Evaluating Feynman Integrals with the Help of the Landau Equations

Georgios Papathanasiou

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Workshop on Standard Model and Beyond Corfu, August 29, 2023

Motivation: Scattering Amplitudes \mathcal{A}_{n} in Quantum Field Theory

Motivation: Scattering Amplitudes \mathcal{A}_{n} in Quantum Field Theory

Collider Experiments

- Theoretical predictions for outcome of elementary particle collisions, central for experiments such as the LHC \& High-Luminosity upgrade

Motivation: Scattering Amplitudes \mathcal{A}_{n} in Quantum Field Theory

- Theoretical predictions for outcome of elementary particle collisions, central for experiments such as the LHC \& High-Luminosity upgrade
- Exhibit remarkably deep mathematical structures

Amplitude calculation workflow

E.g. for $n=4$ gluons: $\mathcal{A}_{4}=g_{Y M}^{2} \sum_{L=0,1 \ldots} g_{Y M}^{2 L} \mathcal{A}_{4}^{(L)}, g_{Y M}$ coupling const.

Amplitude calculation workflow
E.g. for $n=4$ gluons: $\mathcal{A}_{4}=g_{Y M}^{2} \sum_{L=0,1 \ldots . .} g_{Y M}^{2 L} \mathcal{A}_{4}^{(L)}, g_{Y M}$ coupling const.

At each loop order L, e.g. $L=2$:

1. Draw contributing Feynman graphs

Amplitude calculation workflow
E.g. for $n=4$ gluons: $\mathcal{A}_{4}=g_{Y M}^{2} \sum_{L=0,1 \ldots} g_{Y M}^{2 L} \mathcal{A}_{4}^{(L)}, g_{Y M}$ coupling const.

At each loop order L, e.g. $L=2$:

1. Draw contributing Feynman graphs $\mathcal{A}_{4}^{(2)}=$
2. Decompose to scalar Feynman integrals (FI) $=c_{1}$

Amplitude calculation workflow
E.g. for $n=4$ gluons: $\mathcal{A}_{4}=g_{Y M}^{2} \sum_{L=0,1 \ldots .} g_{Y M}^{2 L} \mathcal{A}_{4}^{(L)}, g_{Y M}$ coupling const.

At each loop order L, e.g. $L=2$:

1. Draw contributing Feynman graphs $\mathcal{A}_{4}^{(2)}=$
2. Decompose to scalar Feynman integrals (FI) $=c_{1}$
3. Reduce to a basis \vec{f} (master FI)

Amplitude calculation workflow
E.g. for $n=4$ gluons: $\mathcal{A}_{4}=g_{Y M}^{2} \sum_{L=0,1 \ldots} g_{Y M}^{2 L} \mathcal{A}_{4}^{(L)}, g_{Y M}$ coupling const.

At each loop order L, e.g. $L=2$:

1. Draw contributing Feynman graphs
$\mathcal{A}_{4}^{(2)}=$
2. Decompose to scalar Feynman integrals (FI) $=c_{1}$
3. Reduce to a basis \vec{f} (master FI)

4. Evaluate basis of master FI

Of the form

$$
f_{1}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{i \pi^{D / 2}} \prod_{i=1}^{E} \frac{1}{D_{i}^{\nu_{i}}},
$$

where $D_{i}=-q_{i}^{2}+m_{i}^{2}$ and $D=D_{0}-2 \epsilon$.

Amplitude calculation workflow
E.g. for $n=4$ gluons: $\mathcal{A}_{4}=g_{Y M}^{2} \sum_{L=0,1 \ldots} g_{Y M}^{2 L} \mathcal{A}_{4}^{(L)}, g_{Y M}$ coupling const.

At each loop order L, e.g. $L=2$:

1. Draw contributing Feynman graphs
$\mathcal{A}_{4}^{(2)}=$
2. Decompose to scalar Feynman integrals (FI) $=c_{1}$
3. Reduce to a basis \vec{f} (master FI)

4. Evaluate basis of master FI

Of the form

$$
f_{1}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{i \pi^{D / 2}} \prod_{i=1}^{E} \frac{1}{D_{i}^{\nu_{i}}},
$$

where $D_{i}=-q_{i}^{2}+m_{i}^{2}$ and $D=D_{0}-2 \epsilon$.

Evaluation of Feynman Integrals

Method of choice: Canonical differential equations
For polylogarithmic FI, find basis transformation $\vec{g}=T \cdot \vec{f}$ such that [Gehrmann,Remiddi'99][Henn'13]
constant matrices

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \widetilde{M} \equiv \sum_{i} \overbrace{\tilde{a}_{i}} \log \underbrace{W_{i}}_{\text {letters }}
$$

Evaluation of Feynman Integrals

Method of choice: Canonical differential equations
For polylogarithmic FI, find basis transformation $\vec{g}=T \cdot \vec{f}$ such that [Gehrmann,Remiddi'99][Henn'13]
constant matrices

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \widetilde{M} \equiv \sum_{i} \tilde{a}_{i} \quad \log \underbrace{W_{i}}_{\text {letters }},
$$

Bottlenecks in the workflow:

1. Solving integration-by-parts (IBP) identities to determine basis \vec{f}
2. Finding transformation $\vec{g}=T \cdot \vec{f}$

Evaluation of Feynman Integrals

Method of choice: Canonical differential equations
For polylogarithmic FI, find basis transformation $\vec{g}=T \cdot \vec{f}$ such that [Gehrmann,Remiddi'99] [Henn'13]
constant matrices

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \widetilde{M} \equiv \sum_{i} \overbrace{\tilde{a}_{i}} \log \underbrace{W_{i}}_{\text {letters }},
$$

Bottlenecks in the workflow:

1. Solving integration-by-parts (IBP) identities to determine basis \vec{f}
2. Finding transformation $\vec{g}=T \cdot \vec{f}$

Could we predict kinematically dependent letters W_{i} beforehand?
Would reduce both steps to much easier, purely numeric problem!

Evaluation of Feynman Integrals

Method of choice: Canonical differential equations
For polylogarithmic FI , find basis transformation $\vec{g}=T \cdot \vec{f}$ such that [Gehrmann,Remiddi'99][Henn'13]
constant matrices

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \widetilde{M} \equiv \sum_{i} \overbrace{\widetilde{a}_{i}} \log \underbrace{W_{i}}_{\text {letters }},
$$

Bottlenecks in the workflow:

1. Solving integration-by-parts (IBP) identities to determine basis \vec{f}
2. Finding transformation $\vec{g}=T \cdot \vec{f}$

Could we predict kinematically dependent letters W_{i} beforehand?
Would reduce both steps to much easier, purely numeric problem!
In line with strategy of state of the art precision calculations, e.g.
[Abreu,Ita,Moriello,Page,Tschernow,Zeng'20]

The Landau equations

Yield specific values of (kinematic) parameters of any (Feynman) integral, for which it may become singular.

$$
f_{1}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{i \pi^{D / 2}} \int_{0}^{\infty} \prod_{i=1}^{E} d x_{i} \frac{\delta\left(\sum_{j} x_{j}-1\right)}{\left(\sum_{j} x_{j} D_{j}\right)^{\sum_{k} \nu_{k}}}
$$

where $D_{i}=-q_{i}^{2}+m_{i}^{2}$.

$$
x_{i} D_{i}=0 \forall i=1, \ldots E
$$

Landau equations:

$$
\frac{\partial}{\partial k_{l}} \sum_{i=1}^{E} x_{i} D_{i}=0, \quad \forall l=1, \ldots, L
$$

Formulated as conditions for the contour of integration to become trapped between two poles of integrand.

Believed for long to only provide information on where $W_{i}=0$.

This work

Evidence through two loops: Rational letters of polylogarithmic FI captured by Landau equations, when recast as polynomial of the kinematic variables of integral, known as the principal A-determinant E_{A} !

This work

Evidence through two loops: Rational letters of polylogarithmic FI captured by Landau equations, when recast as polynomial of the kinematic variables of integral, known as the principal A-determinant E_{A} !

Example: 'Two-mass easy' box with $p_{2}^{2}=p_{4}^{2}=0, p_{1}^{2}, p_{3}^{2} \neq 0$:

E_{A} equipped with natural factorization, $\left(s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}+p_{4}\right)^{2}\right)$

$$
E_{A}=\left(p_{1}^{2} p_{3}^{2}-s t\right) p_{1}^{2} p_{3}^{2} s t\left(p_{1}^{2}+p_{3}^{2}-s-t\right)\left(p_{3}^{2}-t\right)\left(p_{3}^{2}-s\right)\left(p_{1}^{2}-t\right)\left(p_{1}^{2}-s\right)
$$

where each factor is indeed a letter of the integral!

Outline

Introduction and Motivation

Feynman integrals, Landau singularities \& GKZ systems

One-loop principal A-determinants and symbol letters

Conclusions and Outlook

Feynman integrals in the Lee-Pomeransky representation:

$$
f_{1}=\frac{\Gamma(D / 2)}{\Gamma\left((L+1) D / 2-\sum_{i} \nu_{i}\right)} \int_{0}^{\infty} \prod_{i=1}^{E}\left(\frac{x^{\nu_{i}-1} d x_{i}}{\Gamma\left(\nu_{i}\right)}\right) \frac{1}{\mathcal{G}^{D / 2}}
$$

where $\mathcal{G}=\mathcal{U}+\mathcal{F}$, and for graph G associated to integral f_{1},

$$
\begin{aligned}
& \mathcal{U}=\sum_{\substack{T \text { a spanning } \\
\text { tree }^{1} \text { of } G}} \prod_{e \notin T} x_{e}, \\
& \mathcal{F}=\mathcal{U} \sum_{e \in E} m_{e}^{2} x_{e}-\sum_{\substack{F \text { a spanning } \\
2 \text {-forest }{ }^{2} \text { of } G}} p(F)^{2} \prod_{e \notin F} x_{e},
\end{aligned}
$$

are the $1^{\text {st }}$ and $2^{\text {nd }}$ Symanzik polynomials, of degree $L, L+1$ in the x_{i}. In this form, f_{1} is special case ${ }^{3}$ of \mathcal{A}-hypergeometric function as defined by Gelfand, Graev, Kapranov \& Zelevinsky (GKZ). [de la Cruz'19] [Klausen'19]
${ }^{1}$ Connected subgraph of G containing all vertices but no loops.
${ }^{2}$ Defined similarly, but with 2 connected components.
${ }^{3}$ Generic case: All \mathcal{G} polynomial coefficients are variables, different from each other.

Singularities of GKZ-systems

Let $\mathcal{G}=\sum_{j=1}^{m} c_{j} \prod_{i=1}^{E} x_{i}^{a_{i j}}, c_{j}$ all independent variables.
Values of c_{i} for which GKZ-system becomes singular are solutions to

$$
E_{A}(\mathcal{G})=0
$$

where $E_{A}(\mathcal{G})$ is the principal A-determinant of \mathcal{G} : Polynomial in c_{j} with integer coefficients, that vanishes whenever the system of equations

$$
\mathcal{G}=x_{1} \frac{\partial \mathcal{G}}{\partial x_{1}}=\ldots=x_{E} \frac{\partial \mathcal{G}}{\partial x_{E}}=0 \text { has a solution for } \vec{x} \in\left(\mathbb{C}^{*}\right)^{E}
$$

Singularities of GKZ-systems

Let $\mathcal{G}=\sum_{j=1}^{m} c_{j} \prod_{i=1}^{E} x_{i}^{a_{i j}}, c_{j}$ all independent variables.
Values of c_{i} for which GKZ-system becomes singular are solutions to

$$
E_{A}(\mathcal{G})=0
$$

where $E_{A}(\mathcal{G})$ is the principal A-determinant of \mathcal{G} : Polynomial in c_{j} with integer coefficients, that vanishes whenever the system of equations

$$
\mathcal{G}=x_{1} \frac{\partial \mathcal{G}}{\partial x_{1}}=\ldots=x_{E} \frac{\partial \mathcal{G}}{\partial x_{E}}=0 \text { has a solution for } \vec{x} \in\left(\mathbb{C}^{*}\right)^{E} .
$$

In practice, compute via theorem factorizing it into contributions from each face Γ of polytope with vertices $\left(a_{1 j}, \ldots, a_{E j}\right), j=1, \ldots, m$

$$
E_{A}(\mathcal{G})=\prod_{\Gamma} \Delta_{\Gamma}(\mathcal{G})
$$

where the A-discriminant $\Delta_{\Gamma}(\mathcal{G})$ also polynomial in c_{i}, that vanishes when

$$
\mathcal{G}=\frac{\partial \mathcal{G}}{\partial x_{1}}=\ldots=\frac{\partial \mathcal{G}}{\partial x_{E}}=0 \text { has a solution for } \vec{x} \in\left(\mathbb{C}^{*}\right)^{E}
$$

Example: Principal A-determinant of bubble

$\mathcal{G}=x_{1}+x_{2}+\left(m_{1}^{2}+m_{2}^{2}-p^{2}\right) x_{1} x_{2}+m_{1}^{2} x_{1}^{2}+m_{2}^{2} x_{2}^{2}$,

Interpretation of $E_{A}(\mathcal{G})$ polytope
$\operatorname{Newt}\left(E_{A}(\mathcal{G})\right)$, built out of exponents of $E_{A}(\mathcal{G})$ polynomial: Keeps track of triangulations of $\operatorname{Newt}(\mathcal{G})$.

Interpretation of $E_{A}(\mathcal{G})$ polytope
$\operatorname{Newt}\left(E_{A}(\mathcal{G})\right)$, built out of exponents of $E_{A}(\mathcal{G})$ polynomial: Keeps track of triangulations of $\operatorname{Newt}(\mathcal{G})$.

Cluster algebras also describe triangulations of geometric spaces
[Fomin,Zelevinsky'01] [Felikson,Shapiro,Tumarkin'11]
First-principle derivation of observed cluster-algebraic structure of Feynman integrals? [Chicherin,Henn,Papathanasiou'20] ... [He,Liiu,Tang,Yang' 22]

Generic n-point 1 -loop integrals

All $m_{i}, p_{i}^{2} \neq 0$ and different from each other

All Landau singularity information captured in modified Cayley matrix \mathcal{Y}, ${ }^{\left.\text {[Melrose }{ }^{\prime} 65\right]}$

$$
\mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \quad \begin{aligned}
& Y_{i i}=2 m_{i}^{2} \\
& Y_{i j}=m_{i}^{2}+m_{j}^{2}-s_{i j-1} \\
& s_{i j}=\left(p_{i}+\ldots+p_{j}\right)^{2}
\end{aligned}
$$

[^0]Generic n-point 1 -loop integrals
All $m_{i}, p_{i}^{2} \neq 0$ and different from each other

All Landau singularity information captured in modified Cayley matrix \mathcal{Y}, ${ }^{\text {[Melrose' } 65]}$

$$
\mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \quad \begin{aligned}
& Y_{i i}=2 m_{i}^{2} \\
& Y_{i j}=m_{i}^{2}+m_{j}^{2}-s_{i j-1} \\
& s_{i j}=\left(p_{i}+\ldots+p_{j}\right)^{2}
\end{aligned}
$$

because A-discriminants reduce to usual determinants:

- $\Delta_{\operatorname{Newt}(\mathcal{F})}(\mathcal{F})=\operatorname{det} Y$: Leading ${ }^{1}$ Landau singularity of type I (finite k)
- $\Delta_{\operatorname{Newt}(\mathcal{G})}(\mathcal{G})=\operatorname{det} \mathcal{Y}:$ Leading ${ }^{1}$ Landau singularity of type II $(k \rightarrow \infty)$
- Subleading Landau singularity where $x_{i_{1}}, \ldots, x_{i_{m}}=0 \sim$ Leading singularity of subgraph where internal edges i_{1}, \ldots, i_{m} removed [Klausen'21]

[^1]
Minors of modified Cayley matrix

For any matrix A with elements $a_{m n}$, let (j, k)-th minor of A be

$$
A\left[\begin{array}{l}
j \\
k
\end{array}\right] \equiv\left|\begin{array}{ccccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1, k-1} & k & a_{1, k+1} & \cdots & a_{1, N} \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2, k-1} & & a_{2, k+1} & \cdots & a_{2, N} \\
\vdots & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\
a_{j-1,1} & a_{j-1,2} & a_{j-1,3} & \cdots & a_{j-1, k-1} & a_{j-1, k+1} & \cdots & a_{j-1, N} \\
\vdots & a_{j+1,1} & a_{j+1,2} & a_{j+1,3} & \cdots & a_{j+1, k-1} & & a_{j+1, k+1} & \cdots
\end{array} a_{j+1, N}\right|,
$$

where shading indicates removal of row and column. Similarly $A\left[\begin{array}{l}i_{1} \ldots i_{k} \\ j_{1} \ldots j_{k}\end{array}\right]$, $A[\cdot]=\operatorname{det} A$.

Minors of modified Cayley matrix

For any matrix A with elements $a_{m n}$, let (j, k)-th minor of A be

$$
A\left[\begin{array}{l}
j \\
k
\end{array}\right]=\left|\begin{array}{ccccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1, k-1} & k & a_{1, k+1} & \cdots & a_{1, N} \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2, k-1} & & a_{2, k+1} & \cdots & a_{2, N} \\
\vdots & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\
a_{j-1,1} & a_{j-1,2} & a_{j-1,3} & \cdots & a_{j-1, k-1} & a_{j-1, k+1} & \cdots & a_{j-1, N} \\
\vdots & a_{j+1,1} & a_{j+1,2} & a_{j+1,3} & \cdots & a_{j+1, k-1} & & a_{j+1, k+1} & \cdots
\end{array} a_{j+1, N}\right|,
$$

where shading indicates removal of row and column. Similarly $A\left[\begin{array}{l}i_{1} \ldots i_{k} \\ j_{1} \ldots j_{k}\end{array}\right]$, $A[\cdot]=\operatorname{det} A$.

Principal A-determinant of generic 1-loop graphs

Gathering previous bits of information, arrive at

$$
E_{A}(\mathcal{G})=\mathcal{Y}\left[\cdot \cdot \cdot \prod_{i=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \ldots \prod_{i_{n-1}>\ldots>i_{1}=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i_{1} \ldots i_{n-1} \\
i_{1} \ldots i_{n-1}
\end{array}\right] \prod_{i=2}^{n+1} \mathcal{Y}_{i i}\right.
$$

Product of all diagonal k-dimensional minors of \mathcal{Y} with $k=1, \ldots, n+1$, except $\mathcal{Y}_{11}=0$.

$$
2^{n+1}-n-2 \text { factors, e.g. } 1,4,11,26,57,120 \text { factors for } n=1, \ldots, 6 \text {. }
$$

From 1-loop rational to square-root letters

Working assumption: Square-root letters produced by re-factorizing E_{A} using Jacobi determinant identities of the form

$$
p \cdot q=f^{2}-g=(f-\sqrt{g})(f+\sqrt{g}),
$$

where

1. p, q factors of E_{A}, i.e. rational letters.
2. Square-root letters $f \pm \sqrt{g}$ obtained contain leading singularity of the Feynman integral considered in second term.

From 1-loop rational to square-root letters

Working assumption: Square-root letters produced by re-factorizing E_{A} using Jacobi determinant identities of the form

$$
p \cdot q=f^{2}-g=(f-\sqrt{g})(f+\sqrt{g}),
$$

where

1. p, q factors of E_{A}, i.e. rational letters.
2. Square-root letters $f \pm \sqrt{g}$ obtained contain leading singularity of the Feynman integral considered in second term. [Cachazo'08]
Motivated by interpretation of 1-loop integrals as volumes of spherical simplices. [Davydychev,Delbourgo'99] Jacobi identities,

$$
A[\cdot] A\left[\begin{array}{ll}
i & j \\
i & j
\end{array}\right]=A\left[\begin{array}{l}
i \\
i
\end{array}\right] A\left[\begin{array}{l}
j \\
j
\end{array}\right]-A\left[\begin{array}{l}
i \\
j
\end{array}\right] A\left[\begin{array}{l}
j \\
i
\end{array}\right] \stackrel{A=A^{T}}{=} A\left[\begin{array}{l}
i \\
i
\end{array}\right] A\left[\begin{array}{l}
j \\
j
\end{array}\right]-A\left[\begin{array}{l}
i \\
j
\end{array}\right]^{2}
$$

crucial for their computation. Point 2 adopts widely observed pattern in 1and 2-loop computations.

All 1-loop letters I

Need only ratio $\frac{f-\sqrt{g}}{f+\sqrt{g}}$, as product already contained in rational alphabet. Letting $D=D_{0}-2 \epsilon$, obtain N letters of type,

All 1-loop letters II

In addition, $n(n-1) / 2$ letters of type,

$$
W_{1, \ldots,(i-1), \ldots,(j-1), \ldots, n}=\left\{\begin{array}{l}
\mathcal{\mathcal { Y } [\begin{array} { l }
{ i } \\
{ j }
\end{array}] - \sqrt { - \mathcal { Y } [\begin{array} { l }
{ \cdot } \\
{ \cdot }
\end{array}] } \begin{array} { l }
{ \mathcal { Y } [\begin{array} { l l }
{ i } & { j } \\
{ i } & { j }
\end{array}] }
\end{array}} \begin{array}{l}
\mathcal{Y}\left[\begin{array}{l}
i \\
j
\end{array}\right]+\sqrt{-\mathcal{Y}[\cdot]\left[\begin{array}{ll}
\mathcal{Y}\left[\begin{array}{ll}
i & j \\
i & j
\end{array}\right]
\end{array}\right.} \\
\mathcal{Y}\left[\begin{array}{ll}
1 & j \\
1 & i
\end{array}\right]-\sqrt{-\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & i & j \\
1 & i & j
\end{array}\right]} \\
\mathcal{Y}\left[\begin{array}{ll}
1 & j \\
1 & i
\end{array}\right]+\sqrt{-\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathcal{Y}\left[\begin{array}{lll}
1 & i & j \\
1 & i & j
\end{array}\right]}
\end{array}
\end{array}\right.
$$

All 1-loop letters III

Our procedure also predicts $\mathcal{Y}[:]$ and $\mathcal{Y}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as individual rational letters, but in fact only the ratio

$$
W_{1,2, \ldots, n}=\frac{\mathcal{Y}[\cdot]}{\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
$$

appears, as we'll get back to in next slide.

All 1-loop letters III

Our procedure also predicts $\mathcal{Y}[:]$ and $\mathcal{Y}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as individual rational letters, but in fact only the ratio

$$
W_{1,2, \ldots, n}=\frac{\mathcal{Y}[\cdot]}{\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
$$

appears, as we'll get back to in next slide.
Finally, obtain remaining letters of n-point graph by applying above formulas to all of its subgraphs.

All 1-loop letters III

Our procedure also predicts $\mathcal{Y}[:]$ and $\mathcal{Y}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as individual rational letters, but in fact only the ratio

$$
W_{1,2, \ldots, n}=\frac{\mathcal{Y}[\cdot]}{\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
$$

appears, as we'll get back to in next slide.
Finally, obtain remaining letters of n-point graph by applying above formulas to all of its subgraphs.

Total letter count: Assuming $n \leq d+1$ for external kinematics dimension d,

$$
|W|=2^{n-3}\left(n^{2}+3 n+8\right)-\frac{1}{6}\left(n^{3}+5 n+6\right)
$$

e.g. $|W|=1,5,18,57,166$ for $n=1, \ldots, 5$ and D_{0} even.

Verification through differential equations \& comparison with literature
From letter prediction, derived canonical differential equations through numeric IBP identities \Rightarrow confirmation.

By explicit computation up to $n=10$, infer general form, e.g. $n+D_{0}$ even:

$$
\begin{aligned}
d \mathcal{J}_{1 \ldots n}= & \epsilon d \log W_{1 \ldots n} \mathcal{J}_{1 \ldots n} \\
& +\epsilon \sum_{1 \leq i \leq n}(-1)^{i+\left\lfloor\frac{n}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots n} \mathcal{J}_{1 \ldots \widehat{i} \ldots n} \\
& +\epsilon \sum_{1 \leq i<j \leq n}(-1)^{i+j+\left\lfloor\frac{n}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots(j) \ldots n} \mathcal{J}_{1 \ldots \widehat{i} \ldots j \ldots n} .
\end{aligned}
$$

Verification through differential equations \& comparison with literature

From letter prediction, derived canonical differential equations through numeric IBP identities \Rightarrow confirmation.

By explicit computation up to $n=10$, infer general form, e.g. $n+D_{0}$ even:

$$
\begin{aligned}
d \mathcal{J}_{1 \ldots n}= & \epsilon d \log W_{1 \ldots n} \mathcal{J}_{1 \ldots n} \\
& +\epsilon \sum_{1 \leq i \leq n}(-1)^{i+\left\lfloor\frac{n}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots n} \mathcal{J}_{1 \ldots \widehat{i} \ldots n} \\
& +\epsilon \sum_{1 \leq i<j \leq n}(-1)^{i+j+\left\lfloor\frac{n}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots(j) \ldots n} \mathcal{J}_{1 \ldots \widehat{i} \ldots \bar{j} \ldots n} .
\end{aligned}
$$

Furthermore, compared to previous results for D_{0} even based on

1. the diagrammatic coaction $\left.{ }^{[A b r e u, B r i t t o, D u h r, G a r d i 1 ~} 17\right]$
2. the Baikov representation ${ }^{[C h e n, M a, ~ Y a n g ' ~}{ }^{22]}$

Agreement in form of CDE, as well as in letters for orientations presented in 2, see also.

Limits of generic to non-generic graphs

Proved that E_{A} has well-defined limit when any $m_{i}^{2}, p_{j}^{2} \rightarrow 0$, namely it is unique regardless of the order with which we send them to zero.

Limits of generic to non-generic graphs

Proved that E_{A} has well-defined limit when any $m_{i}^{2}, p_{j}^{2} \rightarrow 0$, namely it is unique regardless of the order with which we send them to zero.

Limit of E_{A} when single parameter x takes value a may be defined as

$$
\lim _{x \rightarrow a} E_{A}=\left.\frac{\partial^{l} \widetilde{E_{A}}}{\partial x^{l}}\right|_{x=a} \neq 0, \text { with }\left.\frac{\partial^{l^{\prime}} E_{A}}{\partial x^{l^{\prime}}}\right|_{x=a}=0 \text { for } l^{\prime}=0, \ldots, l-1
$$

While multivariate generalization straightforward, highly nontrivial that limit does not depend on order. E.g. triangle Cayley in limit $p_{i}^{2} \rightarrow 0$:

$$
\operatorname{det} Y=0+2 \sum_{i=1}^{3} p_{i}^{2}\left(m_{i}^{2}-m_{i-1}^{2}\right)\left(m_{i+1}^{2}-m_{i-1}^{2}\right)+\mathcal{O}\left(p_{j}^{2} p_{k}^{2}\right)
$$

While limits of individual factors in E_{A} depend on limit order, E_{A} as a whole does not, since different orders produce factors it already contains.

Strong evidence that alphabet of non-generic FI correctly obtained as limit of generic one, in line with previous observations.

Mathematica Notebook

(- Symbol alphabets*)
(- Generic Box in even dimension *)
$\mathrm{D} 日=4$;
Evaluateletter [AllLettersList[4]] // Short
(- Two-mass easy box linit *)
Factor [PLimit [\%, ms [1] $\rightarrow \theta$, $\mathrm{ms}[2] \rightarrow \theta, \mathrm{ms}[3] \rightarrow \theta, \mathrm{ms}[4] \rightarrow \theta, \mathrm{s}[1,3] \rightarrow \theta, \mathrm{ps}[2] \rightarrow \theta]]$;
(* In the limit the letters become multiplicatively dependent. Since all of them are rational, a basis may be found as follows *) dlexpand[dl/e*];

Length [${ }^{2}$]
(* Product indeed yields corresponding limit of the principal. A-determinant *)
LS2meBox - Times ee ax
(* Differential equations *)
(*Box basis*)
basis ee Range [4]
(*Box canonical differential equations*) CDEs [3] // MatrixForm
$\mathrm{ms}(1] \ll 24 \gg<\mathrm{ms}[3)^{2} \mathrm{ps}[1)^{2}-2 \mathrm{~ms}[3] \times \mathrm{ms}[4] \mathrm{ps}[1]^{2}+\mathrm{ms}[4]^{2} \mathrm{ps}[1]^{2}-2 \mathrm{~ms}[1] \times \mathrm{ms}[3] \quad \mathrm{ps}[1] \times \mathrm{ps}[2]+$
$2 \mathrm{~ms}[1]-\mathrm{ms}[4]$ ps $\left.[1] \mathrm{ps}[2]+\propto 172 x+\mathrm{ms}[3]^{2} \mathrm{~s}[2,3]^{2}-2 \mathrm{~ms}[1] \times s[1,2] \mathrm{s}[2,3]^{2}-2 \mathrm{~ms}[3] \mathrm{s}[1,2] \mathrm{s}[2,3]^{2}+\mathrm{s}[1,2]^{2} \mathrm{~s}[2,3]^{2}\right)$

syortu

Oul| (100) $=10$

Two-loop example of principal A-determinant-alphabet relation

$$
\begin{aligned}
& \text { 1-mass slashed box, } \\
& p_{1}^{2} \neq 0, p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0
\end{aligned}
$$

$$
E_{A}(\mathcal{G})=\left(p_{1}^{2}-t\right)\left(p_{1}^{2}-s\right)\left(p_{1}^{2}-s-t\right)(s+t) s t p_{1}^{2}
$$

Agrees precisely with (2 dHPL) alphabet known to describe 2-loop master integrals with these kinematics! [Gehrmann,Remiddiºo]

Conclusions and Outlook

Evidence that rational letters of polylogarithmic FI captured by polynomial form of Landau equations in terms of principal A-determinant E_{A} !

- Through 2 loops
- 1 loop: Also obtain square-root letters from Jacobi identities + CDE
- Strong evidence for well-defined limits to non-generic kinematics
- Easy-to-use Mathematica file with our results

Next Stage

1. More efficient evaluation of $E_{A}+$ more 2-loop checks
2. New predictions for pheno, e.g. letters for $2 \rightarrow 3$ with 2 massive legs
[Les Houches Standard Model Precision Wishlist'21]
3. Explore implications for beyond-polylogarithmic case

Further mathematical properties of Feynman integrals:Cohen-Macauley

Guarantees that

$$
\# \text { master integrals = volume of } \operatorname{Newt}(\mathcal{G})
$$

Proved it for currently largest known class of 1-loop integrals, including completely on-shell/massless. For earlier work, see $\left.{ }^{[T e l l a n d e r, H e l m e r}{ }^{\top} 21\right][$ Walther' 22$]$

Relation to other properties:

Further mathematical properties of Feynman integrals

 :Generalized permutohedron (GP) propertyA polytope $P \subset \mathbb{R}^{n}$ is GP if and only if every edge is parallel to $\mathbf{e}_{i}-\mathbf{e}_{j}$, where \mathbf{e}_{i} is unit vector on coordinate axis, for some $i, j \in\{1, \ldots, n\}$. E.g.

Practical utility: This property facilitates new methods for fast Monte Carlo evaluation of Feynman integrals. $\left.{ }^{\left[B o r i n s k y^{\prime} 20\right] ~[B o r i n s k y, M u n c h, T e l l a n d e r ' ~} 23\right]$

Previously proven for generic kinematics. ${ }^{\left[S c h u l t k a a^{18]}\right.}$ Here: Generalized to any graph where all external vertices joined by massive path.

[^0]: ${ }^{1}$ Where all $x_{i} \neq 0$

[^1]: ${ }^{1}$ Where all $x_{i} \neq 0$

