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Amplitude calculation workflow

E.g. for n = 4 gluons: A4 = g
2
YM ∑

L=0,1...

g2LYMA
(L)
4 , gYM coupling const.

At each loop order L, e.g. L = 2:

1. Draw contributing Feynman graphs A
(2)
4 = + + . . .

2. Decompose to scalar Feynman integrals (FI) = c1 + c2 + . . .

3. Reduce to a basis f⃗ (master FI) = c′1 + 0 + . . .

4. Evaluate basis of master FI

Of the form f1 = ∫

L

∏
l=1

dDkl
iπD/2

E

∏
i=1

1

Dνi
i

,

where Di = −q
2
i +m

2
i and D =D0 − 2ϵ.
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Evaluation of Feynman Integrals
Method of choice: Canonical differential equations

For polylogarithmic FI, find basis transformation g⃗ = T ⋅ f⃗ such that
[Gehrmann,Remiddi’99][Henn’13]

dg⃗ = ϵ dM̃ g⃗, M̃ ≡∑
i

constant matrices

³·µ
ãi log Wi

´¸¶
letters

,

Bottlenecks in the workflow:

1. Solving integration-by-parts (IBP) identities to determine basis f⃗

2. Finding transformation g⃗ = T ⋅ f⃗

Could we predict kinematically dependent letters Wi beforehand?

Would reduce both steps to much easier, purely numeric problem!

In line with strategy of state of the art precision calculations, e.g.
[Abreu,Ita,Moriello,Page,Tschernow,Zeng’20]
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ãi log Wi

´¸¶
letters

,

Bottlenecks in the workflow:

1. Solving integration-by-parts (IBP) identities to determine basis f⃗

2. Finding transformation g⃗ = T ⋅ f⃗

Could we predict kinematically dependent letters Wi beforehand?

Would reduce both steps to much easier, purely numeric problem!

In line with strategy of state of the art precision calculations, e.g.
[Abreu,Ita,Moriello,Page,Tschernow,Zeng’20]

G.Papathanasiou – Evaluating Integrals from Landau Equations Introduction and Motivation 4/25



Evaluation of Feynman Integrals
Method of choice: Canonical differential equations

For polylogarithmic FI, find basis transformation g⃗ = T ⋅ f⃗ such that
[Gehrmann,Remiddi’99][Henn’13]

dg⃗ = ϵ dM̃ g⃗, M̃ ≡∑
i

constant matrices

³·µ
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The Landau equations

Yield specific values of (kinematic) parameters of any (Feynman) integral,
for which it may become singular. [Landau’59]

f1 = ∫

L

∏
l=1

dDkl
iπD/2 ∫

∞

0

E

∏
i=1

dxi
δ(∑j xj − 1)

(∑j xjDj)
∑k νk

where Di = −q
2
i +m

2
i .

Landau equations:

xiDi = 0 ∀i = 1, . . .E

∂

∂kl

E

∑
i=1

xiDi = 0, ∀l = 1, . . . , L.

Formulated as conditions for the contour of integration to become trapped
between two poles of integrand.

Believed for long to only provide information on where Wi = 0.
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This work

Evidence through two loops: Rational letters of polylogarithmic FI
captured by Landau equations, when recast as polynomial of the kine-
matic variables of integral, known as the principal A-determinant EA!

Example: ‘Two-mass easy’ box with p22 = p
2
4 = 0, p

2
1, p

2
3 ≠ 0:

EA equipped with natural factorization, (s = (p1 + p2)
2, t = (p1 + p4)

2)

EA = (p
2
1p

2
3 − st)p

2
1p

2
3st(p

2
1 + p

2
3 − s − t)(p

2
3 − t)(p

2
3 − s)(p

2
1 − t)(p

2
1 − s).

where each factor is indeed a letter of the integral!
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Feynman integrals, Landau singularities & GKZ systems

One-loop principal A-determinants and symbol letters
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Feynman integrals in the Lee-Pomeransky representation:

f1 =
Γ(D/2)

Γ((L + 1)D/2 −∑i νi)
∫

∞

0

E

∏
i=1

(
xνi−1dxi
Γ(νi)

)
1

GD/2

where G = U +F , and for graph G associated to integral f1,

U = ∑
T a spanning

tree
1
of G

∏
e/∈T

xe,

F = U ∑
e∈E

m2
exe − ∑

F a spanning

2−forest
2
of G

p(F )2∏
e/∈F

xe,

are the 1st and 2nd Symanzik polynomials, of degree L,L + 1 in the xi.

In this form, f1 is special case3 of A-hypergeometric function as defined
by Gelfand, Graev, Kapranov & Zelevinsky (GKZ). [de la Cruz’19][Klausen’19]

1Connected subgraph of G containing all vertices but no loops.
2Defined similarly, but with 2 connected components.
3Generic case: All G polynomial coefficients are variables, different from each other.
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Singularities of GKZ-systems

Let G =
m

∑
j=1

cj
E

∏
i=1

x
aij
i , cj all independent variables.

Values of ci for which GKZ-system becomes singular are solutions to

EA(G) = 0

where EA(G) is the principal A-determinant of G: Polynomial in cj with
integer coefficients, that vanishes whenever the system of equations

G = x1
∂G

∂x1
= . . . = xE

∂G

∂xE
= 0 has a solution for x⃗ ∈ (C∗)E .

In practice, compute via theorem factorizing it into contributions from
each face Γ of polytope with vertices (a1j , . . . , aEj), j = 1, . . . ,m

EA(G) =∏
Γ

∆Γ(G)

where the A-discriminant ∆Γ(G) also polynomial in ci, that vanishes when

G =
∂G

∂x1
= . . . =

∂G

∂xE
= 0 has a solution for x⃗ ∈ (C∗)E .
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Example: Principal A-determinant of bubble

(Newton) polytope of G polynomial
exponents, Newt(G)

G = x1 + x2 + (m
2
1 +m

2
2 − p

2
)x1x2 +m

2
1x

2
1 +m

2
2x

2
2 ,

EA(G) =∆α4∆α5∆α4α5∆α1α2α4α5

=m2
1m

2
2(p

4
+m4

1 +m
4
2 − 2p

2m2
1 − 2p

2m2
2 − 2m

2
1m

2
2)p

2 ,
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Interpretation of EA(G) polytope

Newt(EA(G)), built out of exponents of EA(G) polynomial: Keeps track
of triangulations of Newt(G).

Cluster algebras also describe triangulations of geometric spaces
[Fomin,Zelevinsky’01][Felikson,Shapiro,Tumarkin’11]

First-principle derivation of observed cluster-algebraic structure of
Feynman integrals? [Chicherin,Henn,Papathanasiou’20]. . . [He,Liu,Tang,Yang’22]
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Generic n-point 1-loop integrals
All mi, p

2
i ≠ 0 and different from each other

All Landau singularity information captured in
modified Cayley matrix Y,[Melrose’65]

Y =

⎛
⎜
⎜
⎜
⎝

0 1 1 ⋯ 1
1 Y11 Y12 ⋯ Y1n

1 Y12 Y22 ⋯ Y2n

⋮ ⋮ ⋮ ⋮
1 Y1n Y2n ⋯ Ynn

⎞
⎟
⎟
⎟
⎠

Yii = 2m2
i

Yij =m2
i +m2

j − sij−1
sij = (pi + . . . + pj)2

because A-discriminants reduce to usual determinants:

▸ ∆Newt(F)(F) = detY : Leading1 Landau singularity of type I (finite k)

▸ ∆Newt(G)(G) = detY: Leading
1 Landau singularity of type II (k →∞)

▸ Subleading Landau singularity where xi1 , . . . , xim = 0 ∼ Leading
singularity of subgraph where internal edges i1, . . . , im removed
[Klausen’21]

1Where all xi ≠ 0
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Minors of modified Cayley matrix

For any matrix A with elements amn, let (j, k)-th minor of A be

A

where shading indicates removal of row and column. Similarly A [
i1 . . . ik
j1 . . . jk

],

A [
⋅
⋅] = detA.

Y [
3
3
]

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Y [
⋅
⋅]

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Principal A-determinant of generic 1-loop graphs

Gathering previous bits of information, arrive at

EA(G) = Y [
⋅

⋅
]
n+1

∏
i=1

Y [
i
i
] . . .

n+1

∏
in−1>...>i1=1

Y [
i1 . . . in−1
i1 . . . in−1

]
n+1

∏
i=2

Yii .

Product of all diagonal k-dimensional minors of Y with k = 1, . . . , n + 1,
except Y11 = 0.

2n+1 − n − 2 factors, e.g. 1,4,11,26,57,120 factors for n = 1, . . . ,6 .
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From 1-loop rational to square-root letters

Working assumption: Square-root letters produced by re-factorizing EA

using Jacobi determinant identities of the form

p ⋅ q = f2
− g = (f −

√
g)(f +

√
g) ,

where

1. p, q factors of EA, i.e. rational letters.

2. Square-root letters f ±
√
g obtained contain leading singularity of the

Feynman integral considered in second term. [Cachazo’08]

Motivated by interpretation of 1-loop integrals as volumes of spherical
simplices. [Davydychev,Delbourgo’99] Jacobi identities,

A [
⋅

⋅
]A [

i j
i j
] = A [

i
i
]A [

j
j
] −A [

i
j
]A [

j
i
]
A=AT

= A [
i
i
]A [

j
j
] −A [

i
j
]

2

crucial for their computation. Point 2 adopts widely observed pattern in 1-
and 2-loop computations.

G.Papathanasiou – Evaluating Integrals from Landau Equations One-loop principal A-determinants and symbol letters 15/25



From 1-loop rational to square-root letters

Working assumption: Square-root letters produced by re-factorizing EA

using Jacobi determinant identities of the form

p ⋅ q = f2
− g = (f −

√
g)(f +

√
g) ,

where

1. p, q factors of EA, i.e. rational letters.

2. Square-root letters f ±
√
g obtained contain leading singularity of the

Feynman integral considered in second term. [Cachazo’08]

Motivated by interpretation of 1-loop integrals as volumes of spherical
simplices. [Davydychev,Delbourgo’99] Jacobi identities,

A [
⋅

⋅
]A [

i j
i j
] = A [

i
i
]A [

j
j
] −A [

i
j
]A [

j
i
]
A=AT

= A [
i
i
]A [

j
j
] −A [

i
j
]

2

crucial for their computation. Point 2 adopts widely observed pattern in 1-
and 2-loop computations.
G.Papathanasiou – Evaluating Integrals from Landau Equations One-loop principal A-determinants and symbol letters 15/25



All 1-loop letters I

Need only ratio
f−
√
g

f+
√
g , as product already contained in rational alphabet.

Letting D =D0 − 2ϵ, obtain N letters of type,

W1,...,(i−1),...,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y

⎡
⎢
⎢
⎢
⎢
⎣

i

1

⎤
⎥
⎥
⎥
⎥
⎦

−

¿
Á
Á
ÁÀ−Y

⎡
⎢
⎢
⎢
⎢
⎣

⋅

⋅

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

1 i

1 i

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

i

1

⎤
⎥
⎥
⎥
⎥
⎦

+

¿
Á
Á
ÁÀ−Y

⎡
⎢
⎢
⎢
⎢
⎣

⋅

⋅

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

1 i

1 i

⎤
⎥
⎥
⎥
⎥
⎦

, D0 + n odd,

Y

⎡
⎢
⎢
⎢
⎢
⎣

i

1

⎤
⎥
⎥
⎥
⎥
⎦

−

¿
Á
Á
ÁÀY

⎡
⎢
⎢
⎢
⎢
⎣

i

i

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

i

1

⎤
⎥
⎥
⎥
⎥
⎦

+

¿
Á
Á
ÁÀY

⎡
⎢
⎢
⎢
⎢
⎣

i

i

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎦

, D0 + n even.
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All 1-loop letters II

In addition, n(n − 1)/2 letters of type,

W1,...,(i−1),...,(j−1),...,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y

⎡
⎢
⎢
⎢
⎢
⎣

i

j

⎤
⎥
⎥
⎥
⎥
⎦

−

¿
Á
Á
ÁÀ−Y

⎡
⎢
⎢
⎢
⎢
⎣

⋅

⋅

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

i j

i j

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

i

j

⎤
⎥
⎥
⎥
⎥
⎦

+

¿
Á
Á
ÁÀ−Y

⎡
⎢
⎢
⎢
⎢
⎣

⋅

⋅

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

i j

i j

⎤
⎥
⎥
⎥
⎥
⎦

, D0 + n odd,

Y

⎡
⎢
⎢
⎢
⎢
⎣

1 j

1 i

⎤
⎥
⎥
⎥
⎥
⎦

−

¿
Á
Á
ÁÀ−Y

⎡
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

1 i j

1 i j

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

1 j

1 i

⎤
⎥
⎥
⎥
⎥
⎦

+

¿
Á
Á
ÁÀ−Y

⎡
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎦

Y

⎡
⎢
⎢
⎢
⎢
⎣

1 i j

1 i j

⎤
⎥
⎥
⎥
⎥
⎦

, D0 + n even,
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All 1-loop letters III

Our procedure also predicts Y [ ⋅⋅ ] and Y [ 11 ] as individual rational letters,
but in fact only the ratio

W1,2,...,n =

Y [
⋅
⋅]

Y [
1
1
]

,

appears, as we’ll get back to in next slide.

Finally, obtain remaining letters of n-point graph by applying above
formulas to all of its subgraphs.

Total letter count: Assuming n ≤ d+ 1 for external kinematics dimension d,

∣W ∣ = 2n−3 (n2
+ 3n + 8) −

1

6
(n3
+ 5n + 6) ,

e.g. ∣W ∣ = 1,5,18,57,166 for n = 1, . . . ,5 and D0 even.
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Verification through differential equations & comparison with literature

From letter prediction, derived canonical differential equations through
numeric IBP identities ⇒ confirmation.

By explicit computation up to n = 10, infer general form, e.g. n+D0 even:

dJ1...n =ϵ d logW1...n J1...n

+ ϵ ∑
1≤i≤n

(−1)i+⌊
n
2
⌋d logW1...(i)...n J1...̂i...n

+ ϵ ∑
1≤i<j≤n

(−1)i+j+⌊
n
2
⌋d logW1...(i)...(j)...n J1...̂i...̂j...n.

Furthermore, compared to previous results for D0 even based on

1. the diagrammatic coaction [Abreu,Britto,Duhr,Gardi’17]

2. the Baikov representation [Chen,Ma,Yang’22]

Agreement in form of CDE, as well as in letters for orientations presented
in 2, see also. [Jiang,Yang’23]
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Limits of generic to non-generic graphs

Proved that EA has well-defined limit when any m2
i , p

2
j → 0, namely it is

unique regardless of the order with which we send them to zero.

Limit of EA when single parameter x takes value a may be defined as

lim
x→a

EA =
∂lẼA

∂xl
∣
x=a

≠ 0 , with
∂l′EA

∂xl′
∣
x=a

= 0 for l′ = 0, . . . , l − 1 ,

While multivariate generalization straightforward, highly nontrivial that
limit does not depend on order. E.g. triangle Cayley in limit p2i → 0:

detY = 0 + 2
3

∑
i=1

p2i (m
2
i −m

2
i−1)(m

2
i+1 −m

2
i−1) +O(p

2
jp

2
k) ,

While limits of individual factors in EA depend on limit order, EA as a
whole does not, since different orders produce factors it already contains.

Strong evidence that alphabet of non-generic FI correctly obtained
as limit of generic one, in line with previous observations.
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Mathematica Notebook
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Two-loop example of principal A-determinant-alphabet relation

1-mass slashed box,

p21 ≠ 0, p
2
2 = p

2
3 = p

2
4 = 0

EA(G) = (p
2
1 − t)(p

2
1 − s)(p

2
1 − s − t)(s + t)stp

2
1.

Agrees precisely with (2dHPL) alphabet known to describe 2-loop master
integrals with these kinematics! [Gehrmann,Remiddi’00]
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Conclusions and Outlook

Evidence that rational letters of polylogarithmic FI captured by polyno-
mial form of Landau equations in terms of principal A-determinant EA!

▸ Through 2 loops

▸ 1 loop: Also obtain square-root letters from Jacobi identities + CDE

▸ Strong evidence for well-defined limits to non-generic kinematics

▸ Easy-to-use Mathematica file with our results

Next Stage

1. More efficient evaluation of EA + more 2-loop checks

2. New predictions for pheno, e.g. letters for 2→ 3 with 2 massive legs
[Les Houches Standard Model Precision Wishlist’21]

3. Explore implications for beyond-polylogarithmic case
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Further mathematical properties of Feynman integrals:Cohen-Macauley

Guarantees that

# master integrals = volume of Newt(G)

Proved it for currently largest known class of 1-loop integrals, including
completely on-shell/massless. For earlier work, see [Tellander,Helmer’21][Walther’22]

Relation to other properties:
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Further mathematical properties of Feynman integrals
:Generalized permutohedron (GP) property

A polytope P ⊂ Rn is GP if and only if every edge is parallel to ei − ej ,
where ei is unit vector on coordinate axis, for some i, j ∈ {1, . . . , n}. E.g.

Practical utility: This property facilitates new methods for fast Monte
Carlo evaluation of Feynman integrals. [Borinsky’20][Borinsky,Munch,Tellander’23]

Previously proven for generic kinematics. [Schultka’18] Here: Generalized to
any graph where all external vertices joined by massive path.
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