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The QCD θ-angle 

It leads to CP-symmetry violation.

Experimentally constrained by 
measurements of the neutron 
electric dipole moment:

Chiral transformations, because of 
the anomaly, change the θ-term
and physics depends only on:

M: quark mass matrix.

STRONG CP PROBLEM

QCD Thermodynamics

QCD at finite baryon density and
temperature.

Many phases: QGP, color
superconductivity…

This talk: θ-angle physics at finite baryon density in two-color QCD. 



Motivations

Understand the QCD phase diagram at finite density and θ-angle. 

Finite density QCD cannot be efficiently studied on lattice due to the
sign problem: the determinant of the Dirac operator is not real.

Two-color QCD: no sign problem thanks to the pseudo-reality of the quark 
representations. Similar to QCD at finite isospin density (work in progress!).

Focus on the SSB of CP symmetry at θ=π. 

Understand cosmological phase transitions from nonzero to zero θ.



Two-color QCD

In this form the U(2Nf) symmetry becomes manifest. The symmetry is
broken to SU(2Nf) by the ABJ anomaly. The baryon charge is one of the
generators of SU(2Nf) and baryons are diquark.

In fact, thanks to the pseudoreality of the two-color Dirac operator the
quark fields qL and σ2τ2 qR* transform in the same color representation.
Hence we can introduce

Two-color QCD exhibits an enhanced U(2Nf) symmetry, as compared
to the U(Nf)xU(Nf) chiral symmetry of QCD.

and write the Lagrangian as



Two-color chiral Lagrangian
The infrared dynamics of the theory can be described by the following
chiral Lagrangian

The chiral symmetry breaking is SU(2Nf) Sp(2Nf).

For the sake of simplicity, we consider a democratic mass matrix

and introduce the chemical potential μ in the covariant derivative as:



Adding the θ-angle
We introduce the topological charge:

The coefficient of the quadratic term is the topological susceptibility of 
the Yang-Mills theory. The coefficients reproduce the axial anomaly:

We can integrate out q(x) via its EOM to get



Vacuum structure

In the absence of the θ-angle we can look for a ground state of the form

Competition of mass and baryon chemical potential (chiral and diquark
condensates).

To take into account the θ-angle: we introduce the Witten variables αi

Each phase αi is an overall axial transformation for each left-right quark 
pair.



Vacuum structure
The Lagrangian evaluated on the vacuum ansatz reads

The equations of motion are



Superfluid phase transition
Consider the first EOM:

Two solutions:

The superfluid phase transition is of the second order and is associated
with diquark (baryon) condensation. The energy reads

θ=0: X=Nf : superfluid phase transition at μ=mπ.
θ≠0: We need to know the θ-dependence in both phases: the energy is
minimized when X (normal phase) and X2 (superfluid phase) is
maximized.



θ-dependence: normal phase
In the normal phase we have the well-known equation

Then: . We solve in powers of mπ
2/a. Leading order:

Solution:

The solutions with n≠0 spontaneously break Sp(2Nf) because of the 
different phases for each flavour.



CP symmetry
CP is conserved when

This happens if: θ=0 mπ
2 =0

For θ=π the Lagrangian is CP invariant. However, the vacua lie at

The two solutions are related by a CP transformation U → U† and thus 
CP is spontaneously broken by the vacuum.

DASHEN PHENOMENON

R. F. Dashen Phys.Rev.D 3 (1971) 1879-1889



θ-dependence: superfluid phase
In the superfluid phase the equation of motion is

In this case the natural expansion parameter is

We now proceed by considering fixed values of Nf.



Nf =2
At the leading order (in mπ

2/a or mπ
4/(a μ2)) the EOM is

There are two solutions

The energy is minimized when X (normal phase) or X2 (superfluid
phase) is maximized:

X (normal phase) X2 (superfluid phase



Nf =2
The energy in the two phases is

The superfluid phase transition occurs at

Hence it can be realized for tiny values μ when θ≈π. We have



Normal phase: the solutions
cross at θ=π where I have
spontaneous breaking of CP
symmetry.

Superfluid phase: the energy
is an analytic function of θ.
No spontaneous breaking of
CP symmetry at θ=π.

This is exact to all orders in mπ
2/a.

In fact at θ=π the EOM is

Nf =2



We have four solutions:

Normal phase: the ground
state is given by solutions 1.
and 3. that cross at θ=π
where I have CP SSB.

Superfluid phase: No CP
SSB at θ=π but two novel 
first-order phase transitions
at θ=π/2, 3π/2.

The non-minimum solutions represent metastable vacua which can be
long-lived. Later we will estimate their decay rate.

Nf =3



General Nf
Solutions of the EOM are generally not periodic of 2π for θ.
The periodicity condition can be satisfied only if at least two solutions 
cross. Consider

and ask when crossing can happen. We have

Near θ=0 the ground state is k1=0.

Both conditions can be satisfied at θ=π. For k1=0 we have k2=Nf-1.

In the normal phase there is only this solution.



Superfluid phase: even Nf
In the superfluid phase we have other solutions.

When Nf is even we have the solution:

Which does not depend on θ: the solutions organize themselves in 
pairs (α and α+π) with the same energy for every θ.
This holds to all orders in mπ

2/a. In fact given the EOM for a certain α:

we have the same EOM for α + π upon shifting .
Then given the general solution

The ground state has n=k=0 on (0, π) and n=0, k= Nf-1 on (π, 2π)
along with their degenerate partners. SSB of CP at θ=π except for
Nf =2.



Superfluid phase: odd Nf
In the superfluid phase we have other solutions.

When Nf is odd we have the solution

It can be realized for θ=π/2 and θ=3π/2.

The ground state is:

α=θ/Nf (0, π/2)

α=π+(θ- π)/Nf (π/2, 3π/2)

α=(θ-2π)/Nf (3π/2, 2π)

No spontaneous symmetry breaking of CP at θ=π.

Two novel first order phase transitions at θ=π/2 and θ=3π/2.  



Domain walls
The tension of the domain wall between the two degenerate vacua at 
θ = π for even Nf in the superfluid phase reads

Regardless of the exact form of the wall’s profile, its tension scales as

To be compared with in the normal phase.
.[A. V. Smilga, Phys.Rev.D 59, 114021 (1999)]

The decay rate of the metastable vacua near θ = π is

Here C is a positive constant and .



Symmetry breaking pattern

mπ=0

ANOMALY χSB

μ VACUUM

We have massless Goldstone modes while the other modes
get a mass of order μ.

We have (pseudo)Goldstone modes from the χSB plus the
„anomalous” singlet with a mass of order a.

mπ≠0
μ VACUUM

We have massless Goldstone modes.

mπ



Spectrum Sp(Nf) representations



Spectrum

The number of d.o.f sum to

ω4 describes Goldstone modes with speed vG=1.

For mπ=0, ω2 describes Goldstone modes with speed vG=1.

Sp(Nf) representations



The η’
The Sp(Nf) singlet with dispersion relation

For mπ=0 its mass is:

is analogous to the η’ meson of QCD.

This is the Witten-Veneziano relation which still
holds at finite density in the chiral limit.

At the same time, the topological susceptibility is:

We, therefore, have



Conclusions
Two-color QCD displays a rich phase diagram in the μ-θ
plane depending on the number of flavours (even VS odd).

For a odd number of flavours there is no CP breaking at θ=π.
However there are two novel first order phase transition at
θ=π/2 and θ=3π/2.

For every phase we determined the related symmetry
breaking pattern and the resulting spectrum of the theory.


	Slide 1: The θ-angle physics at finite baryon density 
	Slide 2:    The QCD θ-angle 
	Slide 3:    Motivations
	Slide 4:    Two-color QCD
	Slide 5:    Two-color chiral Lagrangian
	Slide 6:    Adding the θ-angle 
	Slide 7:    Vacuum structure
	Slide 8:    Vacuum structure
	Slide 9:    Superfluid phase transition
	Slide 10:    θ-dependence: normal phase
	Slide 12:    CP symmetry
	Slide 13:  θ-dependence: superfluid phase
	Slide 14:    Nf =2
	Slide 15
	Slide 16
	Slide 18
	Slide 20:    General Nf
	Slide 21:    Superfluid phase: even Nf
	Slide 22:    Superfluid phase: odd Nf
	Slide 23:    Domain walls
	Slide 24:    Symmetry breaking pattern
	Slide 25:    Spectrum
	Slide 26:    Spectrum
	Slide 27:    The η’
	Slide 28:    Conclusions

