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1. Introduction

Our aim: provide new noncommutative (NC) model of quantum-deformed relativis-

tic phase space, selfdual under the generalization of standard Born map (x̂µ → p̂µ, p̂µ → −x̂µ)

Snyder model

(x̂µ, M̂µν) (µ,ν = 0,1,2,3)

(o(4,1) algebra basis M̂AB)

Born
ÐÐÐÐ→
map

Yang model

(x̂µ, p̂µ, M̂µν), Î ∼ ô(2)

(o(5,1) algebra M̂KL)

↓
κ-extension

(2020)
↓

double κ-extension

(new)

κ-deformation of

Snyder model

(modified o(4,1)

algebra basis M̂AB)

(A,B=0,1,2,3,4)

generalized
ÐÐÐÐÐÐÐÐÐ→

Born map

doubly κ-deformed

Yang model

(modified o(5,1)

algebra basis M̂KL)

(K,L=0,1,2,3,4,5)
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The appearance of deformation parameters (c = h̵ = 1)

Snyder model

one deformation parameter

M ([M] = L−1)

ÐÐ→

Yang model

two deformation parameters

M,R ([R] = L)

↓ ↓

κ-deformed

Snyder model

M,κ ([κ] = L−1)

normalized fourvector aµ

aµaµ
= ϵ ϵ = 0,±1

ÐÐ→

doubly κ-deformed

Yang model

M,R,κ, κ̃ ([κ̃] = L−1)

two independent normalized

fourvectors aµ, bµ
bµbµ = ϵ̃ ϵ̃ = 0,±1

κ← standard κ-deformation of curved quantum space-time

κ̃← κ̃-deformation of curved quantum fourmomentum space

(both related with Born duality, not Hopf-algebraic duality)
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2. Snyder and κ-deformed Snyder model

i) Snyder model (x̂µ, M̂µν)

[M̂µν, M̂ρτ ] = i(ηµρM̂ντ − ηµτM̂νρ + ηντM̂µρ − ηνρM̂µτ)

[M̂µν, x̂ρ] = i(ηµρx̂ν − ηνρx̂µ)

[x̂µ, x̂ν] =
i

M2M̂µν

These relations are described by classical ô(4,1) algebra MAB = (M̂µν, M̂4ν) if

M̂4µ =Mx̂µ

and we get (A,B = 0,1,2,3,4)

[M̂AB, M̂CD] = i(ηACM̂BD − ηADM̂BC + ηBDM̂AC − ηBCM̂AD)
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Snyder phase space (x̂µ, pν) (not Born-selfdual)

[pµ, pν] = 0

[M̂µν, pρ] = i(ηµρpν − ηνρpµ)

[x̂µ, pν] = ηµν [F (
p2

M2) −
pµpν

M2 G (
p2

M2)] (F (0) = 1)

From Jacobi identity one can derive the linear differential equation linking functions

F and G (Battisti, Meljanac 2007).

ii) κ-deformed Snyder model (Meljanac, Mignemi 2020)

[M̂µν, M̂ρτ ] = i(ηµρM̂ντ − ηµτM̂νρ + ηντM̂µρ − ηνρM̂µτ)

[M̂µν, x̂ρ] = i(ηµρx̂ν − ηνρx̂µ) +
i
κ
(aµM̂ρν − aνM̂ρµ)

[x̂µ, x̂ν] =
i

M2M̂µν +
i
κ
(aµx̂ν − aνx̂µ)

- If M →∞, κ finite Ð→ κ-deformed Minkowski space-time x̂µ

- If κ→∞, M finite Ð→ standard Snyder model
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3. Yang models by Born-selfdual extensions of Snyder models

Born duality implies adding the second Born-dual parameter R and selfdual gen-

erator Î

[x̂µ, x̂ν] =
i

M2
M̂µν

B
←→ [p̂µ, p̂ν] =

i

R2
M̂µν

[x̂µ, p̂ν] =
i

MR
ηµν Î (Î-internal ô(2))

[Î, x̂µ] =
i

M2
p̂µ

B
←→ [Î, p̂µ] = −

i

R2
x̂µ.

If

M̂µ4 =Mx̂µ, M̂µ5 =Rp̂µ, M̂45 =MRÎ

the five relations defining Yang model are described as ô(5,1) algebra (K,L = 0,1, . . . ,5)

[M̂KL, M̂PR] = i(ηKPM̂LR − ηKRM̂PL + ηLRM̂KP − ηPLM̂KR)
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4. Doubly κ-deformed Yang models as the Born-selfdual exten-
sion of κ-deformed Snyder models

We define generalized Born map by the relations (M̂µν, Î) - Born selfdual

x̂µ
B
←→ p̂µ, p̂µ

B
←→ −x̂µ, M̂µν

B
←→ M̂µν, Î

B
←→ Î

M
B
←→R, aµ

B
←→ bµ κ

B
←→

1

κ̃
, [L]

B
←→ [L−1]

where (bµ, κ̃) determine new κ̃-deformation in curved fourmomenta sector. We get

the following set of additional commutators (besides the ones defining κ-deformed

Snyder model)

[M̂µν, p̂ρ] = i [ηµρp̂ν − ηνρp̂µ + κ̃(bµM̂ρν − bνM̂ρµ)]

[p̂µ, p̂ν] = i [
1

R2
Mµν + κ̃(bµp̂ν − bνp̂µ)]

and using Jacobi identities one gets the set of the relations

[x̂µ, p̂ν] = i(ηµν Î + κ̃bµx̂ν −
aν

κ
p̂µ +

ρ

MR
M̂µν)

[Î, x̂µ] = i(
1

M2
p̂µ −

1

MR
ρx̂µ −

aµ

κ
Î) [Î, p̂µ] = i(−

1

R2
x̂µ +

1

MR
ρp̂µ −κbµÎ)

[Î, M̂µν] = i [κ̃bµx̂ν − κ̃bνx̂µ −
aµ

κ
p̂ν +

aν

κ
p̂µ]
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Our algebra has five parameters

M,R,κ, κ̃,ρ ([M] = L−1, [R] = L, [κ] = L−1, [κ̃] = L−1, [ρ] = L0)

and two normalized dimensionless fourvectors aµ, bµ
(aµaµ

= 1 - standard, aµaµ
= −1 - tachyonic, aµaµ

= 0- light cone κ-deformations).

The additional dimensionless parameter ρ permits to introduce the following two

cases:

i) ρ = 0 ⇒ standard doubly κ-deformed Yang model

ii) ρ ≠ 0 ⇒ one getsdoubly κ-deformed TSR model (Triply Special Relativity)

(Kowalski-Glikman, Smolin 2004)

One gets the following assignement of coset and subalgebra generators

ô(5,1)

ô(3,1)⊗ ô(2)
→ (x̂µ, p̂µ) ô(3,1)⊗ ô(2)→ (Mµν, I).

If we generalize ô(5,1)→ ô(3 + 2n,1), one can obtain (i = 1,2 . . .n)

ô(3 + 2n,1)

ô(3,1)⊗ ô(n)
→ (x̂µ;i, p̂µ;i) ô(3,1)⊗ ô(n)→ (Mµν, Iij).

where ô(n) describes the algebra of internal symmetries (this is Kaluza-Klein exten-

sion of standard Yang model).
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5. Algebraic descriptions of doubly κ-deformed Yang models by
particular choice of nonstandard o(5,1) basis

i) κ-deformed Snyder model described by ô(4,1;gAB)

ô(4,1;gAB) ∶ [M̂AB, M̂CD] = i(gACM̂BD − gADM̂BC + gBDM̂AC − gBCM̂AD)

Because M̂AB = L0, gAB are also zero-dimensional ([gAB] = L0
).

One gets the description of κ-deformed Snyder algebra by ô(4,1;gAB) if we choose

M̂4µ =Mx̂µ and

G(5) = gAB = (
ηµν

M
κ
aµ

M
κ
aν 1

)

The 5×5 metric tensor G(5) can be described by the formula

G(5) = S(5)η(S(5))�

where (Meljanac, Mignemi 2021)

S(5) = gAB = (
δµν

M
κ
aµ

0 1
)

The upper-triangular matrix S(5) maps the algebra ô(4,1;ηAB) into ô(4,1;gAB).
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ii) Doubly κ-deformed Yang model described by ô(5,1;gKL) Lie algebra

is obtained from ô(5,1) = ô(5,1;ηKL) if we replace the metric tensor

ηKL = diag(−1,1,1,1,1,1) by the symmetric 6 × 6-dimensional metric tensor gKL

ô(5;1;gKL) ∶ [M̂KL, M̂PR] = i(gKPM̂LR − gKRM̂LP + gLRM̂KP − gLPM̂KR)

where gKL are the zero-dimensional ([gKL] = L0
) functions of the parameters

M,R,κ, κ̃,aµ, bµ and ρ. In order to get the algebraic structure of doubly κ-

deformed Yang models the basic operators (M̂µν, x̂µ, p̂µ, Î) we relate with M̂KL as

follows

M̂KL = (M̂µν, M̂4µ =Mx̂µ, M̂5µ =Rq̂µ, M̂45 =RMÎ )

It appears that we should choose

G(6) = gKL =

⎛

⎜
⎜

⎝

ηµν
M
κ
aµ Rκ̃bµ

M
κ
aν 1 ρ

Rκ̃bν ρ 1

⎞

⎟
⎟

⎠
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For any nondegenerate symmetric matrix G(6), with signature described by diagonal

matrix η = ηKL one can find 6 × 6-dimensional matrix S(6) which satisfies the relation

G(6) = S(6)η(6)(S(6))T and maps M̂
(g)

KL
into M

(η)

KL
in the following way

M̂
(g)

KL
= (SM̂(η)ST )KL ←→ M̂

(η)

KL
= (S−1M̂(g)(ST )−1)KL.

where M̂
(g)

KL
describes the generators of ô(5,1;gKL) algebra.

The choice of 6×6-dimensional matrix S(6) is valid modulo matrix R describing

arbitrary pseudo-orthogonal 6 × 6 dim. rotations (RηRT
= η). We choose

S(6)
KL
=

⎛

⎜
⎜

⎝

ηµν 0 0
M
κ
aµ a d

Rκ̃bµ c b

⎞

⎟
⎟

⎠

where a,b, c,d satisfy the equations

a2
+ d2

= 1 − M2

κ2 aµaµ

b2
+ c2
= 1 −R2κ̃2bµbµ

ac + bd = ρ − MRκ̃
κ

aµbµ

If we choose d=0 we get for Yang model the matrix S(6)
KL

which is lower triangular.
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6. Outlook

i) Spontaneous symmetry breaking (SSB) in Snyder and Yang type models

The idea of SSB in the models described algebraically by pseudoorthogonal Lie

algebras was discussed by our group in 2022, see e.g.

1) J.L, S. Meljanac, S. Mignemi, A. Pacho l, Quantum perturbative solutions of

extended Snyder and Yang models with SSB, arXiv:2212.02316[hep-th] (v2

September 2023)

2) J.L, A. Pacho l, h̵-perturbative solutions of quantum Snyder and Yang models

wiyh parameters describing SSB, Proceedings of CORFU2022;

arXiv:2307.12379[hep-th]

Quantum Snyder/Yang models: if we introduce explicit h̵-dependence and con-

sider perturbative solutions as h̵-power series.
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Perturbative solutions of Snyder model as h̵-power expansions look as follows:

MAB =M
(0)

AB
+ h̵M

(1)

AB
+ h̵2M

(2)

AB
+⋯

where (A,B = 0,1 . . .4)

M
(0)

AB
=XAB = −XBA (zero order term in h̵-expansion)

Main observation: XAB are the Nambu-Goldstone (NG) parameters which describe

SSB of ten one-dimensional o(2) (o(1,1)) symmetries in ten planes (A,B) of D = 4

dS space, with symmetries generated by single generators M̂AB.

If we supplement tensorial momenta PAB canonically dual to XAB

[XAB,PCD] = ih̵(ηACηBD − ηADηBC)

one can solve perturbatively the coefficients M̂
(n)

AB
as functions of XAB,PCD, which

are n-linear in PCD. In iterative solutions o M̂
(n)

AB
the variables XAB describe the free

parameters (input) in calculation of the h̵-perturbative solutions of Snyder model.
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Our plan is to show that one can introduce also the SSB and NG parameters by using

the h̵-perturbative solutions of κ-deformed Snyder models and doubly κ-deformed

Yang models.

ii) Quantum-deformed Snyder and Yang models

The algebraic structure of Snyder model is the following

[M,M ] ∼M, [M,X] ∼X, [X,X] ∼M (A)

where M are Lorentz generators and X describe quantum dS space-time.

In standard Snyder model one can introduce primitive coproducts ∆0(X) and

∆0(M), satisfying homomorphic coalgebraic realization of the relations (A).

One can pass however to quantum-deformed Snyder models described by quantum

ôq
(4,1) Hopf algebra, with nonprimitive coproducts ∆(X) and ∆(M). First task

is to consider M as the Hopf subalgebra, i.e assume that

[∆(M),∆(M)] ∼∆(M).

Further we should extend Snyder algebraic structure (see (A)) by adding the

commutators of nonprimitive coproducts ∆(X).
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Interestingly, for D=4 dS quantum algebras the Lorentz Hopf subalgebras have been

recently classified, see

A. Ballesteros, I. Gutierrez-Sagredo, F. Herranz, Noncommutative (A)dS and Minkowski

spacetimes from quantum Lorentz subgroups, arXiv: 2108.02683 [math-ph]

One gets that

∆(M) = F −1∆0(M)F

where F is the twist generated by explicitly provided triplet of classical triangular

r-matrices describing the deformations of D=4 Lorentz algebra.

Further goal is to calculate ∆(X) and see how the relations

[∆0(X),∆0(X)] ∼∆(M), [∆0(M),∆0(X)] ∼∆(X)

are modified for the possible pairs of D=4 dS quantum algebras and their D=4

Lorentz quantum subalgebras.

Passing to quantum-deformed Yang models requires analogous considerations of

quantum ô(5,1) algebras containing Hopf subalgebras which are spanned by Lorentz

and ô(2) internal symmetry generators (M̂µν, Î).

THANK YOU
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