The θ -angle physics at finite baryon density

Jahmall Bersini

August 29, 2023

Based on: JB, A. D'Alise, F.Sannino, M. Torres, JHEP 11 (2022) 080

World Premier International Research Center Initiative

The QCD ϑ-angle
$$\mathcal{L}_{\theta} = \theta \frac{g^2}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{a\mu\nu}$$

It leads to CP-symmetry violation.

Chiral transformations, because of the anomaly, change the θ -term and physics depends only on:

$$\bar{\theta} = \theta + \operatorname{Arg} \det M$$

M: quark mass matrix.

Experimentally constrained by measurements of the neutron electric dipole moment:

 $\bar{\theta} < 10^{-10}$

STRONG CP PROBLEM

QCD Thermodynamics

QCD at finite baryon density and temperature.

Many phases: QGP, color superconductivity...

This talk: θ-angle physics at finite baryon density in two-color QCD.

Motivations

Understand the QCD phase diagram at finite density and θ -angle.

Focus on the SSB of CP symmetry at $\theta = \pi$.

Understand cosmological phase transitions from nonzero to zero θ .

Finite density QCD cannot be efficiently studied on lattice due to the **sign problem:** the determinant of the Dirac operator is not real.

Two-color QCD: no sign problem thanks to the pseudo-reality of the quark representations. Similar to QCD at finite isospin density (work in progress!).

Two-color QCD

Two-color QCD exhibits an enhanced $U(2N_f)$ symmetry, as compared to the $U(N_f)xU(N_f)$ chiral symmetry of QCD.

In fact, thanks to the pseudoreality of the two-color Dirac operator the quark fields q_L and $\sigma_2 \tau_2 q_R^*$ transform in the same color representation. Hence we can introduce

$$\mathcal{Q} = \begin{pmatrix} q_L \\ i\sigma_2\tau_2 q_R^* \end{pmatrix} \qquad \qquad E = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \times \mathbf{1}_{N_f}$$

and write the Lagrangian as

$$\mathcal{L} = -\frac{1}{4g^2} \vec{G}_{\mu\nu} \cdot \vec{G}^{\mu\nu} + i\bar{\mathcal{Q}}\bar{\sigma}^{\nu} \left[\partial_{\nu} - i\vec{G}_{\nu} \cdot \frac{\vec{\tau}}{2}\right] \mathcal{Q} - \frac{1}{2}m_q \mathcal{Q}^T \tau_2 E \mathcal{Q} + \text{h.c.}$$

In this form the $U(2N_f)$ symmetry becomes manifest. The symmetry is broken to $SU(2N_f)$ by the ABJ anomaly. The baryon charge is one of the generators of $SU(2N_f)$ and baryons are diquark.

Two-color chiral Lagrangian

The infrared dynamics of the theory can be described by the following chiral Lagrangian

$$\mathcal{L}_{\text{eff}} = \nu^2 Tr\{\partial_\mu \Sigma \partial^\mu \Sigma^\dagger\} + m_\pi^2 \nu^2 Tr\{M\Sigma + M^\dagger \Sigma^\dagger\}$$

The chiral symmetry breaking is $SU(2N_f) \rightarrow Sp(2N_f)$.

For the sake of simplicity, we consider a democratic mass matrix

$$M = -i\sigma_2 \otimes \mathbf{1}_{N_f} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{N_f}$$

and introduce the chemical potential μ in the covariant derivative as:

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} - i\mu\delta^{0}_{\mu}B$$
, $B \equiv \begin{pmatrix} 1/2 & 0\\ 0 & -1/2 \end{pmatrix} \otimes \mathbf{1}_{N_{f}}$

Adding the θ -angle

We introduce the topological charge: $q(x) = \frac{g^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma}$

$$\mathcal{L}_{q(x)} = \frac{i}{4}q(x)Tr[\log\Sigma - \log\Sigma^{\dagger}] - \theta q(x) + \frac{q(x)^2}{4a\nu^2}$$

The coefficient of the quadratic term is the topological susceptibility of the Yang-Mills theory. The coefficients reproduce the axial anomaly:

$$\partial_{\mu}J_5^{\mu} = 4N_f q(x)$$

We can integrate out q(x) via its EOM to get

$$\mathcal{L}_{\theta} = \nu^{2} Tr\{\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\} + 4\mu\nu^{2} Tr\{B\Sigma^{\dagger} \partial_{0} \Sigma\} + m_{\pi}^{2} \nu^{2} Tr\{M\Sigma + M^{\dagger} \Sigma^{\dagger}\} + 2\mu^{2} \nu^{2} \left[Tr\{\Sigma B^{T} \Sigma^{\dagger} B\} + Tr\{BB\}\right] - a\nu^{2} \left(\theta - \frac{i}{4} Tr\{\log \Sigma - \log \Sigma^{\dagger}\}\right)^{2}$$

Vacuum structure

In the absence of the θ -angle we can look for a ground state of the form

$$\Sigma_{c} = \begin{pmatrix} 0 & \mathbf{1}_{N_{f}} \\ -\mathbf{1}_{N_{f}} & 0 \end{pmatrix} \cos \varphi + i \begin{pmatrix} \mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix} \sin \varphi \qquad \mathcal{I} = \begin{pmatrix} 0 & -\mathbf{1}_{N_{f}/2} \\ \mathbf{1}_{N_{f}/2} & 0 \end{pmatrix}$$

Competition of mass and baryon chemical potential (chiral and diquark condensates).

To take into account the θ -angle: we introduce the Witten variables α_i

$$\Sigma_0 = U(\alpha_i)\Sigma_c, \qquad U(\alpha_i) \equiv \operatorname{diag}\{e^{-i\alpha_1}, \dots, e^{-i\alpha_{N_f}}, e^{-i\alpha_1}, \dots, e^{-i\alpha_{N_f}}\}$$

Each phase α_i is an overall axial transformation for each left-right quark pair.

Vacuum structure

The Lagrangian evaluated on the vacuum ansatz reads

$$\mathcal{L}_{\theta}[\Sigma_{0}] = \nu^{2} \left[4m_{\pi}^{2} X \cos \varphi + 2\mu^{2} N_{f} \sin^{2} \varphi - a\bar{\theta}^{2} \right]$$
$$\bar{\theta} = \theta - \sum_{i}^{N_{f}} \alpha_{i}, \qquad X = \sum_{i}^{N_{f}} \cos \alpha_{i}$$

The equations of motion are

$$in \varphi \left(N_f \cos \varphi - \frac{m_\pi^2}{\mu^2} X \right) = 0$$

$$in Q = 2m_\pi^2 \sin \alpha_i \cos \varphi = a\bar{\theta}, \quad i = 1, ..., N_f$$

Superfluid phase transition

Consider the first EOM: $\sin \varphi \left(N_f \cos \varphi - \frac{m_\pi^2}{\mu^2} X \right) = 0$

Two solutions:

normal phase
$$(\varphi = 0)$$

superfluid phase $\left(\cos \varphi = \frac{m_{\pi}^2}{N_f \mu^2} X\right)$

The superfluid phase transition is of the second order and is associated with diquark (baryon) condensation. The energy reads

$$\bigstar E = -\nu^2 \left[4m_\pi^2 X - a\bar{\theta}^2 \right], \text{ normal phase}$$
$$\bigstar E = -\nu^2 \left[2\frac{N_f^2 \mu^4 + m_\pi^4 X^2}{N_f \mu^2} - a\bar{\theta}^2 \right], \text{ superfluid phase}$$

θ=0: X=N_f: superfluid phase transition at $\mu = m_{\pi}$. **θ≠0:** We need to know the θ-dependence in both phases: <u>the energy is</u> minimized when X (normal phase) and X² (superfluid phase) is maximized.

θ-dependence: normal phase

In the normal phase we have the well-known equation

$$2m_{\pi}^{2}\sin\alpha_{i} = a\bar{\theta} = a\left(\theta - \sum_{i}^{N_{f}}\alpha_{i}\right)$$

Then: $\sin \alpha_i = \sin \alpha_j$. We solve in powers of m_{π}^2/a . Leading order: $\alpha_i = \begin{cases} \pi - \alpha, & i = 1, \dots, n \\ \alpha, & i = n + 1, \dots, N_f \end{cases}$ $n(\pi - \alpha) + (N_f - n)\alpha = \theta \mod 2\pi$

Solution:

$$\alpha = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right]$$

The solutions with $n\neq 0$ spontaneously break $Sp(2N_f)$ because of the different phases for each flavour.

CP symmetry
CP is conserved when
$$\bar{\theta} = \theta - \sum_{i=0}^{N_f} \alpha_i = 0$$

This happens if:

For $\theta = \pi$ the Lagrangian is CP invariant. However, the vacua lie at

$$U(\alpha_i) = e^{\frac{i\pi}{N_f}} \mathbf{1}_{2N_f} \qquad U(\alpha_i) = e^{-\frac{i\pi}{N_f}} \mathbf{1}_{2N_f}$$

The two solutions are related by a CP transformation $U \rightarrow U^{\dagger}$ and thus CP is spontaneously broken by the vacuum.

DASHEN PHENOMENON

R. F. Dashen Phys.Rev.D 3 (1971) 1879-1889

θ-dependence: superfluid phase

In the superfluid phase the equation of motion is

$$\frac{2m_{\pi}^4}{N_f\mu^2}X\sin\alpha_i = a\bar{\theta}\,,\qquad i=1,..,N_f.$$

In this case the natural expansion parameter is

 $\frac{m_{\pi}^4}{a\mu^2}$

We now proceed by considering fixed values of N_f.

$$N_f = 2$$

At the leading order (in m_{π}^2/a or $m_{\pi}^4/(a \mu^2)$) the EOM is

$$\alpha_1 + \alpha_2 = \theta + 2k\pi \qquad \sin \alpha_1 = \sin \left(\theta + 2k\pi - \alpha_1\right)$$

There are two solutions

$$\bigstar \{\alpha_1, \alpha_2\} = \{\frac{\theta}{2}, \frac{\theta}{2}\} \quad \bigstar \{\alpha_1, \alpha_2\} = \{\frac{\theta + 2\pi}{2}, \frac{\theta + 2\pi}{2}\}$$

The energy is minimized when X (normal phase) or X^2 (superfluid phase) is maximized:

 $N_f = 2$

The energy in the two phases is

$$E(\theta) = -8m_{\pi}^{2}\nu^{2}\left(\left|\cos\frac{\theta}{2}\right| + \frac{1}{2}\frac{m_{\pi}^{2}}{a}\sin^{2}\frac{\theta}{2} - \frac{1}{4}\frac{m_{\pi}^{4}}{a^{2}}\left|\sin\frac{\theta}{2}\sin\theta\right|\right), \text{ normal phase}$$

$$E(\theta) = -\nu^{2}\left(\frac{4\left(m_{\pi}^{4}\cos^{2}\frac{\theta}{2} + \mu^{4}\right)}{\mu^{2}} + \frac{m_{\pi}^{8}\sin^{2}\theta}{a\mu^{4}} - \frac{m_{\pi}^{12}\sin^{2}\theta\cos\theta}{a^{2}\mu^{6}}\right), \text{ superfluid phase}$$

The superfluid phase transition occurs at

$$\mu_c = m_{\pi}(\theta) = m_{\pi} \left[\sqrt{\left| \cos \frac{\theta}{2} \right|} + \mathcal{O}\left(\frac{m_{\pi}^2}{a}\right) \right]$$

Hence it can be realized for tiny values μ when $\theta \approx \pi$. We have

$$\mu_c \sim m_\pi \sqrt{\frac{m_\pi^2}{a} + \frac{|\phi|}{2}} \qquad \theta = \pi + \phi$$

N_f =2

Normal phase: the solutions cross at $\theta=\pi$ where I have spontaneous breaking of CP symmetry.

Superfluid phase: the energy is an analytic function of θ . No spontaneous breaking of CP symmetry at $\theta=\pi$.

This is exact to all orders in m_{π}^2/a . In fact at $\theta=\pi$ the EOM is

$$\frac{m_{\pi}^4}{a\mu^2}\sin(2\alpha) = \pi - 2\alpha$$

$N_f = 3$

We have four solutions:

$$\mathbf{i} \cdot \left\{ \frac{\theta}{3}, \frac{\theta}{3}, \frac{\theta}{3} \right\}, \quad \mathbf{i} \mathbf{i} \cdot \left\{ \frac{\theta + 2\pi}{3}, \frac{\theta + 2\pi}{3}, \frac{\theta + 2\pi}{3} \right\}, \quad \mathbf{i} \mathbf{i} \mathbf{i} \cdot \left\{ \frac{\theta + 4\pi}{3}, \frac{\theta + 4\pi}{3}, \frac{\theta + 4\pi}{3} \right\}, \quad \mathbf{i} \mathbf{v} \cdot \left\{ \theta - \pi, \theta - \pi, 2\pi - \theta \right\}$$

Normal phase: the ground state is given by solutions 1. and 3. that cross at $\theta=\pi$ where I have CP SSB.

Superfluid phase: No CP SSB at $\theta=\pi$ but two novel first-order phase transitions at $\theta=\pi/2$, $3\pi/2$.

The non-minimum solutions represent metastable vacua which can be long-lived. Later we will estimate their decay rate.

General N_f

Solutions of the EOM are generally not periodic of 2π for θ . The periodicity condition can be satisfied only if at least two solutions cross. Consider

$$U = e^{-i\alpha} \mathbf{1}_{2N_f}$$

and ask when crossing can happen. We have

$$\cos\left(\frac{\theta + 2\pi k_1}{N_f}\right) = \cos\left(\frac{\theta + 2\pi k_2}{N_f}\right) \text{ normal phase}$$
$$\cos^2\left(\frac{\theta + 2\pi k_1}{N_f}\right) = \cos^2\left(\frac{\theta + 2\pi k_2}{N_f}\right) \text{ superfluid phase}$$

Near $\theta=0$ the ground state is $k_1=0$.

Both conditions can be satisfied at $\theta = \pi$. For k₁=0 we have k₂=N_f-1. In the normal phase there is only this solution.

Superfluid phase: even N_f

In the superfluid phase we have other solutions.

When N_f is even we have the solution: $k_1 = k_2 + N_f/2$

Which does not depend on θ : the solutions organize themselves in pairs (α and $\alpha + \pi$) with the same energy for every θ . This holds to all orders in m_{π}^2/a . In fact given the EOM for a certain α :

$$\frac{m_{\pi}^4}{a\mu^2}\sin(2\alpha) = \theta - N_f\alpha$$

we have the same EOM for α + π upon shifting $\theta \rightarrow \theta + N_F \pi$. Then given the general solution

$$\alpha = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right]$$

The ground state has n=k=0 on (0, π) and n=0, k= N_f-1 on (π , 2 π) along with their degenerate partners. SSB of CP at θ = π except for N_f=2.

Superfluid phase: odd N_f

In the superfluid phase we have other solutions.

When N_f is odd we have the solution $k_1 = N_f/2 - k_2 - heta/\pi$

It can be realized for $\theta = \pi/2$ and $\theta = 3\pi/2$.

The ground state is:

$\alpha = \theta / N_f$	(0, π/2)
$\alpha = \pi + (\theta - \pi) / N_f$	(π/2, 3π/2)
α=(θ-2π)/N _f	(3π/2, 2π)

No spontaneous symmetry breaking of CP at $\theta = \pi$.

Two novel first order phase transitions at $\theta = \pi/2$ and $\theta = 3\pi/2$.

Domain walls

The tension of the domain wall between the two degenerate vacua at $\theta = \pi$ for even N_f in the superfluid phase reads

$$T = 2\nu^2 \int_{-\infty}^{\infty} dx \left[(N_f - 1) N_f \alpha'(x)^2 - \frac{m_\pi^4}{\mu^2 N_f} \left((N_f - 1) \cos\left(\alpha(x) + \frac{\pi}{N_f}\right) + \cos\left(\frac{\pi}{N_f} - (N_f - 1) \alpha(x)\right) \right)^2 \right]$$

Regardless of the exact form of the wall's profile, its tension scales as

$$T \sim \frac{\nu^2 m_\pi^2}{\mu}$$

To be compared with $T\sim \nu^2~m_\pi$ in the normal phase. [A. V. Smilga, Phys.Rev.D 59, 114021 (1999)]

The decay rate of the metastable vacua near $\theta = \pi$ is

$$\Gamma \propto \exp\left(-C\frac{T^4}{m_\pi^6\nu^6|\phi|^3}\right) \qquad \sim \exp\left(-\frac{\nu^2}{m_\pi^2|\phi|^3}\right)$$

Here C is a positive constant and $\theta = \pi + \phi$.

Symmetry breaking pattern $U(2N_f) \rightarrow SU(2N_f) \rightarrow Sp(2N_f)$ ANOMALY XSB

We have $2N_f^2 - N_f - 1$ (pseudo)Goldstone modes from the χ SB plus the "anomalous" singlet with a mass of order *a*.

$$\begin{array}{c|c} \mathbf{m}_{\pi} = \mathbf{0} & Sp(2N_f) \to SU(N_f)_L \times SU(N_f)_R \times U(1)_B \rightsquigarrow Sp(N_f)_L \times Sp(N_f)_R \\ & \mu & \text{VACUUM} \end{array}$$

We have $N_f^2 - N_f - 1$ massless Goldstone modes while the other modes get a mass of order μ .

$$\begin{array}{c|c} \mathbf{m}_{\pi} \neq \mathbf{0} & Sp(2N_f) \rightarrow SU(N_f)_L \times SU(N_f)_R \times U(1)_B \rightarrow SU(N_f)_V \times U(1)_B \rightarrow Sp(N_f)_V \\ & \mu & \mathbf{m}_{\pi} & \mathsf{VACUUM} \end{array} \\ \\ \text{We have } \frac{1}{2}N_f(N_f-1) \text{massless Goldstone modes.} \end{array}$$

Spectrum

Sp(N_f) representations

$$A = \frac{2}{N_f^2 \mu^2} \sqrt{\left(N_f^2 \mu^4 + 3m_\pi^4 X^2\right)^2 + 4N_f^2 \mu^2 m_\pi^4 X^2 k^2}$$

$$M_S^2 = \frac{a\mu^4 N_f^3 + 2\mu^2 m_\pi^4 X^2}{2\mu^4 N_f^2 - 2m_\pi^4 X^2} \left(1 - \frac{m_\pi^4 X^2}{\mu^2 N_f^2}\right)$$

Spectrum

Sp(N_f) representations

The number of d.o.f sum to dim $\left(\frac{U(2N_f)}{Sp(2N_f)}\right) = N_f(2N_f - 1)$

 ω_4 describes Goldstone modes with speed $v_G=1$.

For m_{π}=0, ω_2 describes Goldstone modes with speed v_G=1.

The η'

The Sp(N_f) singlet with dispersion relation

$$\omega_5^2 = k^2 + M_S^2 \qquad \qquad M_S^2 = \frac{a\mu^4 N_f^3 + 2\mu^2 m_\pi^4 X^2}{2\mu^4 N_f^2 - 2m_\pi^4 X^2} \left(1 - \frac{m_\pi^4 X^2}{\mu^2 N_f^2}\right)$$

is analogous to the η^{\prime} meson of QCD.

For m_π=0 its mass is:
$$M_S^2 = \frac{aN_f}{2}$$

At the same time, the topological susceptibility is: $\frac{d^2E}{d\theta^2}|_{\theta=0} = 2\nu^2 a$

We, therefore, have

$$M_S^2 = \frac{N_f}{4\nu^2} \frac{d^2 E}{d\theta^2}|_{\theta=0}$$

This is the Witten-Veneziano relation which still holds at finite density in the chiral limit.

Conclusions

Two-color QCD displays a rich phase diagram in the μ - θ plane depending on the number of flavours (even VS odd).

For a odd number of flavours there is no CP breaking at $\theta=\pi$. However there are two novel first order phase transition at $\theta=\pi/2$ and $\theta=3\pi/2$.

For every phase we determined the related symmetry breaking pattern and the resulting spectrum of the theory.

