E-H:

$$f_g = G \frac{1 - 4\Lambda}{4\pi (1 - 2\Lambda)^2}$$

Trans-Planckian AS with matter

Gravity affects matter:

RGE system coupled to gravity

Modification to RGEs @ $k > M_{\rm Pl}$

$$\beta_{g} = \beta_{g}^{\text{SM+NP}} - g f_{g}$$
$$\beta_{y} = \beta_{y}^{\text{SM+NP}} - y f_{y}$$
$$\beta_{\lambda} = \beta_{\lambda}^{\text{SM+NP}} - \lambda f_{\lambda}$$

Quantum-gravitational contribution (in principle via FRG)

[Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16,Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski et al. '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18 ...]

EXAMPLE : U(1) + Φ + E-H:

$$f_g = G \frac{1 - 4\Lambda}{4\pi (1 - 2\Lambda)^2}$$

FRG calculation of *f_i* has very large uncertainties ... (truncation in number of operators, cut-off scheme dependence, higher-order loop corrections in matter)

[Lauscher, Reuter '02, Codello, Percacci, Rahmede '07-'08, Benedetti, Machado, Saueressig '09, Narain, Percacci '09, Dona', Eichhorn, Percacci '13, Falls, Litim, Schroeder '18, ...]

Trans-Planckian AS with matter

Gravity affects matter:

RGE system coupled to gravity

Modification to RGEs @ $k > M_{\rm Pl}$

$$\beta_{g} = \beta_{g}^{\text{SM+NP}} - g f_{g}$$
$$\beta_{y} = \beta_{y}^{\text{SM+NP}} - y f_{y}$$
$$\beta_{\lambda} = \beta_{\lambda}^{\text{SM+NP}} - \lambda f_{\lambda}$$

Quantum-gravitational contribution (in principle via FRG)

[Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16,Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski et al. '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18 ...]

EXAMPLE : U(1) + Φ + E-H:

$$f_g = G \frac{1 - 4\Lambda}{4\pi (1 - 2\Lambda)^2}$$

FRG calculation of *f_i* has very large uncertainties ... (truncation in number of operators, cut-off scheme dependence, higher-order loop corrections in matter)

[Lauscher, Reuter '02, Codello, Percacci, Rahmede '07-'08, Benedetti, Machado, Saueressig '09, Narain, Percacci '09, Dona', Eichhorn, Percacci '13, Falls, Litim, Schroeder '18, ...]

Due to universality of f_{i} existance of a FP is enough to get predictions for **irrelevant couplings**

Similar approach: *see, eg.,* Eichhorn, Held, 1707.01107, 1803.04027; Reichert, Smirnov, 1911.00012; Alkofer *et al.* 2003.08401, KK, Sessolo, Yamamoto, 2007.03567; KK, Sessolo, 2012.15200, Boos, Carone, Donald, Musser, 2006.02686

Strategy of getting predictions from AS

illustrative example:

SM + U(1)_X
$$\begin{cases} \frac{dg_Y}{dt} = \frac{41}{6} \frac{g_Y^3}{16\pi^2} - f_g g_Y \\ \frac{dg_X}{dt} = 11 \frac{g_X^3}{16\pi^2} - f_g g_X \end{cases}$$

Predictions for NP from AS

New Physics

fixed point for dimensionless NP couplings

NP couplings irrelevant predictions in IR

Experimental anomaly

$$\frac{\mathcal{C}_{\rm NP}}{\Lambda^n} \approx \frac{c_i c_j}{m_{\rm NP}^n} \times \text{loop factor}$$

Predictions for NP masses

(relevant parameters not constrained by AS)

AS leads to specific and testable signatures

Measured value at BNL (2006):

Bennet et al, Phys. Rev. D 73 (2006) 072003 (hep-ex/0602035)

$$a_{\mu}^{\rm BNL} = (116592089 \pm 63) \times 10^{-11}$$

Measured value at FNAL (2021,2023):

Muon g-2 Collaboration, Phys. Rev. Lett. 126 (2021) 141801 D. P. Aguillard et al. (Muon g-2) (2023), arXiv:2308.06230

 $a_{\mu}^{\text{FNAL}} = (116592055 \pm 24) \times 10^{-11}$

Brookhaven result Fermilab result Standard Mode Experiment Prediction Average 17.5 18.5 19.0 19.5 20.0 20.5 21.0 21.5 18.0 *a*₁₁ × 10⁹ - 1165900

$$\Delta a_{\mu} = (24.9 \pm 4.8) \times 10^{-10}$$

discrepancy at ~ 5.1 σ

Calls for a NP explanation...

... although stay tuned for the lattice results

1-loop contribution from scalar(s) ϕ_i and VL fermions ψ_j

$$\delta(g-2)_{\mu} = \sum_{i,j} \left\{ -\frac{m_{\mu}^{2}}{16\pi^{2}m_{\phi_{i}}^{2}} \left(|y_{L}^{ij\mu}|^{2} + |y_{R}^{ij\mu}|^{2} \right) [Q_{j}\mathcal{F}_{1}(x_{ij}) - Q_{i}\mathcal{G}_{1}(x_{ij})] \right\}$$

$$x_{ij} = m_{\psi_{j}}^{2}/m_{\phi_{i}}^{2}$$

$$\left[-\frac{m_{\mu}m_{\psi_{j}}}{16\pi^{2}m_{\phi_{j}}^{2}} \operatorname{Re}\left(y_{L}^{ij\mu}y_{R}^{ij\mu*}\right) [Q_{j}\mathcal{F}_{2}(x_{ij}) - Q_{i}\mathcal{G}_{2}(x_{ij})] \right\}$$

$$\psi$$

$$\mu_{L}$$

$$\psi_{L}$$

$$\psi_{L}$$

$$\psi_{L}$$

$$\psi_{L}$$

$$\psi_{L}$$

- minimal: 1 VL lepton and 1 scalar
- $m_{\psi}, m_{\phi} \sim \mathcal{O}(100 \,\mathrm{GeV})$
- Yukawa couplings > 1
- excluded by the LHC see P. Athron et al., 2104.03691 for the most recent results
- Landau Pole

e.g. KK. E.Sessolo, 1707.00753

- 2 VL + 1 S or 1 VL + 2 S needed
- parametrically enhanced
- LHC bounds easily avoided...

... but PS largely unconstrained

KK, E.M.Sessolo (PRD '21, arXiv: 2012.15200)

minimal SM extension: two <u>different</u> VL leptons + extra scalar

extra assumption: a DM particle and a symmetry to stabilize it

 $\mathcal{L}_{\rm NP} \supset \left(\mathbf{Y}_{\mathbf{R}} \, \mu_{\mathbf{R}} E' S + \mathbf{Y}_{L} \, F' S^{\dagger} l_{\mu} + \mathbf{Y}_{1} \, E \, h^{\dagger} F + \mathbf{Y}_{2} \, F' h \, E' + \text{H.c.} \right)$

Minimally coupled to QG above the Planck scale

$$\begin{aligned} \frac{dg_Y}{dt} &= \frac{g_Y^2}{16\pi^2} B_Y - \underline{f_g} \, g_Y \\ \frac{dy_t}{dt} &= \frac{1}{16\pi^2} \left[\frac{9}{2} y_t^2 + C_1 (Y_1^2 + Y_2^2) - \frac{17}{12} g_Y^2 - \frac{9}{4} g_2^2 - 8g_3^2 \right] y_t - \underline{f_y} \, y_t \\ \frac{dY_1}{dt} &= \frac{1}{16\pi^2} \left[3y_t^2 + C_3 \, Y_2^2 + \frac{5}{2} C_1 \, Y_1^2 + C_6 \, Y_L^2 + C_7 \, Y_R^2 - G_Y \, g_Y^2 - G_2 \, g_2^2 \right] Y_1 - f_y \, Y_1 \\ \frac{dY_2}{dt} &= \frac{1}{16\pi^2} \left\{ \left[3y_t^2 + \frac{5}{2} C_1 \, Y_2^2 + C_3 \, Y_1^2 + C_4 \, Y_L^2 + \frac{1}{2} Y_R^2 - G_Y \, g_Y^2 - G_2 \, g_2^2 \right] Y_2 + C_5 \, y_\mu \, Y_L \, Y_R \right\} - f_y \, Y_2 \\ \frac{dY_L}{dt} &= \frac{1}{16\pi^2} \left\{ \left[C_4 \, Y_2^2 + C_6 \, Y_1^2 + C_8 \, Y_L^2 + C_9 \, Y_R^2 + \frac{1}{2} y_\mu^2 - H_Y \, g_Y^2 - H_2 \, g_2^2 \right] Y_L + C_5 \, y_\mu \, Y_R \, Y_2 \right\} - f_y \, Y_L \\ \frac{dY_R}{dt} &= \frac{1}{16\pi^2} \left\{ \left[Y_2^2 + 2 \, C_7 \, Y_1^2 + 2 \, C_9 \, Y_L^2 + C_{10} \, Y_R^2 + y_\mu^2 - J_Y \, g_Y^2 - J_2 \, g_2^2 \right] Y_R + 2 \, C_5 \, y_\mu \, Y_L \, Y_2 \right\} - f_y \, Y_R \, Y_2 \end{aligned}$$

Kamila Kowalska

KK, E.M.Sessolo (PRD '21, arXiv: 2012.15200)

IR predictions

	$Y_L(Q_0)$	$Y_R(Q_0)$	$Y_1(Q_0)$	$Y_2(Q_0)$
M_1	0.21	0.91	0.62	9×10^{-4}
M_2	0.65	0.59	0.03	6×10^{-4}
M_3	0.01	0.77	0.18	3×10^{-5}
M_6	0.04	0.78	0.65	9×10^{-5}
M_{10}	0.98	0.87	0.03	1×10^{-3}

M1

free parameters: m_S, m_E, m_F

 $m_{\rm S}=100~{\rm GeV}$

S = (1,0), E = (1,1), F = (2,-1/2)

100.

 $h^2 \approx 0.12$

1) Fundamentally different and testable signatures.

Entirely consequence of asymptotic safety.

2) Relevant parameters constrained.

 $1. \times 10^{3}$

Ωh²≈0.12

S = (1, -1), E = (1, 0), F = (2, 1/2)No DM

M2

ATLAS 2l exc.

Other BSM predictions can be made...

• anomalies in $b \rightarrow s$

KK, E.M.Sessolo, Y.Yamamoto, Eur.Phys.J.C 81 (2021) 4, 272

A.Chikkaballi, W. Kotlarski, KK, D.Rizzo, E.M.Sessolo, JHEP 01 (2023) 164

• anomalies in $b \rightarrow c$

KK, E.M.Sessolo, Y.Yamamoto, Eur.Phys.J.C 81 (2021) 4, 272

neutrino masses

KK, S.Pramaick, E.M.Sessolo, JHEP 08 (2022) 262

A.Chikkaballi, KK, E.M.Sessolo, arXiv: 2308.06114

• dark matter, baryon number, ALPs, GWs

see eg. Reichert, Smirnov, 1803.04027; Grabowski, Kwapisz, Meissner, 1810.08461; Hamada, Tsumura, Yamada, 2002.03666, Eichhorn, Pauly, 2005.03661; de Brito, Eichhorn, Lino dos Santos, 2112.08972, Boos, Carone, Donald, Musser, 2206.02686, 2209.14268, Eichhorn, dos Santos, Miqueleto, 2306.17718,

Predictions for NP - assumptions

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

1-loop matter RGEs
Planck scale set at 10¹⁹ GeV
Gravity parameters *f* are constant
Gravity decouples instantaneously

Predictions for NP - assumptions

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

1-loop matter RGEs
Planck scale set at 10¹⁹ GeV
Gravity parameters *f* are constant
Gravity decouples instantaneously

But in FRG:

eg. EH truncation, α =0, β =1 g.f A. Eichhorn, F. Versteegen, JHEP 01 (2018) 030

$$f_g(t) = \tilde{G}(t) \frac{1 - 4\tilde{\Lambda}(t)}{4\pi \left(1 - 2\tilde{\Lambda}(t)\right)^2}$$

Let's drop the assumptions...

Uncertainties – gauge sector

Original setup

 g_Y

-ge

60

 $Log_{10}[\mu/GeV]$

get f_q

 g_d

preditct

80

100

12

120

 $M_{\rm PL}$

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

different f_q (t)

0.50

20

40

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

(due to the universality of QG)

Uncertainties – Yukawa sector

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

 $\frac{2 - Yukawa system}{(1)}$

$$\frac{dy_1}{dt} = \frac{y_1}{16\pi^2} \left(a_1^{(1)} y_1^2 + a_2^{(1)} y_2^2 - a'^{(1)} g_1^2 + \sum_{n \ge 2} \Pi_n^{(1)} \right) - y_1 f_y(t)$$
$$\frac{dy_2}{dt} = \frac{y_2}{16\pi^2} \left(a_1^{(2)} y_1^2 + a_2^{(2)} y_2^2 - a'^{(2)} g_1^2 + \sum_{n \ge 2} \Pi_n^{(2)} \right) - y_2 f_y(t)$$

The FP ratio y_2 to y_1 depends on FP of other couplings

$$\frac{y_2^*}{y_1^*}(1 \text{ loop}) \approx \left[\frac{\left(a_1^{(2)} - a_1^{(1)}\right) + \left(a'^{(1)} - a'^{(2)}\right)g_1^{*2}/y_1^{*2}}{a_2^{(1)} - a_2^{(2)}} + \frac{\left(a_1^{(2)} - a_1^{(1)}\right)\delta y_1^{*2} + \left(a'^{(1)} - a'^{(2)}\right)\delta g_1^{*2}}{y_1^{*2}(a_2^{(1)} - a_2^{(2)})}\right]^{1/2}$$

Uncertainties – Yukawa sector

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

 $(1) \qquad (1)$

$$\frac{dy_1}{dt} = \frac{y_1}{16\pi^2} \left(a_1^{(1)} y_1^2 + a_2^{(1)} y_2^2 - a'^{(1)} g_1^2 + \sum_{n \ge 2} \Pi_n^{(1)} \right) - y_1 f_y(t)$$
$$\frac{dy_2}{dt} = \frac{y_2}{16\pi^2} \left(a_1^{(2)} y_1^2 + a_2^{(2)} y_2^2 - a'^{(2)} g_1^2 + \sum_{n \ge 2} \Pi_n^{(2)} \right) - y_2 f_y(t)$$

 $Log_{10}[\mu/GeV]$

The FP ratio y_2 to y_1 depends on FP of other couplings

Kamila Kowalska

Uncertainties – Yukawa sector

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo 1.0 2-Yukawa system EPJC '23, arXiv: 2304.08959 $M_{\rm PL}$ 0.8 $\frac{dy_1}{dt} = \frac{y_1}{16\pi^2} \left(a_1^{(1)} y_1^2 + a_2^{(1)} y_2^2 - a'^{(1)} g_1^2 + \sum_{n \ge 2} \Pi_n^{(1)} \right) - y_1 f_y(t)$ preditct 0.6 $\frac{dy_2}{dt} = \frac{y_2}{16\pi^2} \left(a_1^{(2)} y_1^2 + a_2^{(2)} y_2^2 - a'^{(2)} g_1^2 + \sum_{n=0}^{\infty} \Pi_n^{(2)} \right) - y_2 f_y(t)$ $y_{v} = y_2$ 0.4 $y_t = y_1$ get f The FP ratio y_2 to y_1 depends on FP of other couplings 0.2 100 120 20 40 60 80 $Log_{10}[\mu/GeV]$ shift due to the running f_a , f_v fixed f_a and f_v $\frac{y_2^*}{y_1^*}(1 \text{ loop}) \approx \left[\frac{\left(a_1^{(2)} - a_1^{(1)}\right) + \left(a'^{(1)} - a'^{(2)}\right)g_1^{*2}/y_1^{*2}}{a_2^{(1)} - a_2^{(2)}} + \frac{\left(a_1^{(2)} - a_1^{(1)}\right)\delta y_1^{*2} + \left(a'^{(1)} - a'^{(2)}\right)\delta g_1^{*2}}{y_1^{*2}(a_2^{(1)} - a_2^{(2)})}\right]^{1/2}$ different f_a (t) eg. LQ S₃ model: 0.8 $\mathcal{L} \supset -Y_{\mathrm{LO}} Q^T \tilde{\epsilon} S_3 L + \mathrm{H.c.}$... but not so much in FRG 0.6 0.4... IR focusing helps 0.2 **PREDICTION UNSTABLE ... δy** ≤ 20% 0.010 20 5 15 25 30 $Log_{10}[\mu/GeV]$

Kamila Kowalska

Conclusions

- Trans-Planckian AS is a **very predictive UV framework.** Applications for SM and NP.
- **AS predictions** in the **gauge sector** are **stable** under higherorder corrections and running of the gravity parameters.
- Uncertainties of the AS predictions in the Yukawa sector do not exceed 20%.
- Flavor anomalies, *g-2* anomaly, dark matter, etc. can lead to very **testable signatures**.