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Introduction

• Einstein published his General Theory of Relativity (GR) in 1915, and redefines Newton’s laws of gravitation.

• Three main cosmological phenomena which GR unables to describe

(i) Dark Matter

(ii) Inflation

(iii) Dark Energy

• During the inflationary phase, the Universe grew exponentially, expanded rapidly and in a short span of time
attained an immense size.
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Introduction

• The accelerating expansion of the Universe was first discovered in 1998 by the observations of Type Ia supernovae
(SNe Ia)1,2.

• There are essentially two approaches one could take when attempting to solve the dark matter, dark energy and
inflation problems, that is either to modify matter part (by adding additional dark matter, dark energy component)
or modify geometric part (to study modified theory of gravity).

• This new gravity is known as the teleparallel equivalent of GR (TEGR), which can be generalized to the commonly
called the f (T )3, gravity by taking a nonlinear modification of the TEGR Lagrangian.

• The TEGR is formulated in terms of the tetrad field and of the corresponding torsion tensor, which is the
antisymmetric part of the Weitzenböck connection.

1A.G Riess, et al., Astrons. J., 116, 1009 (1998).
2S. Perlmutter, Astrophys. J. , 517, 565 (1999).
3R. Ferraro, F. Fiorini, Phys. Rev. D, 78, 124019, (2008).
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Dynamical systems framework:

• What is a dynamical system analysis in cosmology?

• Dynamical system approach 4 is an effective tool to examine the entire asymptotic behavior of the cosmological
model and it allows us to avoid the challenge of solving non-linear cosmological equations. Through the careful
choice of the dynamical variables, a given cosmological model can be written as an autonomous system of differ-
ential equations.

• The dynamical systems technique offers a crucial approach in the toolkit of probes of background cosmology.
It offers an avenue to explore what critical points a model has associated with it, and what are the natures of
each of these points. These points can then be correlated with the evolution of the Universe as evidenced from
observational cosmology, which can be a compelling first test of any proposed model stemming from modified
gravity.

• This technique also describes the overall dynamics of the Universe by analyzing the local asymptotic behavior
of critical points of the system and connecting them to the major cosmological epochs of the Universe.

• For example, the radiation and matter-dominated periods correlate to saddle points (unstable), but late-time
(the dark energy sector) dominance normally corresponds to a stable point.

4J. Wainwright and G. Ellis, Dynamical Systems in Cosmology, Cambridge University Press, (1997).
Lokesh Kumar Duchaniya (BITS-Pilani, Hyderabad) Corfu–2023 5 / 24



Mathematical Formalism :
We consider a flat isotropic and homogeneous Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric.

ds2 = −dt2 + a(t)2(dx2 + dy 2 + dz2) , (1)

Where a(t) is the scale factor and the tetrad field can be described as follow,

eAµ = (1, a(t), a(t), a(t)) , (2)

the tetrad eAµ (and its inverses Eµ
A ) relate to the metric as the fundamental variable of theory through the

relations,

gµν = eAµe
B
ν ηAB , ηAB = Eµ

A E
ν
B gµν , (3)

The tetrads must satisfy orthogonality conditions which take of the form,

eAµE
µ
B = δAB , eAµE

ν
A = δνµ , (4)

The Weitzenböck connection can be defined as,

Γσ
νµ := Eσ

A

(
∂µe

A
ν + ωA

Bµe
B
ν

)
, (5)
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Mathematical Formalism :

The torsion tensor can be described as follow,

Tσ
µν := 2Γσ

[νµ] , (6)

By an appropriate combination of contractions of torsion tensors, a torsion scalar can be written as follow,

T :=
1

4
Tα

µνT
µν

α +
1

2
Tα

µνT
νµ
α − Tα

µαT
βµ
β , (7)

Further, the superpotential and contortion tensor can be expressed as,,

S µν
θ ≡ 1

2
(Kµν

θ + δµθT
αν

α − δνθT
αµ

α) , (8)

Kµν
θ ≡ 1

2
(T νµ

θ + T µν
θ − Tµν

θ) (9)
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Mathematical Formalism of f (T ) Gravity:

The action of f (T ) gravity,

S =
1

16πG

∫
d4x e [T + f (T ) + Lm], (10)

The field equations of f (T ) gravity,

e−1∂µ(eE
ρ
AS

µν
ρ )[1 + fT ] + Eρ

AS
µν

ρ ∂µ(T )fTT − Eλ
AT

ρ
µλS

νµ
ρ [1 + fT ] +

1

4
Eν
A [T + f (T )] = 4πGEρ

AT
ν

ρ (11)

T = 6H2 (12)

The field equations,

3H2 = 8πGρm − f

2
+ TfT (13)

Ḣ = − 4πG(ρm + pm)

1 + fT + 2TfTT
(14)
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Mathematical Formalism of f (T ) Gravity:
Comparing the Einstein GR field equation to (13), (14) respectively,

ρde ≡ 1

16πG
[−f + 2TfT ] (15)

pde ≡ − 1

16πG

[
−f + TfT − 2T 2fTT

1 + fT + 2TfTT

]
(16)

We also obtain the dark energy and total EOS parameter and deceleration parameter as,

ωde = −1 +
(fT + 2TfTT ) (−f + T + 2TfT )

(1 + fT + 2TfTT )(−f + 2TfT )
≡ pde

ρde
(17)

ωtot. = −1− 2Ḣ

3H2
≡ pm + pde

ρm + ρde
(18)

q = −1− Ḣ

H2
(19)

We can also write the first Friedmann equation in terms of density parameters as,

Ωde +Ωm = 1 (20)
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Dynamical system framework

In one of our previous works 5, we studied dynamical system analysis at the background level. In this work, we
are interested to broaden it further by including the impact of perturbations. To do this, the equation governing
the growth of matter perturbations on sub-horizon scales can be invoked in the form 6

δ̈ + 2H δ̇ =
4πGρδ

1 + fT
(21)

where δ = δρ
ρ

is the matter over density . Referring Eqn. (13), Eqn.(14) and (21), initially we set up the

dynamical system of the background and perturbed equations for a general function of f(T) as

x = − f

6H2
, y = −2fT , σ =

d(lnδ)

d(lna)
(22)

5L. K. Duchaniya and Santosh V. Lohakare and B. Mishra and S. K. Tripathy, EPJC, 82, 448, (2022).
6Fotios K. Anagnostopoulos and Spyros Basilakos and Emmanuel N. Saridakis, Physical Review D, 08, 100, (2019).
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Dynamical system framework

The background cosmological parameters Ωm, Ωde , ωde , ωtot and q can expressed as

Ωm = 1− x − y (23)

Ωde = x + y (24)

ωde =
−2x − y + 4TfTT

2(x + y)(1 + fT + 2TfTT )
, (25)

ωtot = −1− (x + y − 1)

(1 + fT + 2TfTT )
, (26)

q = −1− 3(x + y − 1)

2(1 + fT + 2TfTT )
. (27)
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Dynamical system framework

In term of the dynamical variables of equation, the cosmological equations can be written as an autonomous
system as below

dx

dN
= − Ḣ

H2
(y + 2x) , (28)

dy

dN
= −4

Ḣ

H2
(TfTT ) , (29)

dσ

dN
= −σ(σ + 2)− 3(x + y − 1)

(2− y)
− Ḣ

H2
σ , (30)

Ḣ
H2 = 3(x+y−1)

2(1+fT+2TfTT )
.
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Model-I

We choose the logarithmic form of f (T ) 7,

f (T ) = βT ln

(
T

T0

)
(31)

dx

dN
= −3(x + y − 1)(2x + y)

(2 + 4β − y)

dy

dN
= −12β(x + y − 1)

(2 + 4β − y)

dσ

dN
= −σ(σ + 2)− 3(x + y − 1)

(
1

(2− y)
+

σ

(2 + 4β − y)

)
ωde =

−4β + 2x + y

(x + y)(−4β + y − 2)

ωtot =
4β + 2x + y

−4β + y − 2

q = −1 +
3(x + y − 1)

−4β + y − 2

7Y. Zhang, H. Li, Y. Gong, and Z.-H. Zhu, JCAP, 07, 2011, (2011).
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Model-I

Table 1: Critical points for the dynamical system.

C.P. xc yc σc ωde ωtot q Ωde Ωm Exists for

A1 x −2x 1 0 0 1
2 −x 1 + x Always

A2 x −2x − 3
2 0 0 1

2 −x 1 + x Always

A3 x 1 − x −2 −1 + 8β
1+4β+x −1 −1 1 0 Always

A4 x 1 − x 0 −1 + 8β
1+4β+x −1 −1 1 0 Always

Table 2: Eigenvalues and stability condition.

C.P. Stability Conditions λ1 λ2 λ3

A1 Saddle Unstable 0 − 5
2 3

A2 Node Unstable 0 5
2 3

A3 Saddle Unstable 0 −3 2
A4 Node Stable 0 −3 −2
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Model-I

The selected trajectory moved from matter dominated to dark-energy-dominated critical points. we can easily
observe the transition of the trajectory like A2 (node unstable) →A1 (saddle unstable) →A4 (node stable).
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Figure 1: Plots for model-I. Initial conditions are x = 10−2, y = 10−6 and β = 0.0001.

The evolutionary behavior of the density parameters in redshift
(
N = ln( 1

1+z
)
)
. At present (vertical dashed line),

as the observation revealed, dark matter and dark energy predominate. We obtain Ωde ≈ 0.7 and Ωm ≈ 0.3.
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Evolution behavior of the EoS and deceleration parameters

• The total EoS parameter begins with a matter dominated value of 0, and finally approaches −1 as the role of
dark energy becomes more significant.

• We also notice the dark energy EoS parameter and at present, ωde ≈ −1. Which is compatible with the present
Planck Collaboration result [ωde(z = 0) = −1.028± 0.032]. 8

• The deceleration parameter shows a transition from deceleration to acceleration with the transition at z = 0.59,
which is consistent with the observational constraint [ztrans. = 0.7679+0.1831

−0.1829].
9

• The present value of the deceleration parameter can be obtained as, q(z = 0) ≈ −0.57, consistent with the
visualized cosmological observations. 10

8Planck Collaboration, N. Aghanim et al., Astron. Astrophys., 641, A6 (2020).
9S. Capozziello, O. Farooq, O. Luongo, and B. Ratra, Phys. Rev, D, 90, 044016 (2014).

10D. Camarena and V. Marra, Rev. Res., 2, 013028 (2020).
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Model-II

We consider the power law form of f (T ) 11 as,

f (T ) = f0(−T )m, (32)

dx

dN
= −3(x + y − 1)(2x + y)

(2 + (1− 2m)y)
,

dy

dN
=

6y(m − 1)(x + y − 1)

(2 + (1− 2m)y)
,

dσ

dN
= −σ(σ + 2)− 3(x + y − 1)

(2− y)
− 3σ(x + y − 1)

(2 + (1− 2m)y)
.

ωde =
(2m − 1)y + 2x

((2m − 1)y − 2)(x + y)
,

ωtot = −1 +
2(x + y − 1)

(2m − 1)y − 2
,

q = −1 +
3(x + y − 1)

(2m − 1)y − 2
.

11G. R. Bengochea and R. Ferraro, phys. Rev. D, 86, 124019, (2012).
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Model-II

Table 3: Critical points for the dynamical system.

C.P. xc yc σc ωde ωtot q Ωde Ωm Exists for

B1 0 0 1 − 0 1
2 0 1 Always

B2 0 0 − 3
2 − 0 1

2 0 1 Always

B3 x 1 − x −2 x(2m−3)−2m+1
x(2m−1)−2m+3 −1 −1 1 0 Always

B4 x 1 − x 0 x(2m−3)−2m+1
x(2m−1)−2m+3 −1 −1 1 0 Always

Table 4: Eigenvalues and stability condition.

C.P. Stability Conditions λ1 λ2 λ3

B1 Unstable 3 − 5
2 −3(m − 1)

B2 Unstable 3 5
2 −3(m − 1)

B3 Unstable 0 2 − 3(3−2m+2x−x2+2mx2)
(1+x)(3−2m−x+2mx)

B4 Stable for ( x|m) ∈ R 0 −2 − 3(3−2m+2x−x2+2mx2)
(1+x)(3−2m−x+2mx)
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Model-II

The trajectories show a path from the matter-dominated unstable critical points B1 and B2 to the stable dark
energy-dominated critical point B4 (B2→B1→B4).
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Figure 2: Plots for model-II. Initial conditions are x = 10−3, y = 10−6 and m = 0.5.
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• We also notice the dark energy EoS parameter and at present, ωde ≈ −1. Which is compatible with the present
Planck Collaboration result [ωde(z = 0) = −1.028± 0.032]. 12

• The deceleration parameter shows a transition from deceleration to acceleration with the transition at z = 0.64,
which is consistent with the observational constraint [ztrans. = 0.7679+0.1831

−0.1829].
13

• The present value of the deceleration parameter can be obtained as, q(z = 0) ≈ −0.62, consistent with the
visualized cosmological observations. 14

12Planck Collaboration, N. Aghanim et al., Astron. Astrophys., 641, A6 (2020).
13S. Capozziello, O. Farooq, O. Luongo, and B. Ratra, Phys. Rev, D, 90, 044016 (2014).
14D. Camarena and V. Marra, Rev. Res., 2, 013028 (2020).
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Outcome of Study

• In the present work we performed a combined dynamical system analysis of both background and
perturbation equations.

• We utilize the dynamical variables together with the equations of motion, are then used to derive the system
of autonomous equations which express the behaviour of the model in phase space. These first order
equations of motion of the dynamical variables are represented as derivatives with respect to N = ln a,
which shows the behaviour of the system in a more direct way.

• For both cases, we obtain a matter-dominated saddle point characterized by the correct growth rate of
matter perturbations, followed by the transition to a stable dark-energy dominated accelerated universe in
which matter perturbations remain constant.

• For the critical points in the de-Sitter phase, both the values of the dark energy and total EoS parameter
and deceleration parameter are −1, which confirms the accelerating model with the ΛCDM-like behavior.

• We have obtained the present value of the matter and dark energy density parameters are Ωm ≈ 0.3 and
Ωde ≈ 0.7 and it fits the recent suggestions from cosmological observations.

Lokesh Kumar Duchaniya (BITS-Pilani, Hyderabad) Corfu–2023 23 / 24



Lokesh Kumar Duchaniya (BITS-Pilani, Hyderabad) Corfu–2023 24 / 24


