Sterile neutrinos (and µ-term phenomenology)
 from D-brane string models

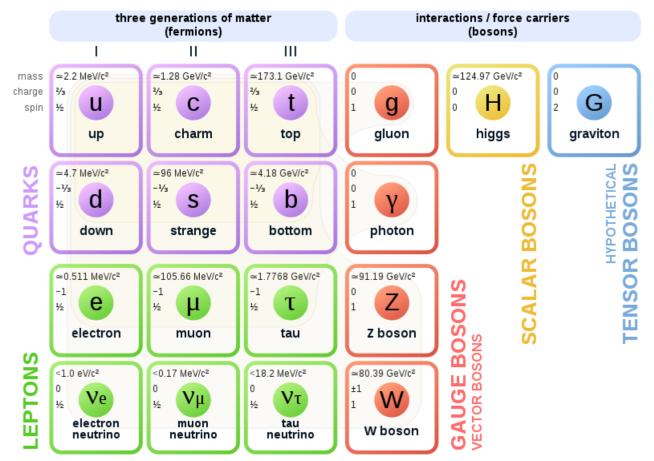
Christos Kokorelis American University of Baghdad-Iraq

Workshop on Standard Model and Beyond – Corfu- 29/8/2023

OUTLINE

•Neutrino (s) mass in the Standard Model

•Neutrino (s) mass **beyond** the Standard Model


•Neutrino (s) masses in (non-SUSY intersecting brane) models

•**Sterile Neutrinos** + mass limits in (non-SUSY intersecting brane) models

• • models with :	
gauged baryon	number (stable proton)
	+ right
handed neutrinos	
+ 9	sterile neutrinos

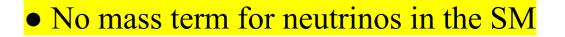
STANDARD MODEL neutrinos

Standard Model of Elementary Particles and Gravity

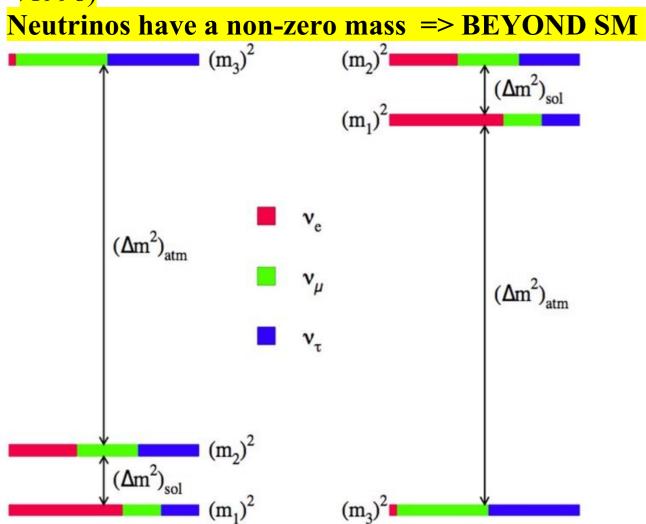
Accommodates 3 generations of neutrinos

NO Mass term for neutrinos

• Baryon (B) &


Lepton (L) number \rightarrow classically conserved (global abelian symmetries)

•B & L broken non-perturbatively


t'Hooft, Klinkhammer, & Manton

•B-L conserved

NEUTRINOS beyond the SM

- A mass can only be introduced beyond the SM e.g. by adding a right handed neutrino(s)
 - Discovery of neutrino oscillations
 (Super-Kamiokande experiment /1998)

normal hierarchy inverted hierarchy http://www.hyper-k.org/en/physics/phys-hierarchy.html • No DM candidate at SM- need to introduce new particles beyond the SM

More info

• Dark Matter (DM) contributes five times more to the energy of the Universe than ordinary matter.

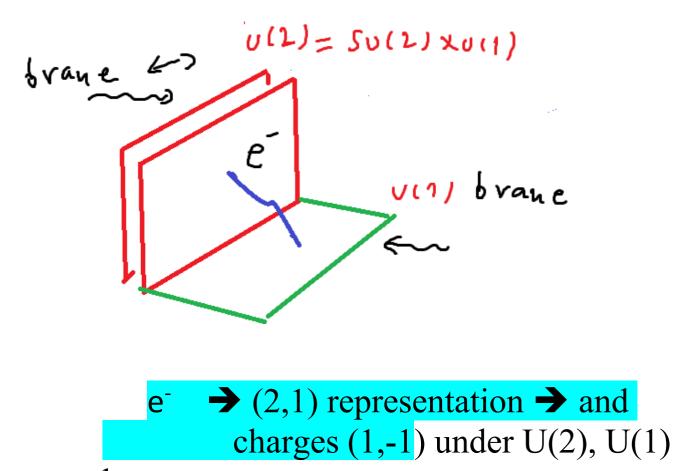
• (Weakly interacting) dark matter candidates => sterile neutrinos of KeV masses + with small mixing with active neutrinos.

See e.g.

Miguel D. Campos1, and Werner Rodejohann <u>https://arxiv.org/pdf/1605.02918.pdf;</u>

Light sterile neutrinos : A white paper, <u>https://arxiv.org/pdf/120</u> <u>4.5379.pdf;</u>

STRING THEORY


•Non-SUSY models with (gauged) B & L

Particles

 localized among <u>intersecting</u>
 branes

What is an <u>intersecting brane</u>? A higher dimensional hypersurface

Simplest representation:

branes resp.

Standard model at the string scale \rightarrow Gauge Group :

SU(3)a x SU(2)b x U(1)a x U(1) b x U(1)c x U(1) d x U(1)e The models are NON-SUSY ==> BUT predict the existence of 1 or 2 SUSY particles \rightarrow sneutrino C.K

Matter Fields		Intersection	Q_a	Q_b	Q_c	Q_d	Q_e	Y
Q_L	(3, 2)	$I_{ab} = 1$	1	-1	0	0	0	1/6
q_L	2(3, 2)	$I_{ab^{\star}} = 2$	1	1	0	0	0	1/6
U_R	$3(\bar{3}, 1)$	$I_{ac} = -3$	-1	0	1	0	0	-2/3
D_R	$3(\bar{3}, 1)$	$I_{ac^{\star}} = -3$	-1	0	-1	0	0	1/3
L	2(1,2)	$I_{bd} = -2$	0	-1	0	1	0	-1/2
l_L	(1, 2)	$I_{be} = -1$	0	-1	0	0	1	-1/2
N_R	2(1,1)	$I_{cd} = 2$	0	0	1	-1	0	0
E_R	2(1,1)	$I_{cd*} = -2$	0	0	-1	-1	0	1
ν_R	(1,1)	$I_{ce} = 1$	0	0	1	0	-1	0
e_R	(1,1)	$I_{ce^{\star}} = -1$	0	0	-1	0	-1	1

Table 1: Low energy fermionic spectrum of the five stack string scale $SU(3)_C \otimes SU(2)_L \otimes U(1)_a \otimes U(1)_c \otimes U(1)_d \otimes U(1)_e$, type I D6-brane model together with its U(1) charges. Note that at low energies only the SM gauge group $SU(3) \otimes SU(2)_L \otimes U(1)_Y$ survives.

•Number of fermions -> Intersection number

•Hypercharge

$$Y = \frac{1}{6}U(1)_a - \frac{1}{2}U(1)_c - \frac{1}{2}U(1)_d - \frac{1}{2}U(1)_e$$

•B is a gauged symmetry – All U1)–mixed gauge anomalies + cubic gauge anomalies cancel via a generalized Green-Schwarz mechanism

$$\begin{split} N_{a}m_{a}^{1}m_{a}^{2}m_{a}^{3}\int_{M_{4}}B_{2}^{o}\wedge F_{a} & ; \quad n_{b}^{1}n_{b}^{2}n_{b}^{3}\int_{M_{4}}C^{o}\wedge F_{b}\wedge F_{b}, \\ N_{a}n^{J}n^{K}m^{I}\int_{M_{4}}B_{2}^{I}\wedge F_{a} & ; \quad n_{b}^{I}m_{b}^{J}m_{b}^{K}\int_{M_{4}}C^{I}\wedge F_{b}\wedge F_{b} , \end{split}$$

+ "PREDICTS"

• a Stringy explanation of

 $b \rightarrow s\ell^+ \ell^-$ anomalies A. Celis, W. Feng, D. Lust $\downarrow \downarrow$ Stringy Z' boson -> nonnegligible couplings to the first two quark generations Z' Mass \rightarrow ~ [3.5, 5.5] TeV,

"possible to discover such a state" directly during the next LHC runs via Drell-Yan production in the di-electron or di-muon decay channels

 $Br(Z' \to \mu^+ \mu^-)/Br(Z' \to e^+ e^-) \sim [0.5-0.9]$

NEUTRINO MASSES

$$\begin{split} Y_{j}^{U}Q_{L}U_{R}^{j}h_{1} + Y_{j}^{D}Q_{L}D_{R}^{j}H_{2} &+ \\ Y_{ij}^{u}q_{L}^{i}U_{R}^{j}H_{1} + Y_{ij}^{d}q_{L}^{i}D_{R}^{j}h_{2} + \\ Y_{h}^{l}\ l_{L}^{h}\ \nu_{R}^{h}\ h_{1} + \ Y_{h}^{e}l_{L}^{h}e_{R}^{h}H_{2} &+ \\ Y_{ij}^{N}L^{i}N_{R}^{j}h_{1} + Y_{ij}^{E}L_{i}E_{R}^{j}H_{2} + \ h.c \\ i = 1, 2, \ j = 1, 2, 3, \ h = 1 \end{split}$$

can also originate via chiral symmetrybreaking

$$\alpha'(LN_R) (Q_L U_R)^*, \ \alpha'(l\nu_R)(q_L U_R)$$

C.K Ibanez, Marchesano, Rabadan

From u-quark chiral condensate

$$\frac{\langle u_R u_L \rangle}{M_s^2} = \frac{(240 M eV)^3}{M_s^2}$$

Mv's ~(0.1-10) eV atmospheric neutrino data when $M^{\text{string}} \sim 1$ - few TeV

STERILE NEUTRINOS

Sterile neutrinos GAUGE THEORY → Inverse See Saw

 $\lambda_1 \nu_R \nu_L H + \lambda_2 \nu_R H N + \lambda_3 \frac{1}{M_{GUT}} \bar{K}^2 N N$

$$m_D = \lambda_1 \langle H \rangle, \ V_R = \lambda_2 \langle H \rangle, \ \mu = \frac{\lambda_3}{M_{GUT}} \langle \tilde{\bar{K}} \rangle^2$$

•Sterile neutrinos in String theory

$$\left(\begin{array}{ccc} 0 & m_D^T & 0 \\ m_D & 0 & V_R \\ 0 & V_R & \mu \end{array}\right)$$

Valle & Mohapatra, Leontaris, Faraggi & Guzzi

Intersecting Brane models sterile v's

Experimental constraints for sterile neutrino 1) Oscillation experiments

The Daya Bay and Bugey-3 reactor experiments provide an upper limit

 $\sin^2 2\theta_{14} \lesssim 0.06 \ _{90\% \text{ C.L.}} \Delta m_{41}^2 \approx 1.75 \text{ eV}^2$

2) β-decay experiments

The β -decay of tritium can produce sterile neutrinos through mixing, which leads to a distortion in the electron energy spectrum. The current constraints on the mixing parameter, established by the non-detection of such distortion $|U_{e4}|^2 \leq 10^{-2} - 10^{-3}$ 10 eV < Sterile masses < 10 KeV

- 3) X-ray telescope
- 4) Phase space bound
- 5) Constraints from early Universe

Experimental constraints for <u>neutrinos</u>:

Katrin experiment $: Mv \le 0.8 eV$

•For baryon number conserving intersecting Dbrane models

eigenstate basis (ν_L, ν_R, N_1)

$$M_{\nu} = \begin{pmatrix} 0 & m_D & m_{\Sigma} \\ m_D & 0 & m_N \\ m_{\Sigma} & m_N & 0 \end{pmatrix}$$

⇔

$$\sqrt{m_D^2 + m_N^2 + m_{\Sigma}^2} + \frac{m_D m_N m_{\Sigma}}{m_D^2 + m_N^2 + m_{\Sigma}^2} - \frac{3(m_D m_N m_{\Sigma})^2}{2(m_D^2 + m_N^2 + m_{\Sigma}^2)^{5/2}} + .$$

$$M^{\text{sterile}} = 1.75 \text{ eV } \&$$

$$m^{\text{vL}} = 0.8 \text{ eV} \Rightarrow$$

$$m^{\text{vR}} > 9.6 \text{ eV}$$

Antoniadis, C.K