The $\boldsymbol{\theta}$-angle physics at finite baryon density

Jahmall Bersini
August 29, 2023

Based on: JB, A. D'Alise, F.Sannino, M. Torres, JHEP 11 (2022) 080

The QCD v-angle

$$
\mathcal{L}_{\theta}=\theta \frac{g^{2}}{32 \pi^{2}} F_{a}^{\mu \nu} \tilde{F}_{a \mu \nu}
$$

It leads to CP-symmetry violation.
Chiral transformations, because of the anomaly, change the θ-term and physics depends only on:

$$
\bar{\theta}=\theta+\mathrm{Arg} \operatorname{det} M
$$

M : quark mass matrix.
Experimentally constrained by measurements of the neutron electric dipole moment:

$$
\bar{\theta}<10^{-10}
$$

STRONG CP PROBLEM

QCD Thermodynamics

QCD at finite baryon density and temperature.

Many phases: QGP, color superconductivity...

This talk: θ-angle physics at finite baryon density in two-color QCD.

Motivations

Understand the QCD phase diagram at finite density and θ-angle.

Focus on the SSB of CP symmetry at $\theta=\pi$.

Understand cosmological phase transitions from nonzero to zero θ.

Finite density QCD cannot be efficiently studied on lattice due to the sign problem: the determinant of the Dirac operator is not real.

Two-color QCD: no sign problem thanks to the pseudo-reality of the quark representations. Similar to QCD at finite isospin density (work in progress!).

Two-color QCD

Two-color QCD exhibits an enhanced $\mathrm{U}\left(2 \mathrm{~N}_{\mathrm{f}}\right)$ symmetry, as compared to the $\mathrm{U}\left(\mathrm{N}_{\mathrm{f}}\right) \mathrm{xU}\left(\mathrm{N}_{\mathrm{f}}\right)$ chiral symmetry of QCD.

In fact, thanks to the pseudoreality of the two-color Dirac operator the quark fields q_{L} and $\sigma_{2} T_{2} q_{R}{ }^{*}$ transform in the same color representation. Hence we can introduce

$$
\mathcal{Q}=\binom{q_{L}}{i \sigma_{2} \tau_{2} q_{R}^{*}} \quad E=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \times \mathbf{1}_{N_{f}}
$$

and write the Lagrangian as

$$
\mathcal{L}=-\frac{1}{4 g^{2}} \vec{G}_{\mu \nu} \cdot \vec{G}^{\mu \nu}+i \overline{\mathcal{Q}} \bar{\sigma}^{\nu}\left[\partial_{\nu}-i \vec{G}_{\nu} \cdot \frac{\vec{\tau}}{2}\right] \mathcal{Q}-\frac{1}{2} m_{q} \mathcal{Q}^{T} \tau_{2} E \mathcal{Q}+\text { h.c. }
$$

In this form the $\mathrm{U}\left(2 \mathrm{~N}_{\mathrm{f}}\right)$ symmetry becomes manifest. The symmetry is broken to $\operatorname{SU}\left(2 \mathrm{~N}_{f}\right)$ by the ABJ anomaly. The baryon charge is one of the generators of $\operatorname{SU}\left(2 \mathrm{~N}_{\mathrm{f}}\right)$ and baryons are diquark.

Two-color chiral Lagrangian

The infrared dynamics of the theory can be described by the following chiral Lagrangian

$$
\mathcal{L}_{\mathrm{eff}}=\nu^{2} \operatorname{Tr}\left\{\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right\}+m_{\pi}^{2} \nu^{2} \operatorname{Tr}\left\{M \Sigma+M^{\dagger} \Sigma^{\dagger}\right\}
$$

The chiral symmetry breaking is $\mathrm{SU}\left(2 \mathrm{~N}_{\mathrm{f}}\right) \rightarrow \mathrm{Sp}\left(2 \mathrm{~N}_{\mathrm{f}}\right)$.
For the sake of simplicity, we consider a democratic mass matrix

$$
M=-i \sigma_{2} \otimes \mathbf{1}_{N_{f}}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{N_{f}}
$$

and introduce the chemical potential μ in the covariant derivative as:

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}-i \mu \delta_{\mu}^{0} B, \quad B \equiv\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right) \otimes \mathbf{1}_{N_{f}}
$$

Adding the θ-angle

We introduce the topological charge: $q(x)=\frac{g^{2}}{64 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}$

$$
\mathcal{L}_{q(x)}=\frac{i}{4} q(x) \operatorname{Tr}\left[\log \Sigma-\log \Sigma^{\dagger}\right]-\theta q(x)+\frac{q(x)^{2}}{4 a \nu^{2}}
$$

The coefficient of the quadratic term is the topological susceptibility of the Yang-Mills theory. The coefficients reproduce the axial anomaly:

$$
\partial_{\mu} J_{5}^{\mu}=4 N_{f} q(x)
$$

We can integrate out $q(x)$ via its EOM to get

$$
\begin{aligned}
\mathcal{L}_{\theta}= & \nu^{2} \operatorname{Tr}\left\{\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right\}+4 \mu \nu^{2} \operatorname{Tr}\left\{B \Sigma^{\dagger} \partial_{0} \Sigma\right\}+m_{\pi}^{2} \nu^{2} \operatorname{Tr}\left\{M \Sigma+M^{\dagger} \Sigma^{\dagger}\right\} \\
& +2 \mu^{2} \nu^{2}\left[\operatorname{Tr}\left\{\Sigma B^{T} \Sigma^{\dagger} B\right\}+\operatorname{Tr}\{B B\}\right]-a \nu^{2}\left(\theta-\frac{i}{4} \operatorname{Tr}\left\{\log \Sigma-\log \Sigma^{\dagger}\right\}\right)^{2}
\end{aligned}
$$

Vacuum structure

In the absence of the θ-angle we can look for a ground state of the form

$$
\Sigma_{c}=\left(\begin{array}{cc}
0 & \mathbf{1}_{N_{f}} \\
-\mathbf{1}_{N_{f}} & 0
\end{array}\right) \cos \varphi+i\left(\begin{array}{cc}
\mathcal{I} & 0 \\
0 & \mathcal{I}
\end{array}\right) \sin \varphi \quad \mathcal{I}=\left(\begin{array}{cc}
0 & -\mathbf{1}_{N_{f} / 2} \\
\mathbf{1}_{N_{f} / 2} & 0
\end{array}\right)
$$

Competition of mass and baryon chemical potential (chiral and diquark condensates).

To take into account the θ-angle: we introduce the Witten variables α_{i}
$\Sigma_{0}=U\left(\alpha_{i}\right) \Sigma_{c}, \quad U\left(\alpha_{i}\right) \equiv \operatorname{diag}\left\{e^{-i \alpha_{1}}, \ldots, e^{-i \alpha_{N_{f}}}, e^{-i \alpha_{1}}, \ldots, e^{-i \alpha_{N_{f}}}\right\}$
Each phase α_{i} is an overall axial transformation for each left-right quark pair.

Vacuum structure

The Lagrangian evaluated on the vacuum ansatz reads

$$
\begin{aligned}
& \mathcal{L}_{\theta}\left[\Sigma_{0}\right]=\nu^{2}\left[4 m_{\pi}^{2} X \cos \varphi+2 \mu^{2} N_{f} \sin ^{2} \varphi-a \bar{\theta}^{2}\right] \\
& \bar{\theta}=\theta-\sum_{i}^{N_{f}} \alpha_{i}, \quad X=\sum_{i}^{N_{f}} \cos \alpha_{i}
\end{aligned}
$$

The equations of motion are
1 $\sin \varphi\left(N_{f} \cos \varphi-\frac{m_{\pi}^{2}}{\mu^{2}} X\right)=0$
$2 m_{\pi}^{2} \sin \alpha_{i} \cos \varphi=a \bar{\theta}, \quad i=1, . ., N_{f}$

Superfluid phase transition

Consider the first EOM: $\sin \varphi\left(N_{f} \cos \varphi-\frac{m_{\pi}^{2}}{\mu^{2}} X\right)=0$

a

normal phase $(\varphi=0)$

Two solutions:

$$
\text { superfluid phase }\left(\cos \varphi=\frac{m_{\pi}^{2}}{N_{f} \mu^{2}} X\right)
$$

The superfluid phase transition is of the second order and is associated with diquark (baryon) condensation. The energy reads

$$
\begin{aligned}
& \text { An } E=-\nu^{2}\left[4 m_{\pi}^{2} X-a \bar{\theta}^{2}\right], \text { normal phase } \\
& \text { स) } E=-\nu^{2}\left[2 \frac{N_{f}^{2} \mu^{4}+m_{\pi}^{4} X^{2}}{N_{f} \mu^{2}}-a \bar{\theta}^{2}\right], \quad \text { superfluid phase }
\end{aligned}
$$

$\theta=0$: $X=N_{f}$: superfluid phase transition at $\mu=m_{\pi}$.
$\theta \neq 0$: We need to know the θ-dependence in both phases: the energy is minimized when X (normal phase) and X^{2} (superfluid phase) is maximized.

θ-dependence: normal phase

In the normal phase we have the well-known equation

$$
2 m_{\pi}^{2} \sin \alpha_{i}=a \bar{\theta}=a\left(\theta-\sum_{i}^{N_{f}} \alpha_{i}\right)
$$

Then: $\sin \alpha_{i}=\sin \alpha_{j}$. We solve in powers of $\mathrm{m}_{\pi}{ }^{2} / \mathrm{a}$. Leading order:
$\alpha_{i}=\left\{\begin{array}{l}\pi-\alpha, \quad i=1, \ldots, n \\ \alpha, \quad i=n+1, \ldots, N_{f}\end{array} \quad n(\pi-\alpha)+\left(N_{f}-n\right) \alpha=\theta \operatorname{Mod} 2 \pi\right.$
Solution:

$$
\alpha=\frac{\theta+(2 k-n) \pi}{\left(N_{f}-2 n\right)}, \quad k=0, \ldots, N_{f}-2 n-1, \quad n=0, \ldots,\left[\frac{N_{f}-1}{2}\right]
$$

The solutions with $\mathbf{n} \neq 0$ spontaneously break $\operatorname{Sp}\left(2 \mathrm{~N}_{\mathrm{f}}\right)$ because of the different phases for each flavour.

CP symmetry

CP is conserved when $\bar{\theta}=\theta-\sum \alpha_{i}=0$

This happens if:
 $4 m_{\pi}^{2}=0$

For $\theta=\pi$ the Lagrangian is $C P$ invariant. However, the vacua lie at

$$
U\left(\alpha_{i}\right)=e^{\frac{i \pi}{N_{f}}} \mathbf{1}_{2 N_{f}} \quad U\left(\alpha_{i}\right)=e^{-\frac{i \pi}{N_{f}}} \mathbf{1}_{2 N_{f}}
$$

The two solutions are related by a CP transformation $\mathrm{U} \rightarrow \mathrm{U}^{\dagger}$ and thus CP is spontaneously broken by the vacuum.

DASHEN PHENOMENON

R. F. Dashen Phys.Rev.D 3 (1971) 1879-1889

θ-dependence: superfluid phase

In the superfluid phase the equation of motion is

$$
\frac{2 m_{\pi}^{4}}{N_{f} \mu^{2}} X \sin \alpha_{i}=a \bar{\theta}, \quad i=1, . ., N_{f}
$$

In this case the natural expansion parameter is

$$
\frac{m_{\pi}^{4}}{a \mu^{2}}
$$

We now proceed by considering fixed values of \mathbf{N}_{f}.

$N_{f}=2$

At the leading order (in $\mathrm{m}_{\pi}^{2} /$ a or $\mathrm{m}_{\pi}{ }^{4} /\left(\mathrm{a} \mu^{2}\right)$) the EOM is

$$
\alpha_{1}+\alpha_{2}=\theta+2 k \pi \quad \sin \alpha_{1}=\sin \left(\theta+2 k \pi-\alpha_{1}\right)
$$

There are two solutions
的,$\left.\alpha_{2}\right\}=\left\{\frac{\theta}{2}, \frac{\theta}{2}\right\}$ 知, $\left.\alpha_{2}\right\}=\left\{\frac{\theta+2 \pi}{2}, \frac{\theta+2 \pi}{2}\right\}$
The energy is minimized when X (normal phase) or X^{2} (superfluid phase) is maximized:

X (normal phase)

X^{2} (superfluid phase

$\mathrm{N}_{\mathrm{f}}=2$

The energy in the two phases is

$$
\begin{aligned}
& E(\theta)=-8 m_{\pi}^{2} \nu^{2}\left(\left|\cos \frac{\theta}{2}\right|+\frac{1}{2} \frac{m_{\pi}^{2}}{a} \sin ^{2} \frac{\theta}{2}-\frac{1}{4} \frac{m_{\pi}^{4}}{a^{2}}\left|\sin \frac{\theta}{2} \sin \theta\right|\right), \quad \text { normal phase } \\
& E(\theta)=-\nu^{2}\left(\frac{4\left(m_{\pi}^{4} \cos ^{2} \frac{\theta}{2}+\mu^{4}\right)}{\mu^{2}}+\frac{m_{\pi}^{8} \sin ^{2} \theta}{a \mu^{4}}-\frac{m_{\pi}^{12} \sin ^{2} \theta \cos \theta}{a^{2} \mu^{6}}\right), \quad \text { superfluid phase }
\end{aligned}
$$

The superfluid phase transition occurs at

$$
\mu_{c}=m_{\pi}(\theta)=m_{\pi}\left[\sqrt{\left|\cos \frac{\theta}{2}\right|}+\mathcal{O}\left(\frac{m_{\pi}^{2}}{a}\right)\right]
$$

Hence it can be realized for tiny values μ when $\theta \approx \pi$. We have

$$
\mu_{c} \sim m_{\pi} \sqrt{\frac{m_{\pi}^{2}}{a}+\frac{|\phi|}{2}} \quad \theta=\pi+\phi
$$

$\mathrm{N}_{\mathrm{f}}=2$

Normal phase: the solutions cross at $\theta=\pi$ where I have spontaneous breaking of CP symmetry.

$$
\bar{\theta}=\frac{2 m_{\pi}^{2}}{a} \sin \frac{\theta}{2} \underset{\theta=\pi}{=} \frac{2 m_{\pi}^{2}}{a}+\mathcal{O}\left(\frac{m_{\pi}^{6}}{a^{3}}\right)
$$

Superfluid phase: the energy is an analytic function of θ. No spontaneous breaking of CP symmetry at $\theta=\pi$.

$$
\bar{\theta}=\frac{m_{\pi}^{4}}{a \mu^{2}} \sin \theta \underset{\theta=\pi}{=} 0
$$

This is exact to all orders in $\mathrm{m}_{\pi}^{2} / \mathrm{a}$. In fact at $\theta=\pi$ the EOM is

$$
\frac{m_{\pi}^{4}}{a \mu^{2}} \sin (2 \alpha)=\pi-2 \alpha
$$

$N_{f}=3$

We have four solutions:
i. $\left\{\frac{\theta}{3}, \frac{\theta}{3}, \frac{\theta}{3}\right\}, \quad$ ii. $\left\{\frac{\theta+2 \pi}{3}, \frac{\theta+2 \pi}{3}, \frac{\theta+2 \pi}{3}\right\}, \quad$ iii. $\left\{\frac{\theta+4 \pi}{3}, \frac{\theta+4 \pi}{3}, \frac{\theta+4 \pi}{3}\right\}, \quad$ iv. $\{\theta-\pi, \theta-\pi, 2 \pi-\theta\}$

Normal phase: the ground state is given by solutions 1 . and 3 . that cross at $\theta=\pi$ where I have CP SSB.

Superfluid phase: No CP SSB at $\theta=\pi$ but two novel first-order phase transitions at $\theta=\pi / 2,3 \pi / 2$.

The non-minimum solutions represent metastable vacua which can be long-lived. Later we will estimate their decay rate.

General N_{f}

Solutions of the EOM are generally not periodic of 2π for θ.
The periodicity condition can be satisfied only if at least two solutions cross. Consider

$$
U=e^{-i \alpha} \mathbf{1}_{2 N_{f}}
$$

and ask when crossing can happen. We have

$$
\begin{aligned}
\cos \left(\frac{\theta+2 \pi k_{1}}{N_{f}}\right) & =\cos \left(\frac{\theta+2 \pi k_{2}}{N_{f}}\right) \text { normal phase } \\
\cos ^{2}\left(\frac{\theta+2 \pi k_{1}}{N_{f}}\right) & =\cos ^{2}\left(\frac{\theta+2 \pi k_{2}}{N_{f}}\right) \quad \text { superfluid phase }
\end{aligned}
$$

Near $\theta=0$ the ground state is $k_{1}=0$.
Both conditions can be satisfied at $\theta=\pi$. For $k_{1}=0$ we have $k_{2}=N_{f}-1$.
In the normal phase there is only this solution.

Superfluid phase: even N_{f}

In the superfluid phase we have other solutions.
When N_{f} is even we have the solution: $k_{1}=k_{2}+N_{f} / 2$
Which does not depend on θ : the solutions organize themselves in pairs (α and $\alpha+\pi$) with the same energy for every θ. This holds to all orders in m_{π}^{2} / a. In fact given the EOM for a certain α :

$$
\frac{m_{\pi}^{4}}{a \mu^{2}} \sin (2 \alpha)=\theta-N_{f} \alpha
$$

we have the same EOM for $\alpha+\pi$ upon shifting $\theta \rightarrow \theta+N_{F} \pi$.
Then given the general solution
$\alpha=\frac{\theta+(2 k-n) \pi}{\left(N_{f}-2 n\right)}, \quad k=0, \ldots, N_{f}-2 n-1, \quad n=0, \ldots,\left[\frac{N_{f}-1}{2}\right]$
The ground state has $\mathrm{n}=\mathrm{k}=0$ on $(0, \pi)$ and $\mathrm{n}=0, \mathrm{k}=\mathrm{N}_{\mathrm{f}}-1$ on $(\pi, 2 \pi)$ along with their degenerate partners. SSB of CP at $\theta=\pi$ except for $\mathrm{N}_{\mathrm{f}}=2$.

Superfluid phase: odd N_{f}

 In the superfluid phase we have other solutions.When N_{f} is odd we have the solution $k_{1}=N_{f} / 2-k_{2}-\theta / \pi$
It can be realized for $\theta=\pi / 2$ and $\theta=3 \pi / 2$.
The ground state is:

$$
\begin{array}{ll}
\alpha=\theta / N_{f} & (0, \pi / 2) \\
\alpha=\pi+(\theta-\pi) / N_{f} & (\pi / 2,3 \pi / 2) \\
\alpha=(\theta-2 \pi) / N_{f} & (3 \pi / 2,2 \pi)
\end{array}
$$

No spontaneous symmetry breaking of CP at $\theta=\pi$.
Two novel first order phase transitions at $\theta=\pi / 2$ and $\theta=3 \pi / 2$.

Domain walls

The tension of the domain wall between the two degenerate vacua at $\theta=\pi$ for even N_{f} in the superfluid phase reads
$T=2 \nu^{2} \int_{-\infty}^{\infty} d x\left[\left(N_{f}-1\right) N_{f} \alpha^{\prime}(x)^{2}-\frac{m_{\pi}^{4}}{\mu^{2} N_{f}}\left(\left(N_{f}-1\right) \cos \left(\alpha(x)+\frac{\pi}{N_{f}}\right)+\cos \left(\frac{\pi}{N_{f}}-\left(N_{f}-1\right) \alpha(x)\right)\right)^{2}\right]$
Regardless of the exact form of the wall's profile, its tension scales as

$$
T \sim \frac{\nu^{2} m_{\pi}^{2}}{\mu}
$$

To be compared with $T \sim \nu^{2} m_{\pi}$ in the normal phase. [A. V. Smilga, Phys.Rev.D 59, 114021 (1999)]

The decay rate of the metastable vacua near $\theta=\pi$ is

$$
\Gamma \propto \exp \left(-C \frac{T^{4}}{m_{\pi}^{6} \nu^{6}|\phi|^{3}}\right) \sim \begin{aligned}
& \sim \exp \left(-\frac{\nu^{2}}{m_{\pi}^{2}|\phi|^{3}}\right) \\
& \\
& \sim \exp \left(-\frac{\nu^{2} m_{\pi}^{2}}{\mu^{4}|\phi|^{3}}\right)
\end{aligned}
$$

Here C is a positive constant and $\theta=\pi+\phi$.

Symmetry breaking pattern

$$
U\left(2 N_{f}\right) \rightarrow S U\left(2 N_{f}\right) \underset{\text { ANOMALY }}{\rightarrow} S p\left(2 N_{f}\right)
$$

We have $2 N_{f}^{2}-N_{f}-1$ (pseudo)Goldstone modes from the XSB plus the „anomalous" singlet with a mass of order a.

$$
\begin{array}{cc}
\mathrm{m}_{\pi}=0 & \underset{\mu}{S p\left(2 N_{f}\right) \rightarrow S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \times U(1)_{B} \rightsquigarrow} \underset{\operatorname{VACUUM}}{ } \operatorname{Sp(N_{f})_{L}\times Sp(N_{f})_{R}}
\end{array}
$$

We have $N_{f}^{2}-N_{f}-1$ massless Goldstone modes while the other modes get a mass of order μ.

$$
\begin{array}{ccc}
\mathrm{m}_{\pi} \neq 0 & S p\left(2 N_{f}\right) \rightarrow S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \times U(1)_{B} \rightarrow S U\left(N_{f}\right)_{V} \times U(1)_{B} \rightarrow S p\left(N_{f}\right)_{V} \\
\mu & \mathrm{~m}_{\pi} & \text { VACUUM }
\end{array}
$$

We have $\frac{1}{2} N_{f}\left(N_{f}-1\right)$ massless Goldstone modes.

Spectrum

$$
\begin{array}{l|l}
\omega_{1}^{2}=k^{2}+\mu^{2} & \frac{1}{2} N_{f}\left(N_{f}+1\right) \\
\omega_{2}^{2}=k^{2}+\frac{m_{\pi}^{4} X^{2}}{\mu^{2} N_{f}^{2}} & \frac{1}{2} N_{f}\left(N_{f}-1\right)-1 \\
\omega_{3}^{2}=k^{2}+\frac{2\left(\mu^{4} N_{f}^{2}+3 m_{\pi}^{4} X^{2}\right)}{N_{f}^{2} \mu^{2}}+A & \frac{1}{2} N_{f}\left(N_{f}-1\right) \\
\omega_{4}^{2}=k^{2}+\frac{2\left(\mu^{4} N_{f}^{2}+3 m_{\pi}^{4} X^{2}\right)}{N_{f}^{2} \mu^{2}}-A & \frac{1}{2} N_{f}\left(N_{f}-1\right) \\
\omega_{5}^{2}=k^{2}+M_{S}^{2} & 1
\end{array}
$$

$\mathrm{Sp}\left(\mathrm{N}_{\mathrm{f}}\right)$ representations
$A=\frac{2}{N_{f}^{2} \mu^{2}} \sqrt{\left(N_{f}^{2} \mu^{4}+3 m_{\pi}^{4} X^{2}\right)^{2}+4 N_{f}^{2} \mu^{2} m_{\pi}^{4} X^{2} k^{2}}$
$M_{S}^{2}=\frac{a \mu^{4} N_{f}^{3}+2 \mu^{2} m_{\pi}^{4} X^{2}}{2 \mu^{4} N_{f}^{2}-2 m_{\pi}^{4} X^{2}}\left(1-\frac{m_{\pi}^{4} X^{2}}{\mu^{2} N_{f}^{2}}\right)$

\square

O

Spectrum

$\omega_{1}^{2}=k^{2}+\mu^{2}$
$\omega_{2}^{2}=k^{2}+\frac{m_{\pi}^{4} X^{2}}{\mu^{2} N_{f}^{2}}$
$\omega_{3}^{2}=k^{2}+\frac{2\left(\mu^{4} N_{f}^{2}+3 m_{\pi}^{4} X^{2}\right)}{N_{f}^{2} \mu^{2}}+A$
$\omega_{4}^{2}=k^{2}+\frac{2\left(\mu^{4} N_{f}^{2}+3 m_{\pi}^{4} X^{2}\right)}{N_{f}^{2} \mu^{2}}-A$
$\omega_{5}^{2}=k^{2}+M_{S}^{2}$

0

The number of d.o.f sum to $\operatorname{dim}\left(\frac{U\left(2 N_{f}\right)}{S p\left(2 N_{f}\right)}\right)=N_{f}\left(2 N_{f}-1\right)$
ω_{4} describes Goldstone modes with speed $v_{G}=1$.
For $m_{\pi}=0, \omega_{2}$ describes Goldstone modes with speed $v_{G}=1$.

The η^{\prime}

The $\operatorname{Sp}\left(\mathrm{N}_{\mathrm{f}}\right)$ singlet with dispersion relation

$$
\omega_{5}^{2}=k^{2}+M_{S}^{2} \quad M_{S}^{2}=\frac{a \mu^{4} N_{f}^{3}+2 \mu^{2} m_{\pi}^{4} X^{2}}{2 \mu^{4} N_{f}^{2}-2 m_{\pi}^{4} X^{2}}\left(1-\frac{m_{\pi}^{4} X^{2}}{\mu^{2} N_{f}^{2}}\right)
$$

is analogous to the η ' meson of QCD.
For $\mathrm{m}_{\pi}=0$ its mass is: $M_{S}^{2}=\frac{a N_{f}}{2}$
At the same time, the topological susceptibility is: $\left.\frac{d^{2} E}{d \theta^{2}}\right|_{\theta=0}=2 \nu^{2} a$
We, therefore, have

$$
M_{S}^{2}=\left.\frac{N_{f}}{4 \nu^{2}} \frac{d^{2} E}{d \theta^{2}}\right|_{\theta=0}
$$

This is the Witten-Veneziano relation which still holds at finite density in the chiral limit.

Conclusions

Two-color QCD displays a rich phase diagram in the $\mu-\theta$ plane depending on the number of flavours (even VS odd).

For a odd number of flavours there is no CP breaking at $\theta=\pi$. However there are two novel first order phase transition at $\theta=\pi / 2$ and $\theta=3 \pi / 2$.

For every phase we determined the related symmetry breaking pattern and the resulting spectrum of the theory.

