Dark Matter in ATLAS and CMS

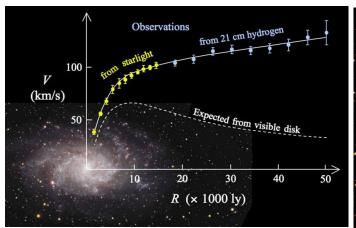
BISNUPRIYA SAHU

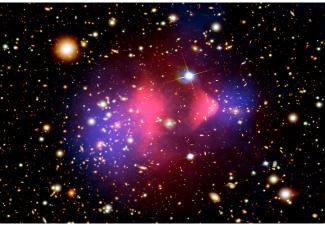
University of Hyderabad, India
On behalf of the CMS and ATLAS collaborations

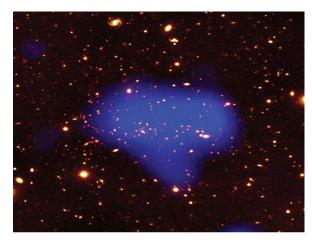
23rd Hellenic School and Workshops on Elementary Particle Physics and Gravity, Corfu, Greece 2023

Workshop on the Standard Model and Beyond

August 30th 2023







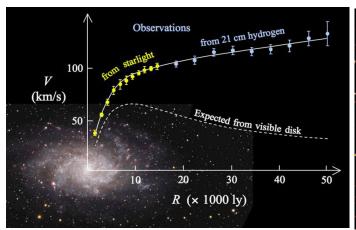
Introduction

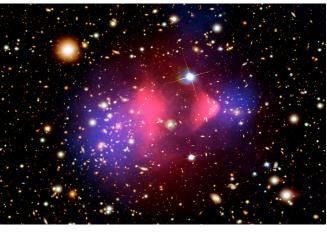
1. Rotation Curve Galaxy

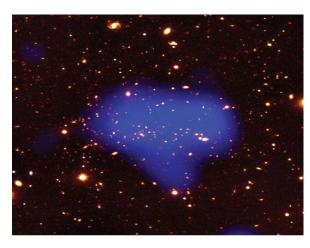
2. Bullet Cluster

3. Hot gas in clusters of galaxies

Dark Matter:


Electrically Neutral
Interact only through gravity
Weakly Interacting Massive Particles (WIMPs)





Introduction

1. Rotation Curve Galaxy

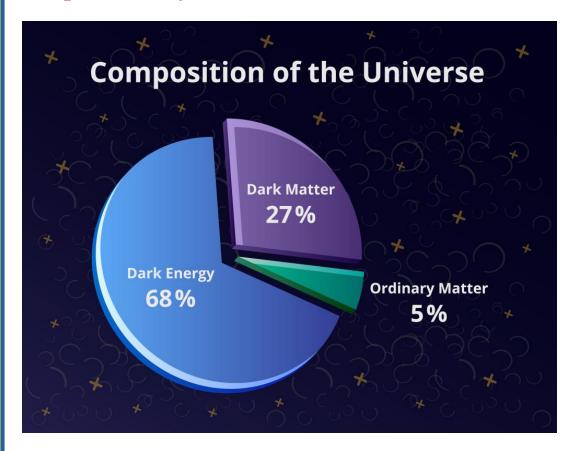
2. Bullet Cluster

3. Hot gas in clusters of galaxies

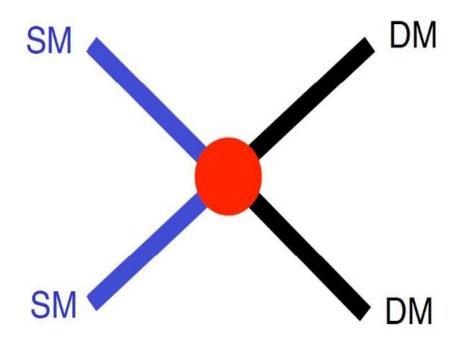
Dark Matter:

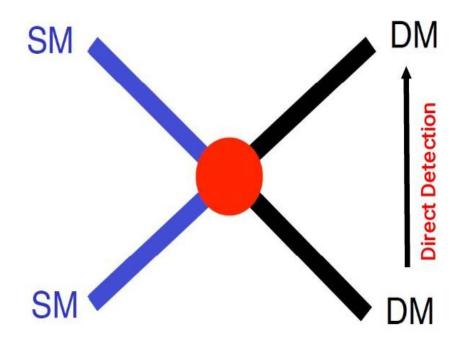
Electrically Neutral Interact only through gravity Weakly Interacting Massive P

NO DIRECT OBSERVATION

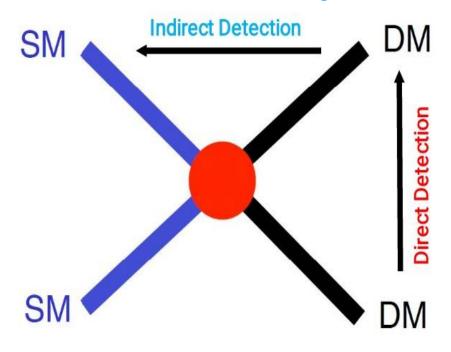


Composition of Universe

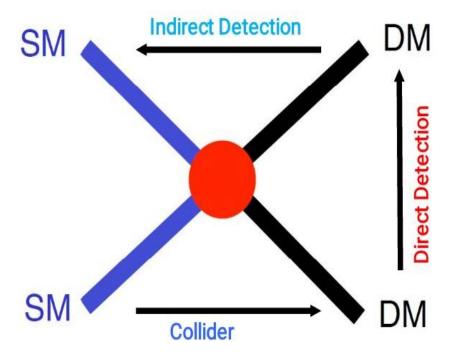

DM is six times more abundant than baryons


Three ways to detect DM

Goal is to maintain the theoretical connection between these approaches


Scattering of DM particles on nuclei of detector material

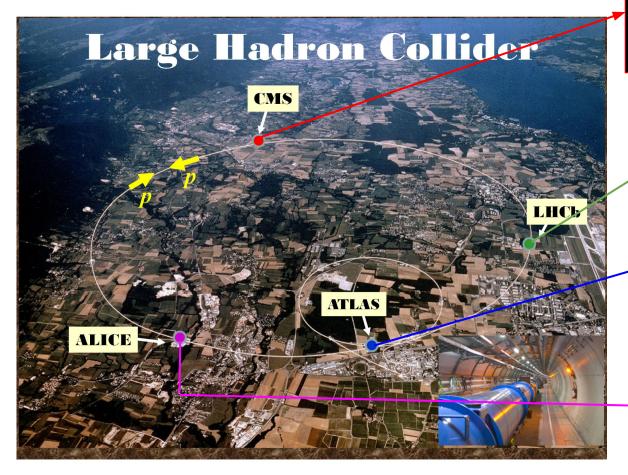
Assume annihilation of DM particles


Scattering of DM particles on nuclei of detector material

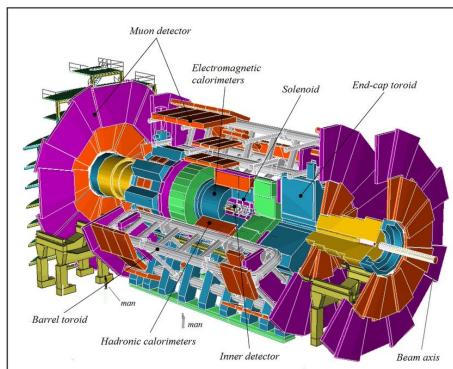
Assume annihilation of DM particles

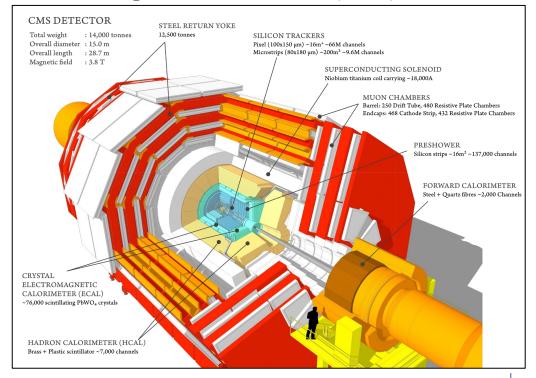
Scattering of DM particles on nuclei of detector material

Collision of SM particles (p-p at LHC) DM may produced, appear as Missing Transverse


Momentum

Collider searches at LHC




Detectors

ATLAS

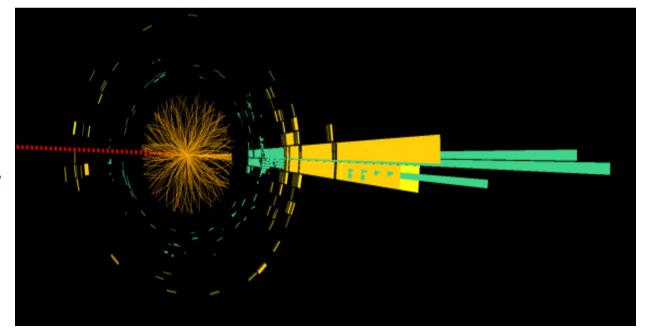
46m long, 25m high, weighs 7000 tons

Compact Muon Solenoid (CMS)

21m long, 15m high, weighs 14000 tons

Dark matter searches

Slide taken from Danyer Pérez Adán


Subset of dark matter topics covered in this talk

Mono-X searches

- Mono-Jets
- Mono-Z
- Mono-Higgs

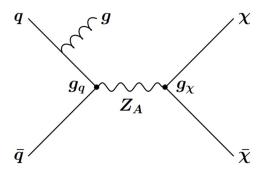
Higgs to invisible searches

Dark Higgs

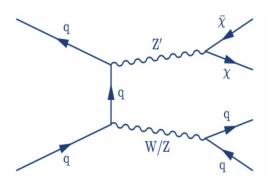
Experimental signature: Jet + Missing Transverse Momentum(MET)

Triggering: Depends on MET

- High MET
- Removes multi-jets backgrounds


Backgrounds:

- Z/W+jet, top, dibosons, multijet

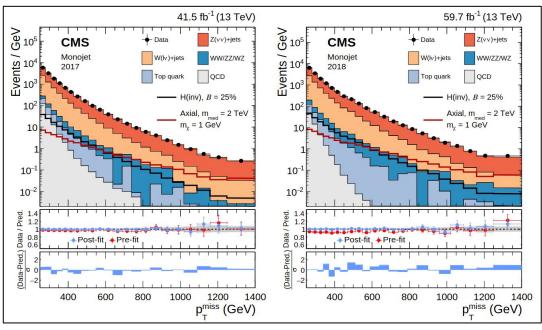

Event selections:

- Two types of jets are selected
 - MonoV: fat jets produced in $V \rightarrow qq$ decays
 - collimated hadrons from energetic quarks
 - MonoJet: standard size jets
- Events with e, μ , τ or γ are vetoed
- large $\Delta \varphi$ (jet p_T , MET) to reduce QCD jets

Simplified Model: MonoJet

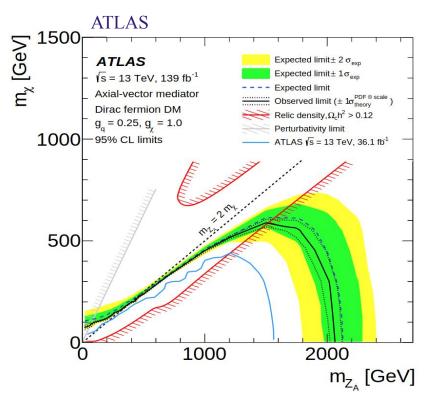
Simplified Model: MonoV

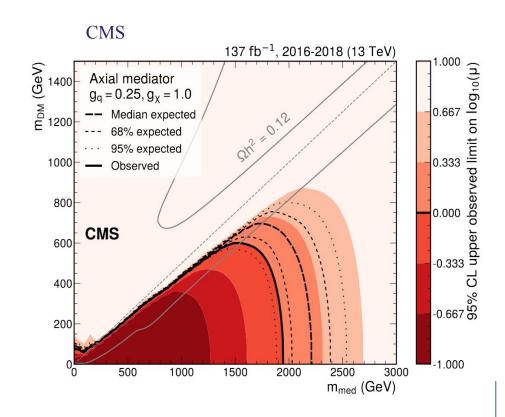
<u>2107.13021</u> <u>2102.10874</u>


MET Distribution:

ATLAS: MET includes all CR

CMS: MET includes CR 2017




2107.13021 2102.10874

Results: 2d scan of mediator mass vs dark matter mass

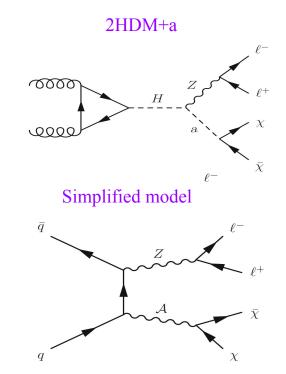
CMS & ATLAS: Excluding upto mediator mass 2000 GeV

<u>2107.13021</u> <u>2102.10874</u>

Experimental signature: $Z(\rightarrow Two leptons) + Missing Transverse Momentum(MET)$

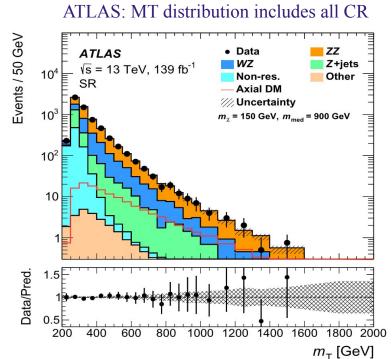
Triggering:

Depends on 1 or 2 leptons

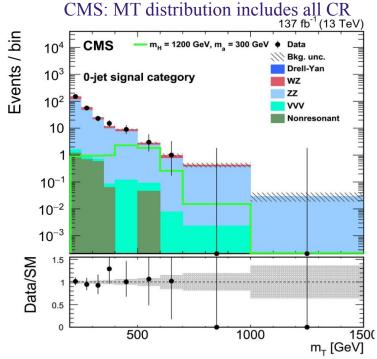

Backgrounds:

- major backgrounds: ZZ, WZ
- other backgrounds: tt, WW
- To reduce background
 - 3\ell, 4\ell CRs to constrain WZ/ZZ
 - eµ CR to constrain tt, WW

Event selections:


Similar selections in both ATLAS and CMS

- Two lepton with invariant mass (76,106) GeV
- small ΔR (two lepton) to reduce multi-leptons background

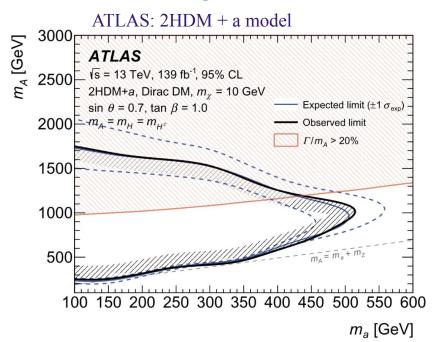


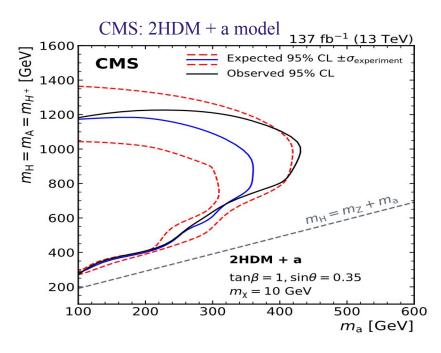
Physics Letters B 829 (2022) 137066 Eur. Phys. J. C (2021)

Transverse Mass Distribution:

Non-res: includes WW, ttbar, single top-quark and $Z \rightarrow \tau$ τ Other: tri-boson, ttbar + V and Z Z \rightarrow 4l production

Non-resonant: $W \rightarrow ttbar$, tW, and WW


Physics Letters B 829 (2022) 137066 Eur. Phys. J. C (2021)



Results: 2d scan of two pseudo-scalar mass

CMS Excluding upto mediator mass ~ 250-1200 GeV

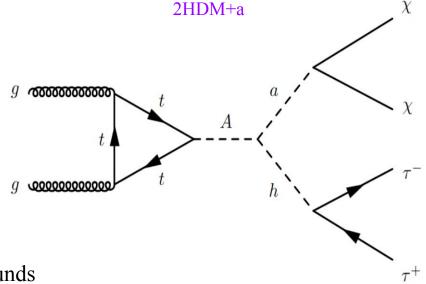
ATLAS Excluding upto mediator mass ~ 250-1700 GeV

Physics Letters B 829 (2022) 137066 Eur. Phys. J. C (2021)

Mono-X searches: Mono-Higgs($h \rightarrow \tau_h \tau_h$)

Experimental signature: $h \rightarrow Two taus + Missing Transverse Momentum(MET)$

Triggering:


- Di-tau triggers

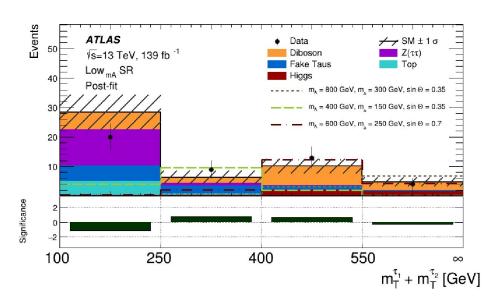
Backgrounds:

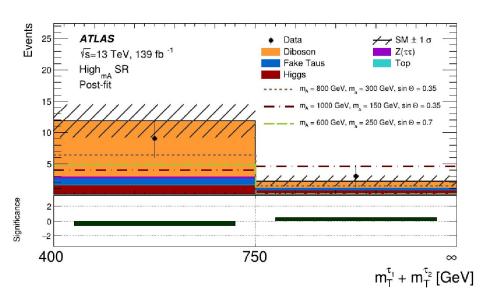
- Dominant background: VV, VH, tt, V+jets

Event selections:

- Two taus with opposite charge
- Third lepton veto: reject multi-lepton backgrounds
- b-jet veto: reject multi jet backgrounds

2305.12938v1





Mono-X searches: Mono-Higgs($h \rightarrow \tau_h \tau_h$)

Transverse Mass Distribution: $MT(\tau_1) + MT(\tau_2)$

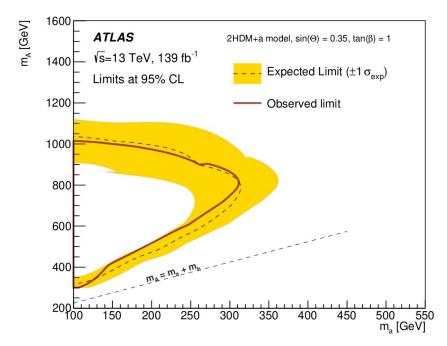
Low SR: $MT(\tau_1) > 50$, $MT(\tau_2) > 25$, visible mass > 75 GeV

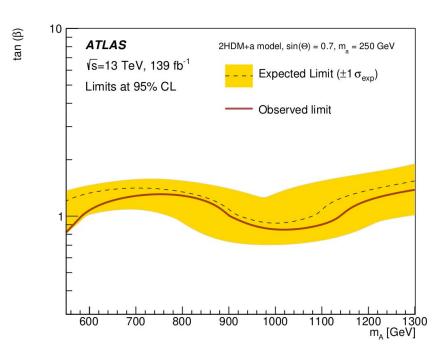
High SR: Total MT > 400 GeV

 $MT(\tau_1)$: transverse mass of leading tau

 $MT(\tau_2)$: transverse mass of sub-leading tau

2305.12938v1





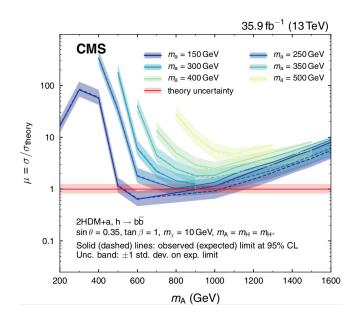
Mono-X searches: Mono-Higgs($h \rightarrow \tau_h \tau_h$)

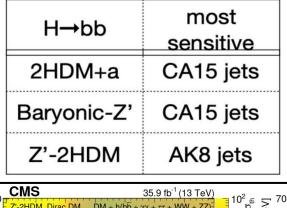
Results:

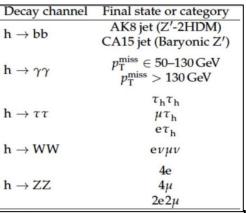
For low ma, mA is excluded from ~ 300-1000 GeV, for sin θ 0.35, tan β 1

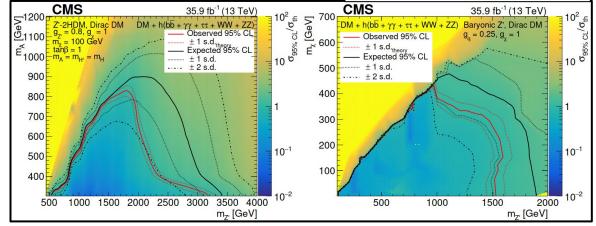
for low $tan\beta$ excluding mA from 600 GeV At $sin\theta$ 0.7, ma: 250

2305.12938v1








Mono-X searches: Mono-Higgs

Results:

 $h \to bbar, \, mA$ is excluded from ~400-800 GeV, for sin0 0.35, $tan\beta$ 1, mDM 10 GeV

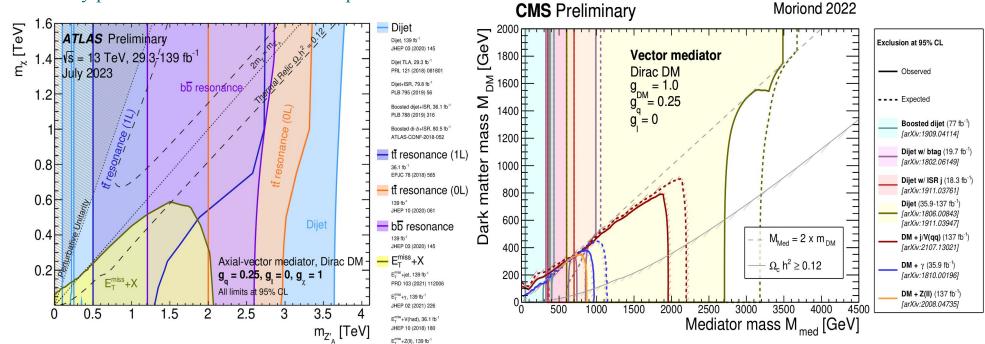
<u>s10052-019-6730-7</u>

Exclusion region:

Z'-2HMD: mZ' ~ 500-3500 GeV, mass of DM: 850 GeV

Baryonic Z': ~ 2000 GeV, mass of DM: ~ 400 GeV

JHEP03(2020)025



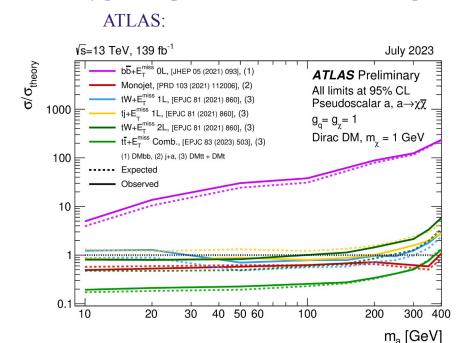
Dark matter summary plots

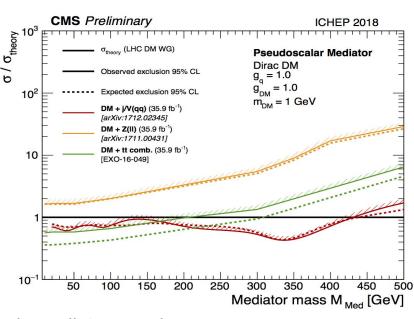
Summary plots of **vector** mediator in simplified model

Exclusions depend on coupling parameters in mediator searches coupling constant $\mathbf{g}_q = 0.25, \ \mathbf{g}_\chi = 1$

ATL-PHYS-PUB-2023-018

CMS-EXOTICA-Summary





Dark matter summary plots

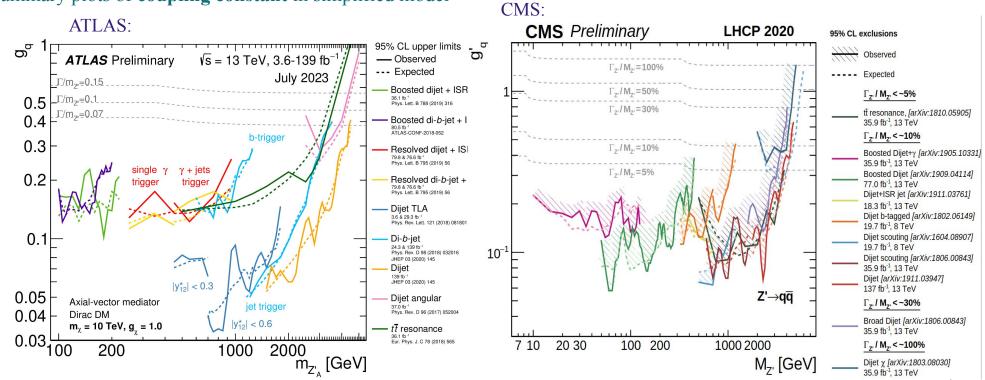
Summary plots of **pseudoscalar** mediator in simplified model

CMS:

Exclusions depend on coupling parameters in mediator searches coupling constant $\mathbf{g}_{\mathbf{q}} = \mathbf{g}_{\chi} = 1$

ATL-PHYS-PUB-2023-018

CMS-EXOTICA-Summary



Dark matter summary plots

Summary plots of **coupling constant** in simplified model

Exclusions on the coupling constant depend on decay width of Z' to the Z' mass

ATL-PHYS-PUB-2023-018

CMS-EXOTICA-Summary

Higgs to invisible searches

Experimental signature: Jets+ Higgs → Missing Transverse Momentum (MET)

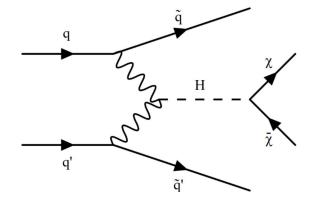
SM BR(h \rightarrow inv) = 0.1% (h \rightarrow ZZ* \rightarrow 4v)

Invisible Higgs decay would increase BR (h->inv) wrt SM predictions

VBF is the most sensitive production mode

Backgrounds:

Dominant background: $Z(\rightarrow v v) + Jets$, $W(\rightarrow lv) + Jets$


Event selections:

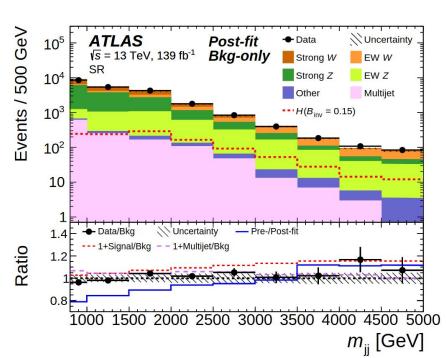
- Triggers: Combination of MET and VBF-like triggers
- Two different category:
 - Moderate MET (VTR), MET p_T (160,250 GeV)
 - High MET (MTR), MET p_{T} (> 250 GeV)
- Two jets of opposite charge, $|\eta_{ii}| > 1$,
- $\Delta \varphi$ (two jets) < 2.0, to avoid double counting of leading jets
- events with charged leptons and photons are vetoed

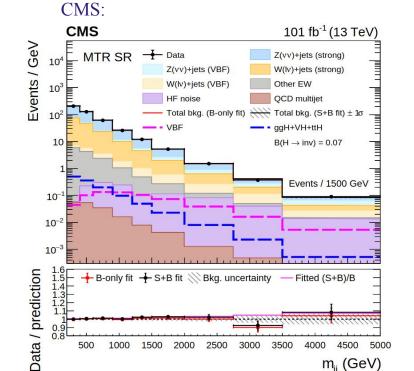
<u>1903.03616</u>

<u>2202.07953</u>

VBF Higgs production

2201.11585





Higgs to invisible searches

Dijet Mass Distribution:

ATLAS:

1000

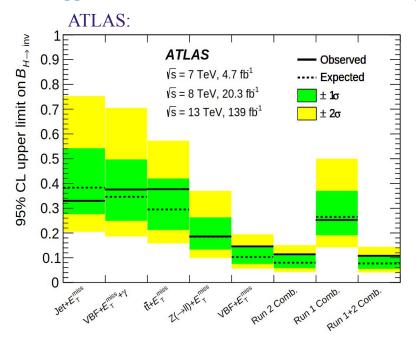
1500

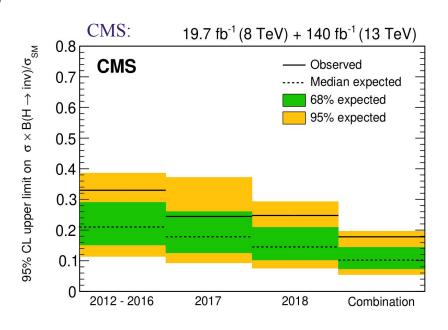
1903.03616

2202.07953

2201.11585

3000




m_{ii} (GeV)

Higgs to invisible searches

results: Upper limits on the BR of $h \rightarrow invisible$ decay

ATLAS: B(H \rightarrow Inv) $\sim 0.107 \ \underline{2301.10731}$ CMS: B(H \rightarrow Inv) $\sim 0.18 \ \underline{2201.11585}$

<u>1903.03616</u>

2301.10731

2201.11585

Experimental signature: $s \to WW \to (\ell \nu + qq) + Missing Transverse Momentum (MET)$

Triggering:

- MET
- Single object trigger

Backgrounds:

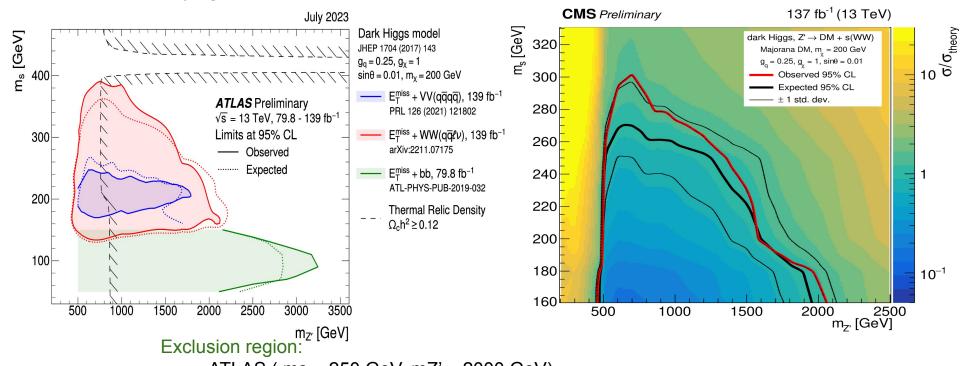
Dominant background: W (\rightarrow lv) + Jets, ttbar, WW, DY

Event selections:

- Final state: Hadrons (leptons) at ATLAS (CMS)
- MET: > 200 GeV (> 20 GeV) at ATLAS (CMS)

Dark Higgs Model

1606.07609


2010.06548

EXO-20-013

Results: 2d scan varying Z' mass vs s mass

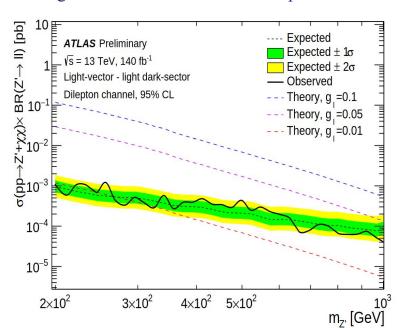
coupling constant $g_q = 0.25$, $g_{\chi} = 1$, mDM = 200

- ATLAS (ms ~ 250 GeV, mZ' ~ 2000 GeV)
- CMS (ms ~ 300 GeV, mZ' ~ 500-2000 GeV)

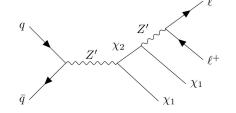
<u>1606.07609</u>

ATL-PHYS-PUB-2023-018

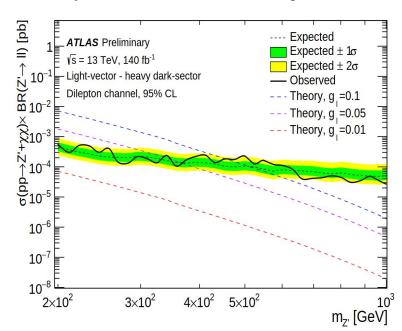
EXO-20-013



1606.07609


Bisnupriya Sahu

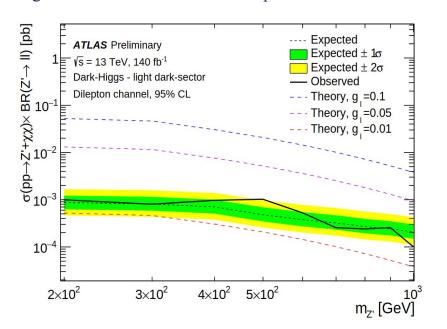
Results: Light Vector model, $g_{DM} = 1$, $g_q = 0.1$, and $g_l = 0.01$


Light Dark sector: combined dilepton channel

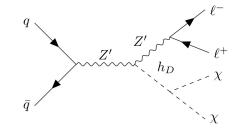
Light-vector Model

Heavy Dark sector: combined dilepton channel

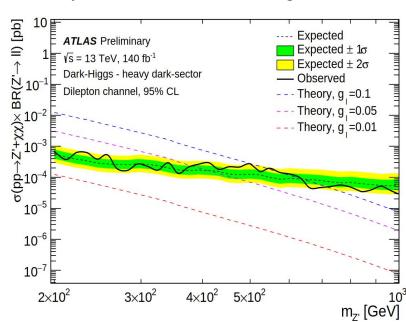
Exclusion region: Z ' masses ~200-1000 GeV


- Light dark sector: $1 \cdot 10^{-3}$ to $3 \cdot 10^{-5}$ pb

- Heavy dark sector: $4 \cdot 10^{-4}$ to $2 \cdot 10^{-5}$ pb


ATLAS-CONF-2023-045.

Results: Light Vector model, $g_{DM} = 1$, $g_q = 0.1$, and $g_l = 0.01$


Light Dark sector: combined dilepton channel

Dark-Higgs Model

Heavy Dark sector: combined dilepton channel

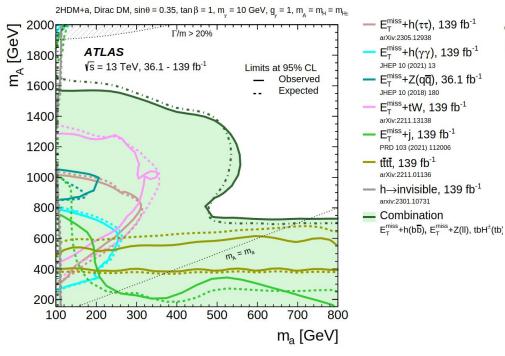
Exclusion region: Z ' masses ~200-1000 GeV

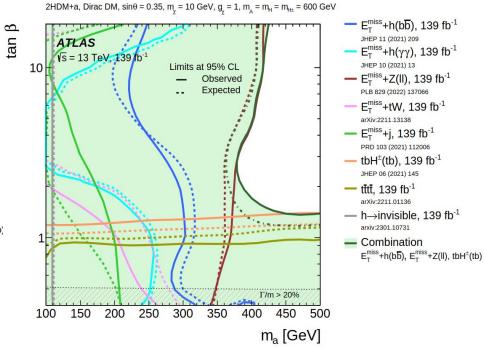
- Light dark sector: $1.5 \cdot 10^{-3}$ to $3 \cdot 10^{-4}$ pb

Heavy dark sector: $5 \cdot 10^{-4}$ to $2 \cdot 10^{-5}$ pb

ATLAS-CONF-2023-045.

1606.07609





ATLAS Dark matter summary with 2HDM+a model

2d scan varying two Pseudoscalar masses

2d scan varying light pseudoscalar mass vs tanβ

2306.00641

Summary

- Interesting results for the search of dark matter performed with ATLAS and CMS detector are discussed
- Both ATLAS and CMS experiments probed a wide range of final states and models
- No signal is observed yet
- With large RunII dataset and good improvement on analysis techniques, the background modeling and estimation led to more stringent exclusions
- Stay tuned for the new results with Run3...

For more results on DM searches visit <u>ATLAS/CMS</u>

Thank you for your attention...

Backup

- At least one high pT central jet
- Veto events with leptons (e, μ , τ) and photons γ
- MET (Hadronic Recoil) > 250 GeV
- Events are broadly categorized in mono-jet and mono-V based on leading jet pT
- **Mono-V:** Jet pT (AK8) > 250 GeV
- **Mono-jet:** Jet pT (AK4) > 100 (150) GeV

Table 1 Summary of the kinematic selections for the signal region

Quantity	Requirement	Target backgrounds	
N_{ℓ}	= 2 with additional lepton veto	WZ, VVV	
p_{T}^{ℓ}	> 25/20 GeV for leading/subleading	Multijet	
Dilepton mass	$ m_{\ell\ell} - m_{\rm Z} < 15{\rm GeV}$	WW, top quark	
Number of jets	≤ 1 jet with $p_{\rm T}^{\rm j} > 30{\rm GeV}$	DY, top quark, VVV	
$p_{\mathrm{T}}^{\ell\ell}$	> 60 GeV	DY	
b tagging veto	0 b-tagged jet with $p_T > 30 \text{GeV}$	Top quark, VVV	
τ lepton veto	$0 \tau_h$ cand. with $p_T^{\tau} > 18 \text{GeV}$	WZ	
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{j}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	> 0.5 radians	DY, WZ	
$\Delta\phi(\vec{p}_{\mathrm{T}}^{\ \ell\ell},\vec{p}_{\mathrm{T}}^{\ \mathrm{miss}})$	> 2.6 radians	DY	
$ p_{\mathrm{T}}^{\mathrm{miss}} - p_{\mathrm{T}}^{\ell\ell} /p_{\mathrm{T}}^{\ell\ell}$	< 0.4	DY	
$\Delta R_{\ell\ell}$	< 1.8	WW, top quark	
$p_{\rm T}^{\rm miss}$ (all but 2HDM+a)	> 100 GeV	DY, WW, top quark	
p _T ^{miss} (2HDM+a only)	> 80 GeV	DY, WW, top quark	
m _T (2HDM+a only)	> 200 GeV	DY, WW, ZZ, top quark	

CMS selection

Events in the SR are required to have exactly two oppositely charged electrons or muons with an invariant mass consistent with the mass of the Z boson. The leptons must have $p_{\rm T}^\ell > 20$, 30 GeV when ordered in increasing $p_{\rm T}$. The lepton pair is required to have an invariant mass $m_{\ell\ell}$ in the range $76 < m_{\ell\ell} < 106$ GeV. In order to select events in the SR consistent with invisible particles recoiling against the Z boson, events are required to have $E_{\rm T}^{\rm miss} > 90$ GeV, $S_{E_{\rm T}^{\rm miss}} > 9$ and a separation of $\Delta R_{\ell\ell} < 1.8$ between the leptons.

ATLAS selection

Signal selection by ATLAS

Table 1: The mass parameters assumed in the light dark-sector and heavy dark-sector benchmark scenarios

	Dark Higgs	Light Vector
Light dark-sector	$m_{\chi} = 5 \text{ GeV}$	$m_{\chi_1} = 5 \text{ GeV}$
	$m_{h_{\rm D}} = 125 \text{ GeV}$	$m_{\chi_2} = m_{\chi_1} + m_{Z'} + 25 \text{ GeV}$
Heavy dark-sector	$m_{\chi} = 5 \text{ GeV}$	$m_{\chi_1} = m_{Z'}/2$
	$m_{h_{\rm D}}=m_{Z'}$	$m_{\chi_2} = 2m_{Z'}$

In light vector boson mediator: $g_{DM} = 1$, $g_{q} = 0.1$, and $g_{l} = 0.01$

Benchmark model	Limit	Cross Section [pb]		Lepton Coupling	
Benchina k model		ee	$\mu\mu$	ee	$\mu\mu$
Light Vector – light dark-sector	Expected Observed	$\begin{array}{ c c c c c }\hline 2.5 \times 10^{-4} \\ 3.6 \times 10^{-4} \\ \hline \end{array}$	$4.6 \times 10^{-4} \\ 9.4 \times 10^{-4}$	0.019 0.023	0.026 0.037
Light Vector – heavy dark-sector	Expected Observed	1.3×10 ⁻⁴ 1.9×10 ⁻⁴	$2.1 \times 10^{-4} \\ 4.7 \times 10^{-4}$	0.11 0.13	0.14 0.20
Dark Higgs – light dark-sector	Expected Observed	5.8×10 ⁻⁴ 8.9×10 ⁻⁴	$1.0 \times 10^{-3} \\ 2.0 \times 10^{-3}$	0.017 0.021	0.022 0.031
Dark Higgs – heavy dark-sector	Expected Observed	1.6×10 ⁻⁴ 2.3×10 ⁻⁴	2.4×10^{-4} 5.3×10^{-4}	0.076 0.091	0.094 0.14

Event selection by CMS

-	
Quantity	Selection
Number of leptons	2
Lepton flavors	еµ, µе
Lepton charges	Opposite
Additional leptons	0
$p_{\mathrm{T}}^{\ell\mathrm{max}}$	> 25
$p_{\mathrm{T}}^{\ell\mathrm{min}}$	> 20
$m_{\ell\ell}$	> 12
$p_{\mathrm{T}}^{\ell\ell}$	> 30
$p_{\mathrm{T}}^{\mathrm{miss}}$	> 20
$p_{\mathrm{T,proj}}^{\mathrm{miss}}$	> 20
$m_{\mathrm{T}}^{ll,p_{\mathrm{T}}^{\mathrm{miss}}}$	> 50
$\Delta R_{\ell\ell}$	< 2.5
Number of b-tagged jets	0

