Landscape, swampland and extra dimensions

I. Antoniadis

LPTHE, CNRS/Sorbonne University, Paris

Tensions in Cosmology

Corfu, September 2023

Challenge for a fundamental theory of Nature

describe both particle physics and cosmology

Accelerator experiments and cosmological observations: complementary information for the same fundamental theory

Content of the Universe vs Standard Model

- \bullet Ordinary matter: only a tiny fraction $\lesssim 5\%$
- Non-luminous (dark) matter: $\sim 25\%$

Relativistic dark energy 70-75% of the observable universe negative pressure: $p = -\rho \Rightarrow$ cosmological constant

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = \frac{8\pi G}{c^4}T_{ab} \Rightarrow \rho_{\Lambda} = \frac{c^4\Lambda}{8\pi G} = -p_{\Lambda}$$

Two length scales:

• $[\Lambda] = L^{-2} \leftarrow \text{size of the observable Universe}$ $\Lambda_{obs} \simeq 0.74 \times 3H_0^2/c^2 \simeq 1.4 \times (10^{26} \text{ m})^{-2}$ Hubble parameter $\simeq 73 \text{ km s}^{-1} \text{ Mpc}^{-1}$

•
$$\left[\frac{\Lambda}{G} \times \frac{c^3}{\hbar}\right] = L^{-4} \leftarrow \text{dark energy length} \simeq 85 \mu \text{m}$$

Newton's law is valid down to distances 30 μ m

Adelberger et al. '06

problem of scales: challenge for a fundamental theory

- describe high energy (SUSY?) extension of the Standard Model unification of all fundamental interactions
- incorporate Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant

 describe possible accelerated expanding phase of our universe models of inflation (approximate de Sitter)

 \Rightarrow 3 very different scales besides M_W and M_{Planck} :

Strings and extra dimensions

- consistency of the theory ⇒ extra dimensions
 string coupling g_s can be treated as en extra dimension in M-theory
- matter and gauge interactions may be localized on lower dim branes transverse dimensions can be large
- \Rightarrow string scale M_s can be lower than the 4d Planck mass!
- opening a new way to address physics problems and scales
 - M_s low (multi-TeV) \Rightarrow electroweak hierarchy
 - M_s at intermediate energies $\sim 10^{11}~GeV~(M_s^2/M_P\sim~TeV)$
 - \Rightarrow SUSY breaking, strong CP axion, see-saw neutrino scale
 - compactification \Rightarrow parameters: moduli fields + discrete fluxes
 - moduli stabilization \Rightarrow huge landscape of vacua

 \Rightarrow need an extra input of guidance principle

Swampland Program

Not all effective field theories can consistently coupled to gravity

- anomaly cancellation is not sufficient
- consistent ultraviolet completion can bring non-trivial constraints

those which do not, form the 'swampland'

criteria \Rightarrow conjectures

supported by arguments based on string theory and black-hole physics

Some well established examples:

- No exact global symmetries in Nature
- Weak Gravity Conjecture: gravity is the weakest force

 \Rightarrow minimal non-trivial charge: $q \ge m$ in Planck units $8\pi G = \kappa^2 = 1$

Arkani-Hamed, Motl, Nicolis, Vafa '06

Distance/duality conjecture

At large distance in field space $\phi \Rightarrow$ tower of exponentially light states $m \sim e^{-\alpha\phi}$ with $\alpha \sim O(1)$ parameter in Planck units

• provides a weakly coupled dual description up to the species scale

$$M_* = M_P / \sqrt{N}$$
 Dvali '07

tower can be either

a Kaluza-Klein tower (decompactification of d extra dimensions)

 $M_* = M_P^{(4+d)} = (m^d M_P^2)^{1/(d+2)}$; $m \sim 1/R$, $\phi = \ln R$

2 a tower of string excitations $M_* = m \sim$ the associated string scale $= g_s M_P$; $\phi = -\ln g_s$

emergent string conjecture

Lee-Lerche-Weigand '19

smallness of physical parameters : large distance corner of lanscape?

Theorem:

assuming a light gravitino (or gaugino) present in the string spectrum

 $M_{3/2} << M_P$

 \Rightarrow \exists a tower of states with the same quantum numbers and masses

 $M_k = (2Nk + 1)M_{3/2}$; $k = 1, 2, \dots$; N integer (not too large)

Proof:

2D free-fermionic constructions $\Rightarrow N \lesssim 10$

2D bosonic lattices $\Rightarrow N \lesssim 10^3$

 \Rightarrow compactification scale $m = \lambda_{3/2}^{-1} M_{3/2}$ with $\lambda_{3/2} = 1/2N$

Dark dimension proposal for the dark energy

 $m = \lambda^{-1} \Lambda^a$ $(M_P = 1)$; $1/4 \le a \le 1/2$ Montero-Vafa-Valenzuela '22

- distance $\phi = -\ln \Lambda$ Lust-Palti-Vafa '19
- $a \leq 1/2$: unitarity bound $m_{{
 m spin}-2}^2 \geq 2H^2 \sim \Lambda$ Higuchi '87
- $a \ge 1/4$: estimate of 1-loop contribution $\Lambda \gtrsim m^4$

observations: $\Lambda \sim 10^{-120}$ and $m \gtrsim 0.01$ eV (Newton's law) $\Rightarrow a = 1/4$

astrophysical constraints $\Rightarrow d = 1$ extra dimension

 \Rightarrow species scale (5d Planck mass) $M_* \simeq \lambda^{-1/3} \, 10^8$ GeV

 $10^{-4} \lesssim \lambda \lesssim 10^{-1}$

Obviously such a low m cannot correspond to a string tower

More physics implications of the dark dimension

- natural explanation of neutrino masses introducing ν_R in the bulk recent analysis of ν -oscillation data with 3 bulk neutrinos \Rightarrow $m \gtrsim 2.5 \text{ eV}$ ($R \lesssim 0.4 \,\mu\text{m}$) $\Rightarrow \lambda \lesssim 10^{-3}$ and $M_* \sim 10^9 \text{ GeV}$
 - the bound can be relaxed in the presence of bulk ν_R -neutrino masses Lukas-Ramond-Romanino-Ross '00, Carena-Li-Machado²-Wagner '17

More physics implications of the dark dimension

• 3 candidates of dark matter:

• 5D primordial black holes in the mass range $10^{15} - 10^{21}$ g with Schwarzschild radius in the range $10^{-4} - 10^{-2} \mu$ m Anchordoqui-I.A.-Lust '22

possible equivalence between the two Anchordoqui-I.A.-Lust '22

• ultralight radion as a fuzzy dark matter

Anchordoqui-I.A.-Lust '23

Primordial Black Holes as Dark Matter

4d PBH

5d PBH

5D BHs live longer than 4D BHs of the same mass

Dark Dimension Radion stabilization and inflation

If 4d inflation occurs with fixed DD radius \Rightarrow

(Higuchi bound) $H_I \lesssim m \sim eV \Rightarrow M_I \lesssim 100 \text{ GeV}$

Inflation scale $M_I = \Lambda_I^{1/4} \simeq \sqrt{M_P H_I}$

Interesting possibility: the extra dimension expands with time

 $R_0 \sim 1/M_*$ to $R \sim \mu m$ requires \sim 42 efolds! Anchordoqui-I.A.-Lust '22

$$ds_{5}^{2} = a_{5}^{2}(-d\tau^{2} + d\vec{x}^{2} + R_{0}^{2} dy^{2}) \quad R_{0} : \text{ initial size prior to inflation}$$
$$= \frac{ds_{4}^{2}}{R} + R^{2} dy^{2} \quad ; \quad ds_{4}^{2} = a^{2}(-d\tau^{2} + d\vec{x}^{2}) \quad \Rightarrow a^{2} = R^{3}$$

After 5d inflation of N = 42-efolds $\Rightarrow 63$ e-folds in 4d with $a = e^{3N/2}$

Large extra dimensions from inflation in higher dimensions

Anchordoqui-IA-Arkani-Hamed to appear

Dark Dimension hierarchy from inflation

Inflaton: 5D field φ with a coupling to the brane to produce SM matter e.g. via a 'Yukawa' coupling suppressed by the bulk volume $y \sim 1/(RM_*)^{1/2}$ Its decay to KK gravitons should be suppressed to ensure $\Delta N_{\rm eff} < 0.2$

$$\left(\Gamma_{\rm SM}^{\varphi} \sim \frac{m}{M_*} m_{\varphi}\right) > \left(\Gamma_{\rm grav}^{\varphi} \sim \frac{m_{\varphi}^4}{M_*^3}\right) \Rightarrow m_{\varphi} < 1 \, {\rm TeV}$$

5D cosmological constant at the minimum of the inflaton potential ⇒ runaway radion potential:

 $V_0 \sim \frac{\Lambda_5^{\min}}{R}$; $(\Lambda_5^{\min})^{1/5} \lesssim 100 \,\text{GeV}$ (Higuchi bound) canonically normalised radion: $\phi = \sqrt{3/2} \ln(R/r)$ $r \equiv \langle R \rangle_{\text{end of inflation}}$ \Rightarrow exponential quintessence-like form $V_0 \sim e^{-\alpha \phi}$ with $\alpha \simeq 0.8$ just at the allowed upper bound: Barreiro-Copeland-Nunes '00

Fuzzy dark matter & the Pulsar Timing Array signal Anchordoqui-IA-Lust '23

FDM: ultralight bosonic particles with wave-like behavior at galactic scales

$$\lambda_{\rm dB} \equiv \frac{2\pi}{mv} = 4.8 \ {
m kpc} \left(\frac{10^{-23} \ {
m eV}}{m} \right) \left(\frac{250 \ {
m km/s}}{v} \right)$$

 \Rightarrow at larger distances FDG behaves as CDM

PTA signal: time arrival stochastic sinusoidal oscillations of amplitude $\mathcal{A} \sim 10^{-15}$ at frequency $f \sim$ a few nHz Similar signal can be produced by FDM of mass $m \sim 10^{-23}$ eV using $\rho_{\rm DM} \sim 0.4 \ {\rm GeV/cm}^3$ oscillations generate fluctuations in metric perturbations \Rightarrow (quasi) stabilised radion as fuzzy dark matter

Dark dimension radion as fuzzy dark matter

Anchordogui-IA-Lust '23

• radion mass:
$$m_{\phi} \sim \sqrt{V_{\phi\phi}} \sim \sqrt{\Lambda}_4/M_p$$
 $f = \omega/(2\pi) = m/\pi$

radion production: 5D inflaton decay via unstable KK gravitons

$$\Gamma_{R}^{\text{KK}} = \sum_{l' < l} \Gamma_{Rl'}^{l} \sim \frac{1}{2\pi} \frac{m_{l} m_{KK}^{3}}{m M_{p}^{2}} \langle \varphi_{l'} \rangle \simeq \frac{1}{2\pi} \frac{m_{l} m_{KK}^{3} (RM_{*})}{m M_{p}^{2}}$$
$$= \frac{1}{2\pi} \frac{m_{l} m_{KK}^{3}}{m M_{*}^{2}} \sim 10^{6} \, \text{s}^{-1} \quad m_{KK} = 10 \, \text{eV}$$

 \Rightarrow KK-tower \rightarrow radion before the QCD phase transition age $\sim 20 \mu s$

suppress radion coupling to matter: add a localised kinetic term

 $\delta S_{\text{radion}}^{\text{localised}} = \zeta \left[\left[d^4 x \right] \left(\frac{\partial R}{R} \right)^2 \right] \qquad \zeta : \text{VEV of a brane field}$

also Albrecht-Burgess-Ravndal-Skordis '01

Gravitino Mass Conjecture [10]

Cribiori-Lust-Scalisi, Castellano-Font-Herraez-Ibanez '21

$$m_2 = \lambda_{3/2}^{-1} M_{3/2}^n \quad (M_P = 1) \quad n > 0$$

4d supergravity in flat space: $M_{3/2} = \varkappa M_{SUSY}^2 \leftarrow VEV$ of F (or D) auxiliary Low energy SUSY (linear or non-linear) $\Rightarrow M_{3/2} < M_{SUSY} \le M_*$ However Standard Model soft terms depend on the mediation mechanism

- \bullet gravity mediation: $\mathit{M}_{\rm soft} \sim \mathit{M}_{\rm SUSY}^2 \sim \mathit{M}_{3/2}$
- gauge mediation: $M_{soft} \sim \alpha M_{SUSY}^2 / M_{mess} \leftarrow messenger mass \gtrsim M_{SUSY} \sim \frac{M_{SUSY}}{1000}$ factor

Combine GMC with Dark Dimension proposal \Rightarrow two possibilities:

- **1** one KK tower: $m_2 = m$
- 2 two different towers: $m = m_1$ for DE and m_2 for SUSY breaking

Anchordoqui-I.A.-Cribiori-Lust-Scalisi '23

scenario 1: single KK tower

$$\Lambda = (\lambda/\lambda_{3/2})^4 \, M^{4n}_{3/2}$$

identified as leading non-vanishing power of $\mathrm{Str}\mathcal{M}^{2k} \Rightarrow 2n$ is integer ≥ 1

requiring $M_{\rm SUSY} \le M_* \Rightarrow n \le 2$ while $M_{\rm SUSY} \gtrsim 10 \text{ TeV} \Rightarrow n \ge 1$

п	$M_{3/2} imes (\lambda_{3/2})^{-rac{1}{n}} \; { m GeV^{-1}}$	$M_{ m SUSY} imes arkappa^{rac{1}{2}} (\lambda_{3/2})^{-rac{1}{2n}} \; { m GeV^{-1}}$
1	$2.5 imes10^{-9}$	$7.8 imes10^4$
3/2	$2.5 imes10^{0}$	$2.5 imes10^9$
2	$7.8 imes10^4$	$4.4 imes10^{11}$

n = 1 requires gauge mediation

while n = 2 (with tuning of $\varkappa(\lambda_{3/2})^{-\frac{1}{2n}}$) gravity mediation also n = 3/2

Large extra dimensions from higher-dim inflation Anchordoqui-IA-Arkani-Hamed to appear

$$ds_{4+d}^{2} = \left(\frac{r}{R}\right)^{d} ds_{4}^{2} + R^{2} dy^{2} ; \qquad ds_{4}^{2} = a^{2}(\tau)(-d\tau^{2} + d\bar{x}^{2})$$
$$= \hat{a}_{4+d}^{2}(\tau)(-d\tau^{2} + d\bar{x}^{2} + R_{0}^{2} dy^{2}) \qquad r \equiv \langle R \rangle_{\text{end of inflation}}$$

• exponential expansion in higher-dims \Rightarrow power low inflation in 4D FRW coordinates: $e^{H\hat{t}} \sim (Ht)^{2/d} \Rightarrow R(t) \sim t^{2/d}$, $a(t) \sim t^{1+2/d}$

• \hat{N} e-folds in (4 + d)-dims $\Rightarrow N = (1 + d/2)\hat{N}$ e-folds in 4D

Impose $M_* = M_{
ho}e^{-dN/(2+d)} \gtrsim 10$ TeV $\gtrsim 10^8$ GeV for d = 1 ($r \lesssim 30\mu$ m) $\gtrsim 10^6$ GeV for d = 2 ($r^{-1} \gtrsim 10$ keV)

 \Rightarrow the horizon problem is solved for any $d = N \gtrsim 30 - 60 \ (N \gtrsim \ln \frac{M_l}{eV})$ [27]

CMB power spectrum from higher-dim inflation

Physical distances change from higher to 4 dims equal time distance between two points in 3-space

- $d_{\text{phys}}(x, x') = d(x, x') a(\tau) = d(x, x') \hat{a}(\tau) \left(\frac{R}{R_0}\right)^{d/2} = \hat{d}_{\text{phys}}(x, x') \frac{M_p}{M_*}$ co-moving distance
- precision of CMB data: angles $\lesssim 10$ degrees, distances $\lesssim Mpc$ (Gpc today) $Mpc \rightarrow Mkm$ at $M_I \sim TeV$ with radiation dominated expansion $\times TeV/M_*$ at a higher inflation scale $M_I \sim M_*$ $\times M_*/M_P$ conversion to higher-dim distances \simeq micron scale $\Rightarrow d = 1$ is singled out!
- d > 1: needs a period of 4D inflation for generating scale invariant density perturbations

Density perturbations from 5D inflation

inflaton (during inflation) \simeq massless minimally coupled scalar in dS space \Rightarrow logarithmic growth at large distances (compared to the horizon H^{-1})

equal time 2-point function in momentum space at late cosmic time

$$\langle \Phi^2(\hat{k},\tau)
angle_{ au o 0} \simeq rac{4}{\pi} rac{H^3}{(\hat{k}^2)^2} ~;~ \hat{k}^2 = k^2 + n^2/R^2$$

2-point function on the Standard Model brane (located at y = 0):

$$\sum_{n} \langle \Phi^{2}(\hat{k},\tau) \rangle_{\tau \to 0} \simeq \frac{2RH^{3}}{k^{2}} \left(\frac{1}{k} \coth(\pi kR) + \frac{\pi R}{\sinh^{2}(\pi kR)} \right) ; \quad k = \pi/\lambda$$

Amplitude of the power spectrum: $\mathcal{A} = rac{k^3}{2\pi^2} \langle \Phi^2(k, au)
angle_{y=0}$

• $\pi kR > 1$ ('small' wave lengths) $\Rightarrow \mathcal{A} \sim \frac{H^2}{\pi^2}$ $n_s \simeq 1$

• $\pi kR < 1$ ('large' wave lengths) $\Rightarrow \mathcal{A} \simeq \frac{2H^3}{\pi^3 k}$ $n_s \simeq 0$

Large-angle CMB power spectrum

Radion stabilisation at the end of 5D inflation

Potential contributions stabilising the radion:

$$V = \left(\frac{r}{R}\right)^2 \hat{V} + V_C$$
 ; $\hat{V} = 2\pi R \Lambda_5^{\min} + T_4 + 2\pi \frac{K}{R}$

 T_4 : 3-branes tension, K: kinetic gradients, V_C : Casimir energy \uparrow Arkani-Hamed, Hall, Tucker-Smith, Weiner '99

$$V_{C} = 2\pi R \left(\frac{r}{R}\right)^{2} \text{Tr}(-)^{F} \rho(R,m) \; ; \; \rho(R,m) = -\sum_{n=1}^{\infty} \frac{2m^{5}}{(2\pi)^{5/2}} \frac{K_{5/2}(2\pi Rmn)}{(2\pi Rmn)^{5/2}} \begin{cases} mR \to \infty & \text{exp suppressed} \\ mR \to 0 & 1/R^{5} \end{cases}$$

Radion mass m_R : ~ eV (m_{KK}) to 10^{-30} eV (m_{KK}^2/M_p) depending on K

- $K \sim M_*$, all 3 terms of \hat{V} of the same order, V_C negligible tune $\Lambda_4 \sim 0_+ \Rightarrow m_R \lesssim m_{KK} \sim \text{eV}$
- K negligible, all 3 remaining terms of the same order

• \Rightarrow minimum is driven by a +ve $V_C = \frac{2\pi r^2}{32\pi^7 R^6} (N_F - N_B)$

Arkani-Hamed, Dubovsky, Nicolis, Villadoro '07

need light bulk fermions: 3 (2) R-neutrinos $\rightarrow N_F = 12$ (8), $N_B = 3$

$$\Rightarrow m_R \sim 10^{-28} - 10^{-30} \text{ eV}$$

 $(\Lambda_5^{\min})^{1/5} = 70 \text{ meV}, |T_4|^{1/4} = 76 \text{ meV}, N_F - N_B = 9 \text{ (left)}$ $(\Lambda_5^{\min})^{1/5} = 25 \text{ meV}, |T_4|^{1/4} = 26 \text{ meV}, N_F - N_B = 5 \text{ (right)}$

Conclusions

smallness of some physical parameters might signal a large distance corner in the string landscape of vacua such parameters can be the scales of dark energy and SUSY breaking mesoscopic dark dimension proposal: interesting phenomenology neutrino masses, dark matter, cosmology, SUSY breaking

- minimal scenario for SUSY breaking very attractive $M_{3/2} \sim \text{eV}, M_{\text{SUSY}} \sim \text{ten's of TeV}$, require gauge mediation
- 2 more cases are possible: $M_{3/2} \sim (1/R)^{1/n}$ for n=3/2,2

 $M_{
m SUSY} \sim M_* \sim 10^9 \; {
m GeV}$ with $M_{3/2} \sim {\cal O}({
m GeV}{m TeV})$

Large extra dimensions from higher dim inflation

- connect the weakness of gravity to the size of the observable universe
- scale invariant density fluctuations from 5D inflation
- radion stabilization