Flavor puzzles of the Standard Model effective field theory

Admir Greljo

01.09.2023, Corfu

The Flavour Puzzle

• Peculiar patterns observed in $\dim 4$ Yukawa interactions:

 $-\mathscr{L}_{\text{Yuk}} = \bar{q}V^{\dagger}\hat{Y}^{u}\tilde{H}u + \bar{q}\hat{Y}^{d}Hd + \bar{\ell}\hat{Y}^{e}He$

 $[U(3)^5 + Singular Value Decomposition]$

What?

- SM fields & Symmetries (Gauge + Poincaré)
- Scale separation $\Lambda_{\rm Q}\gg v_{\rm EW}$
- Higher-dimensional operators encode short-distance physics:

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{Q} \frac{C_Q}{\Lambda_Q^{[Q]-4}} Q$$

Admir Greljo | Flavor puzzles of the Standard Model effective field theory

Why?

- I. Our BSM expectations failed so far
- 2. No clear/preferred model
- 3. Short-distance direction still the most compelling (to many of us)
- 4. Experiments headed towards the precision/luminosity era

SMEFT is challenging!

- Price for generality: Large number of independent parameters!
- **2499** at dim[\mathscr{O}] = 6 ($\Delta B = \Delta L = 0$)
- Why? (Partially due to) **FLAVOUR** i = 1,2,3
- If there was a single generation => 59

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}H)$?)			Ī		12.3
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)($	$(ar{e}_s \gamma^\mu e_t)$			-		$\psi^{2}\varphi^{3}$
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r)(ar q_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)($	$(\bar{u}_s \gamma^\mu u_t)$				$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$
$Q_{qq}^{(3)}$ (q	$ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)($	$(ar{d}_s \gamma^\mu d_t)$				0	$(a^{\dagger}a)(\bar{a},u,\tilde{a})$
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r)$	$(\bar{e}_s \gamma^\mu e_t)$				$\Psi u \varphi$	$(\varphi^{*}\varphi)(q_{p}u_{r}\varphi)$
$Q_{lq}^{(3)} \qquad (l)$	$ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar q_p \gamma_{\mu^0}$						$(arphi^\dagger arphi) (ar q_p d_r arphi)$
		$Q_{ud}^{\left(1 ight) }$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q$		$\psi^2 X arphi$		$\psi^2 arphi^2 D$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_{\mu})$	Q_{eW}	$(\bar{l}_p \sigma^{\mu u} e_r) \tau^I \varphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{l}_p \gamma^\mu l_r)$		
$(\bar{L}R)(\bar{R})$	L) and $(\bar{L}R)(\bar{L}R)$	-	B-viol	$Q_{qd}^{(0)}$	$(\bar{q}_p \gamma_\mu T^A)$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (ar{l}_p au^I \gamma^\mu l_r)$)	
Q_{ledq}	$(ar{l}_p^{j}e_r)(ar{d}_sq_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	TCu_r^{β}	$\left[(q_s^{\gamma j})^T C l ight]$	Q_{uG}	$(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{arphi} G^A_{\mu u}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C \right]$	Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{arphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$		
$egin{array}{c c} Q_{quqd}^{(8)} & (ar{q} \ Q_{quqd}^{(1)} & 0 \end{array} \end{array}$	$\frac{\bar{q}_{p}^{j}T^{A}u_{r}\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})}{(\bar{l}_{r}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})}$	Q_{qqq} Q_{duu}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^lpha)arepsilon^{lphaeta\gamma}arepsilon(arepsilon^lpha)arepsilon^{lpha} ight]$	${}^{j})^{T}Cq_{r}^{\beta}$	$\begin{bmatrix} g^{k} \\ g^{k} \end{bmatrix} \begin{bmatrix} (q_s^{\gamma m})^T \\ (u_s^{\gamma})^T C e_t \end{bmatrix}$	Q_{uB}	$(ar{q}_p \sigma^{\mu u} u_r) \widetilde{arphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (ar{q}_p au^I \gamma^\mu q_r$)	
$\left \begin{array}{c} Q_{lequ}^{(3)} \\ Q_{lequ}^{(3)} \end{array} \right (\bar{l}_{f})$	$(\bar{q}_{p}\varepsilon_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$	- v aaa	[(-p)			Q_{dG}	$(\bar{q}_p \sigma^{\mu u} T^A d_r) \varphi G^A_{\mu u}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(ar{u}_{p}\gamma^{\mu}u_{r})$		
		_		_		Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{d}_p \gamma^\mu d_r)$		
	Grzadk	OW	ski et al, 100	8.4	884	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		

• Peculiar observed values of $Y^{u,d,e} \implies \text{Approximate}$ accidental symmetries [Mass hierarchy & CKM alignment] [suppression in FCNC, EDM, etc]

Flavour violation

- SMEFT at $\dim[\mathcal{O}] = 6$ \implies New sources of violation of (approximate) accidental symmetries
- Already strong constraints!

- A viable BSM at the TeV-scale should no excessively violate accidental symmetries of the SM
- Key ingredient for BSM@TeV:
 Flavour symmetry and its breaking pattern
 *Just like with the *B* number

Minimal Flavour Violation

• No new sources of flavour breaking

 $G_Q = \mathrm{U}(3)_q \times \mathrm{U}(3)_u \times \mathrm{U}(3)_d$ $Y_u \sim (\mathbf{3}, \mathbf{\overline{3}}, \mathbf{1}), \quad Y_d \sim (\mathbf{3}, \mathbf{1}, \mathbf{\overline{3}}).$

• The MFV brings the cutoff to the TeV scale!

D'Ambrosio et al; hep-ph/0207036

Minimal Flavour Violation

• No new sources of flavour breaking

 $G_Q = \mathrm{U}(3)_q \times \mathrm{U}(3)_u \times \mathrm{U}(3)_d$ $Y_u \sim (\mathbf{3}, \mathbf{\overline{3}}, \mathbf{1}), \quad Y_d \sim (\mathbf{3}, \mathbf{1}, \mathbf{\overline{3}}).$

• The MFV brings the cutoff to the TeV scale!

D'Ambrosio et al; hep-ph/0207036

• Approximate symmetry of the SM

- Small spurions \implies consistent power counting
- Some protection against FCNC

 $G = \mathrm{U}(2)_q \times \mathrm{U}(2)_u \times \mathrm{U}(2)_d$ $V_q \sim (\mathbf{2}, \mathbf{1}, \mathbf{1}) , \quad \Delta_u \sim (\mathbf{2}, \overline{\mathbf{2}}, \mathbf{1}) , \quad \Delta_d \sim (\mathbf{2}, \mathbf{1}, \overline{\mathbf{2}})$

U(2)

Adding Flavour to the SMEFT

AG, Thomsen, Palavric; 2203.09561

Contents

- 1 Introduction
- 2 Quark Sector
 - 2.1 $U(2)^3$ symmetry
 - 2.2 $U(2)^3 \times U(1)_{d_3}$ symmetry
 - 2.3 $U(2)^2 \times U(3)_d$ symmetry
 - 2.4 MFV_Q symmetry

3 Lepton Sector

- 3.1 $U(1)^3$ vectorial symmetry
- $3.2 \quad U(1)^6 \text{ symmetry}$
- 3.3 U(2) vectorial symmetry
- 3.4 $U(2)^2$ symmetry
- 3.5 $U(2)^2 \times U(1)^2$ symmetry
- 3.6 U(3) vectorial symmetry
- $3.7 \quad MFV_L \text{ symmetry}$
- 4 Conclusions
- A Warsaw basis
- ${f B}$ SMEFTflavor
- C Mixed quark-lepton operators
- **D** Group identities

- Charting the space of BSM by flavour symmetries
- Formulate several competing flavour hypothesis for $\dim 6$ SMEFT ($\Delta B=0)$
- Systematic approach: $U(3) \supset U(2) \supset U(1)$ (smaller symmetry \implies more terms)
- 28 different case
- Minimal set of flavor-breaking spurions needed to reproduce masses and mixings
- Construct explicit (ready-for-use) operator bases order by order in the spurion expansion starting from the Warsaw basis

• Examples of bilinear structures

$(\bar{q}q)$

```
\mathcal{O}(1): (\bar{q}q), \quad (\bar{q}_3q_3), \qquad \mathcal{O}(V): (\bar{q}V_qq_3), \quad V_q^a \varepsilon_{ab}(\bar{q}_3q^b), \quad \text{H.c.}, \\ \mathcal{O}(V^2): (\bar{q}V_qV_q^{\dagger}q), \quad \left[\epsilon_{bc}(\bar{q}V_qV_q^cq^b), \quad \text{H.c.}\right]. 
(2.12)
```

$(\bar{u}u)$

```
{\cal O}(1): (ar u u) \ , \ \ (ar u_3 u_3) \ ,
```

 $\mathcal{O}(\Delta V): \quad (\bar{u}\Delta_u^{\dagger}V_q u_3) , \quad (\bar{u}_a u_3)\varepsilon^{ab}(V_q^{\dagger}\Delta_u)_b , \quad \epsilon^{ad}\epsilon_{bc}[\bar{u}^a V_q^b(\Delta_u)^c{}_d u_3] , \quad \text{H.c.} , \quad (2.13)$ $\epsilon_{bc}[\bar{u}_3 V_q^b(\Delta_u)^c{}_a u^a] , \quad \text{H.c.} .$

$(\bar{d}d)$

- $\mathcal{O}(1): (\bar{d}d), (\bar{d}_3d_3),$
- $\mathcal{O}(\Delta V): \quad (\bar{d}\Delta_d^{\dagger}V_q d_3) , \quad (\bar{d}_a d_3)\varepsilon^{ab}(V_q^{\dagger}\Delta_d)_b , \quad \epsilon^{ad}\epsilon_{bc}[\bar{d}^a V_q^b(\Delta_d)^c{}_d d_3] , \quad \text{H.c.} , \quad (2.14)$ $\epsilon_{bc}[\bar{d}_3 V_q^b(\Delta_d)^c{}_a d^a] , \quad \text{H.c.} .$

*the new structures that appear in case of $SU(2)^3$ symmetry are denoted in blue

Watch out redundancies $\varepsilon^{ij}\varepsilon_{k\ell} = \delta^{i}{}_{\ell}\delta^{j}{}_{k} - \delta^{i}{}_{k}\delta^{j}{}_{\ell}$

• Examples of quartic structures

$(\bar{q}q)(\bar{q}q)$

 $\mathcal{O}(1): \quad (\bar{q}_a q^b)(\bar{q}_b q^a) , \quad (\bar{q}_a q_3)(\bar{q}_3 q^a) ,$ $\mathcal{O}(V): \quad (\bar{q}_a q_3)(\bar{q} V_q q^a) , \quad (\bar{q}_3 q^a)(\bar{q}_a \epsilon_{bc} V_q^c q^b) , \quad (\bar{q}_3 q^a)(\bar{q} V_q \epsilon_{ac} q^c) , \quad \text{H.c.} ,$ $\mathcal{O}(V^2): \quad (\bar{q}_a V_q^{\dagger} q)(\bar{q} V_q q^a) .$ (2.18)

 $(\bar{u}u)(\bar{u}u)$

 $\mathcal{O}(1): (\bar{u}_a u^b)(\bar{u}_b u^a) , (\bar{u}_a u_3)(\bar{u}_3 u^a) ,$

 $\mathcal{O}(\Delta V) : (\bar{u}_{a}u_{3})(\bar{u}\Delta_{u}^{\dagger}V_{q}u^{a}) , \quad (\bar{u}_{a}u_{3})\epsilon^{ab}\epsilon_{de}[\bar{u}_{b}V_{q}^{d}(\Delta_{u})^{e}{}_{c}u^{c}] , \quad \epsilon^{be}\epsilon_{cd}(\bar{u}_{a}u_{3})[\bar{u}_{b}V_{q}^{c}(\Delta_{u})^{d}{}_{e}u^{a}] , \quad \text{H.c.} , \\ (\bar{u}_{3}u^{a})[\bar{u}_{a}V_{q}^{c}\epsilon_{cd}(\Delta_{u})^{d}{}_{b}u^{b}] , \quad (\bar{u}_{3}u^{a})[\bar{u}_{a}\epsilon_{bd}V_{q}^{c}(\Delta_{u}^{*})_{c}{}^{d}u^{b}] , \quad \epsilon_{ac}(\bar{u}_{3}u^{a})[\bar{u}_{b}V_{q}^{d}(\Delta_{u}^{*})_{d}{}^{b}u^{c}] , \quad \text{H.c.}$ (2.19)

$(\bar{d}d)(\bar{d}d)$

 $\mathcal{O}(1): (\bar{d}_a d^b)(\bar{d}_b d^a) , (\bar{d}_a d_3)(\bar{d}_3 d^a) ,$

 $\mathcal{O}(\Delta V) : (\bar{d}_a d_3) (\bar{d} \Delta_d^{\dagger} V_q d^a) , \quad (\bar{d}_a d_3) \epsilon^{ab} \epsilon_{de} [\bar{d}_b V_q^d (\Delta_d)^e{}_c d^c] , \quad \epsilon^{be} \epsilon_{cd} (\bar{d}_a d_3) [\bar{d}_b V_q^c (\Delta_d)^d{}_e d^a] , \quad \text{H.c.} , \\ (\bar{d}_3 d^a) [\bar{d}_a V_q^c \epsilon_{cd} (\Delta_d)^d{}_b d^b] , \quad (\bar{d}_3 d^a) [\bar{d}_a \epsilon_{bd} V_q^c (\Delta_d^*){}_c^d d^b] , \quad \epsilon_{ac} (\bar{d}_3 d^a) [\bar{d}_b V_q^d (\Delta_d^*){}_b^d d^c] , \quad \text{H.c.} .$

Example: $U(2)^3$ quark

$U(2)_q \times U$	$(2)_u \times \mathrm{U}(2)_d$	O	(1)	$\mathcal{O}($	V)	$\mathcal{O}(V)$	$^{/2})$	$\mathcal{O}($	V^3)	$\mathcal{O}($	Δ)	$\mathcal{O}(\Delta$	$\Delta V)$
a/,2 H3	Q_{uH}	1	1	1	1					1	1	1	1
ψ II	Q_{dH}	1	1	1	1					1	1	1	1
$a/2 \mathbf{X} \mathbf{H}$	$Q_{u(G,W,B)}$	3	3	3	3					3	3	3	3
ψΛΠ	$Q_{d(G,W,B)}$	3	3	3	3					3	3	3	3
	$Q_{Hq}^{(1,3)}$	4		2	2	2							
$\psi^2 H^2 D$	Q_{Hu}, Q_{Hd}	4										2	2
	Q_{Hud}	1	1									2	2
(LL)(LL)	$Q_{qq}^{\left(1,3 ight) }$	10		6	6	10	2	2	2				
(BB)(BB)	Q_{uu}, Q_{dd}	10										6	6
	$Q_{ud}^{(1,8)}$	8										8	8
(LL)(RR)	$Q_{qu}^{(1,8)}, Q_{qd}^{(1,8)}$	16		8	8	8				4	4	12	12
(LR)(LR)	$Q_{quqd}^{(1,8)}$	2	2	4	4	2	2			8	8	12	12
Te	otal	63	11	28	28	22	4	2	2	20	20	50	50

AG, Thomsen, Palavric; 2203.09561

Table 2. Counting of the pure quark SMEFT operators (see Appendix A) assuming $U(2)_q \times U(2)_u \times U(2)_d$ symmetry in the quark sector. The counting is performed taking up to three insertions of V_q spurion, one insertion of $\Delta_{u,d}$ and one insertion of the $\Delta_{u,d}V_q$ spurion product. Left (right) numerical entry in each column gives the number of CP even (odd) coefficients at the given order in spurion counting. See also Faroughy et al; 2005.05366

Tools

• Mathematica package **SMEFTflavor** to facilitate the use of flavor symmetries

https://github.com/aethomsen/SMEFTflavor

In[*]:= CountingTable[{"quark:3U2", "lep:2U2"}, SpurionCount → 1, SMEFToperators → semiLeptonicOperators]

	{quark:3U	2, lep:2U2}	0[1]	0[[Vl]	0[Vq]
	(LL) (LL)	0lq(1,3)	8		4	4	4	4
	(RR) (RR)	0eu	4					
		0ed	4					
Out[•]=	(LL) (RR)	Olu	4		2	2		
		Old	4		2	2		
		0qe	4				2	2
-	(LR) (LR)	Olequ (1,3)	2	2	2	2	2	2
	(LR) (RL)	Oledq	1	1	1	1	1	1
	Тс	otal	31	3	11	11	9	9

Im[=]:= AddSMEFTSymmetry["Lepton", "lep:U2xU1" → <| Groups → <|"U2l" → SU@ 2|>, FieldSubstitutions → <|"l" → {"l12", "l3"}, "e" → {"e12", "e3"}|>, Spurions → {"∆l", "Vl", "Xτ"}, Charges → <|"l12" → {1, 0}, "l3" → {0, 1}, "e12" → {-1, 0}, "e3" → {0, -1}, "∆l" → {2, 0}, "Vl" → {1, 1}, "Xτ" → {0, 2}|>, Representations → <|"l12" → {"U2l"@ fund}, "e12" → {"U2l"@ fund}, "Vl" → {"U2l"@ fund}, "∆l" → {"U2l"@ adj}|>, SpurionCounting → <|"Xτ" → 1, "Vl" → 2, "∆l" → 3|>, SelfConjugate → {"∆l"}

Summary

AG, Thomsen, Palavric; 2203.09561

Dim	-6 SMEFT operators	Lepton sector							
B-co	onserving $\mathcal{O}(1)$ terms	MFV_L	$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^2$	$U(1)^{6}$	$U(1)^{3}$	No symmetry		
	MFV_Q	47	65	71	87	111	339		
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	82	105	115	132	168	450		
Quark	$U(2)^3 imes U(1)_{b_R}$	96	121	128	150	186	480		
sector	$U(2)^{3}$	110	135	147	164	206	512		
	No symmetry	1273	1347	1407	1425	1611	2499		

- Flavour-symmetric operator bases (no spurion insertions)
- Systematically from MFV towards anarchy: $U(3) \supset U(2) \supset U(1)$

Top/Higgs/EW Nontrivial Interplay Flavour

Summary

AG, Thomsen, Palavric; 2203.09561

Dim	-6 SMEFT operators	Lepton sector							
B-co	onserving $\mathcal{O}(1)$ terms	MFV_L	$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^2$	$U(1)^{6}$	$U(1)^3$	No symmetry		
	MFV_Q	47	65	71	87	111	339		
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	82	105	115	132	168	450		
Quark	$U(2)^3 imes U(1)_{b_R}$	96	121	128	150	186	480		
sector	$U(2)^{3}$	110	135	147	164	206	512		
	No symmetry	1273	1347	1407	1425	1611	2499		

AG, Palavric; wip

Dim	-8 SMEFT operators	Lepton sector							
B-co	onserving $\mathcal{O}(1)$ terms	MFV_L	$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^2$	$U(1)^{6}$	$U(1)^3$	No symmetry		
	MFV_Q	456	631	735	840	1266	4032		
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	962	1205	1361	1482	2064	5550		
Guark	$U(2)^3 imes U(1)_{b_R}$	1124	1384	1546	1678	2278	5902		
sector	$U(2)^{3}$	1366	1646	1838	1960	2650	6574		
	No symmetry	19459	20512	21384	21599	24329	36971		

	Next slide						
	\backslash	Su	mmary				
					AG,Th	nomsen, Pa	alavric; <u>2203.09561</u>
Dim	-6 SMEFT operators			Lepton s	sector		
B-co	onserving $\mathcal{O}(1)$ terms	MFV_L	$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^{2}$	$U(1)^{6}$	$U(1)^3$	No symmetry
	MFV_Q	47	65	71	87	111	339
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	82	105	115	132	168	450
Quark	$U(2)^3 \times U(1)_{b_R}$	96	121	128	150	186	480
sector	$U(2)^{3}$	110	135	147	164	206	512
	No symmetry	1273	1347	1407	1425	1611	2499

AG, Palavric; wip

Dim	-8 SMEFT operators	Lepton sector							
B-co	onserving $\mathcal{O}(1)$ terms	MFV_L	$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^2$	$U(1)^{6}$	$U(1)^3$	No symmetry		
	MFV_Q	456	631	735	840	1266	4032		
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	962	1205	1361	1482	2064	5550		
Guark	$U(2)^3 \times U(1)_{b_R}$	1124	1384	1546	1678	2278	5902		
sector	$U(2)^{3}$	1366	1646	1838	1960	2650	6574		
	No symmetry	19459	20512	21384	21599	24329	36971		

$U(3)^5$ flavour-symmetric basis

Class	Label	Operator	Label	Operator					
	$\mathcal{O}^{D}_{\ell\ell}$	$(\bar{\ell}_i \gamma^\mu \ell^i) (\bar{\ell}_j \gamma_\mu \ell^j)$	$\mathcal{O}_{\ell q}^{(1)}$	$(ar{\ell}_i\gamma^\mu\ell^i)(ar{q}_j\gamma_\mu q^j)$					
$(\bar{L}L)(\bar{L}L)$	$\mathcal{O}^E_{\ell\ell}$	$(\bar{\ell}_i \gamma^\mu \ell^j) (\bar{\ell}_j \gamma_\mu \ell^i)$	$\mathcal{O}_{\ell q}^{(\hat{3})}$	$(ar{\ell}_i\gamma^\mu\sigma^a\ell^i)(ar{q}_j\gamma_\mu\sigma^aq^j)$					
(/()	${\cal O}_{qq}^{(1)D}$	$(ar q_i \gamma^\mu q^i) (ar q_j \gamma_\mu q^j)$	$\mathcal{O}_{qq}^{(3)D}$	$(ar q_i \gamma^\mu \sigma^a q^i) (ar q_j \gamma_\mu \sigma^a q^j)$					
	$\mathcal{O}_{qq}^{(1)E}$	$(ar q_i\gamma^\mu q^j)(ar q_j\gamma_\mu q^i)$	$\mathcal{O}_{qq}^{(3)E}$	$(ar q_i\gamma^\mu\sigma^a q^j)(ar q_j\gamma_\mu\sigma^a q^i)$		T 1 1		T 1 1	
	\mathcal{O}_{ee}	$(ar{e}_i\gamma^\mu e^i)(ar{e}_j\gamma_\mu e^j)$	\mathcal{O}_{dd}^D	$(ar{d}_i\gamma^\mu d^i)(ar{d}_j\gamma_\mu d^j)$	Class	Label	Operator	Label	Operator
	\mathcal{O}_{uu}^D	$(\bar{u}_i\gamma^\mu u^i)(\bar{u}_j\gamma_\mu u^j)$	\mathcal{O}^{E}_{dd}	$(ar{d}_i\gamma^\mu d^j)(ar{d}_j\gamma_\mu d^i)$	X^3	\mathcal{O}_W	$\varepsilon_{abc}W^{a\nu}_{\mu}W^{b\rho}_{\nu}W^{c\mu}_{\rho}$	\mathcal{O}_G	$f_{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{ ho}$
$(\bar{R}R)(\bar{R}R)$	\mathcal{O}^{E}_{uu}	$(\bar{u}_i\gamma^{\mu}u^j)(\bar{u}_j\gamma_{\mu}u^i)$	$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_i \gamma^\mu u^i) (\bar{d}_j \gamma_\mu d^j)$	Loop generated	${\mathcal O}_{ ilde W}$	$\varepsilon_{abc} \tilde{W}^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c\mu}_{\rho}$	$\mathcal{O}_{ ilde{G}}$	$f_{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$
	\mathcal{O}_{eu}	$(ar{e}_i\gamma^\mu e^i)(ar{u}_j\gamma_\mu u^j)$	$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_i \gamma^\mu T^A u^i) (\bar{d}_j \gamma_\mu T^A d^j)$	ϕ^6	\mathcal{O}_{ϕ}	$(\phi^\dagger \phi)^3$		
	\mathcal{O}_{ed}	$(ar{e}_i\gamma^\mu e^i)(ar{d}_j\gamma_\mu d^j)$			$\phi^4 D^2$	$\mathcal{O}_{\phi\square}$	$(\phi^\dagger \phi) \Box (\phi^\dagger \phi)$	$\mathcal{O}_{\phi D}$	$(\phi^\dagger D_\mu \phi) [(D^\mu \phi)^\dagger \phi]$
	$\mathcal{O}_{\ell e}$	$(\bar{\ell}_i \gamma^\mu \ell^i) (\bar{e}_j \gamma_\mu e^j)$	$\mathcal{O}_{qu}^{(1)}$	$(ar q_i \gamma^\mu q^i) (ar u_j \gamma_\mu u^j)$		$\mathcal{O}_{\phi B}$	$(\phi^{\dagger}\phi)B_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi WB}$	$(\phi^{\dagger}\sigma^{a}\phi)W^{a}_{\mu u}B^{\mu u}$
(5-5)(5-5)	\mathcal{O}_{qe}	$(ar{q}_i\gamma^\mu q^i)(ar{e}_j\gamma_\mu e^j)$	$\mathcal{O}_{qu}^{(8)}$	$(\bar{q}_i \gamma^\mu T^A q^i) (\bar{u}_j \gamma_\mu T^A u^j)$	$X^2 \phi^2$	$\mathcal{O}_{\phi ilde{B}}$	$(\phi^{\dagger}\phi) ilde{B}_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi ilde W B}$	$(\phi^{\dagger}\sigma^{a}\phi) ilde{W}^{a}_{\mu u}B^{\mu u}$
(LL)(RR)	$\mathcal{O}_{\ell u}$	$(\bar{\ell}_i \gamma^\mu \ell^i) (\bar{u}_j \gamma_\mu u^j)$	$\mathcal{O}_{ad}^{(1)}$	$(ar{q}_i\gamma^\mu q^i)(ar{d}_j\gamma_\mu d^j)$	Loop generated	$\mathcal{O}_{\phi W}$	$(\phi^\dagger \phi) W^a_{\mu u} W^{a\mu u}$	$\mathcal{O}_{\phi G}$	$(\phi^\dagger \phi) G^A_{\mu u} G^{A\mu u}$
	$\mathcal{O}_{\ell d}$	$(ar{\ell}_i\gamma^\mu\ell^i)(ar{d}_j\gamma_\mu d^j)$	$\mathcal{O}_{qd}^{(8)}$	$(ar{q}_i\gamma^\mu T^A q^i)(ar{d}_j\gamma_\mu T^A d^j)$		$\mathcal{O}_{\phi ilde W}$	$(\phi^{\dagger}\phi) \tilde{W}^{a}_{\mu u} W^{a\mu u}$	$\mathcal{O}_{\phi ilde{G}}$	$(\phi^{\dagger}\phi)\tilde{G}^{A}_{\mu u}G^{A\mu u}$
	$\mathcal{O}_{\phi\ell}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{\ell}_{i}\gamma^{\mu}\ell^{i})$	$\mathcal{O}_{\phi e}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(ar{e}_{i}\gamma^{\mu}e^{i})$					
$dy^2 \phi^2 D$	$\mathcal{O}_{\phi\ell}^{(3)}$	$(\phi^{\dagger}i \overleftrightarrow{D_{\mu}^{a}} \phi) (\bar{\ell}_{i} \gamma^{\mu} \sigma^{a} \ell^{i})$	$\mathcal{O}_{\phi u}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(ar{u}_{i}\gamma^{\mu}u^{i})$					
ψψD	$\mathcal{O}_{\phi q}^{(1)}$	$(\phi^\dagger i \overleftrightarrow{D}_\mu \phi) (ar{q}_i \gamma^\mu q^i)$	$\mathcal{O}_{\phi d}$	$(\phi^\dagger i \overleftrightarrow{D}_\mu \phi) (ar{d}_i \gamma^\mu d^i)$					
	$\mathcal{O}_{\phi q}^{(3)}$	$(\phi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}^{a}} \phi) (\bar{q}_{i} \gamma^{\mu} \sigma^{a} q^{i})$							

• Explicit operator basis: 41 CP even, 6 CP odd

$U(3)^5$ flavour-symmetric basis

Class	Label	Operator	Label	Operator					
	$\mathcal{O}^{D}_{\ell\ell}$	$(\bar{\ell}_i \gamma^\mu \ell^i) (\bar{\ell}_j \gamma_\mu \ell^j)$	$\mathcal{O}_{\ell q}^{(1)}$	$(ar{\ell}_i\gamma^\mu\ell^i)(ar{q}_j\gamma_\mu q^j)$					
$(\bar{L}L)(\bar{L}L)$	$\mathcal{O}^E_{\ell\ell}$	$(\bar{\ell}_i \gamma^\mu \ell^j) (\bar{\ell}_j \gamma_\mu \ell^i)$	$\mathcal{O}_{\ell q}^{(ilde{3})}$	$(ar{\ell}_i\gamma^\mu\sigma^a\ell^i)(ar{q}_j\gamma_\mu\sigma^aq^j)$					
()()	${\cal O}_{qq}^{(1)D}$	$(ar q_i\gamma^\mu q^i)(ar q_j\gamma_\mu q^j)$	$\mathcal{O}_{qq}^{(3)D}$	$(ar q_i\gamma^\mu\sigma^a q^i)(ar q_j\gamma_\mu\sigma^a q^j)$					
	$\mathcal{O}_{qq}^{(1)E}$	$(ar q_i\gamma^\mu q^j)(ar q_j\gamma_\mu q^i)$	$\mathcal{O}_{qq}^{(3)E}$	$(\bar{q}_i\gamma^\mu\sigma^aq^j)(\bar{q}_j\gamma_\mu\sigma^aq^i)$					
	\mathcal{O}_{ee}	$(\bar{e}_i \gamma^\mu e^i) (\bar{e}_j \gamma_\mu e^j)$	\mathcal{O}_{dd}^D	$(ar{d}_i\gamma^\mu d^i)(ar{d}_j\gamma_\mu d^j)$	Class	Label	Operator	Label	Operator
	\mathcal{O}^{D}_{uu}	$(ar{u}_i\gamma^\mu u^i)(ar{u}_j\gamma_\mu u^j)$	\mathcal{O}^{E}_{dd}	$(ar{d}_i\gamma^\mu d^j)(ar{d}_j\gamma_\mu d^i)$	X^3	\mathcal{O}_W	$\varepsilon_{abc} W^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c\mu}_{\rho}$	\mathcal{O}_G	$f_{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$
$(\bar{R}R)(\bar{R}R)$	\mathcal{O}^{E}_{uu}	$(\bar{u}_i \gamma^\mu u^j) (\bar{u}_j \gamma_\mu u^i)$	$\mathcal{O}_{ud}^{(1)}$	$(ar{u}_i\gamma^\mu u^i)(ar{d}_j\gamma_\mu d^j)$	Loop generated	$\mathcal{O}_{ ilde{W}}$	$\varepsilon_{abc} \tilde{W}^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c\mu}_{\rho}$	$\mathcal{O}_{ ilde{G}}$	$f_{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$
	\mathcal{O}_{eu}	$(ar{e}_i\gamma^\mu e^i)(ar{u}_j\gamma_\mu u^j)$	$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_i \gamma^\mu T^A u^i) (\bar{d}_j \gamma_\mu T^A d^j)$	ϕ^6	\mathcal{O}_{ϕ}	$(\phi^\dagger \phi)^3$		
	\mathcal{O}_{ed}	$(ar{e}_i\gamma^\mu e^i)(ar{d}_j\gamma_\mu d^j)$			$\phi^4 D^2$	$\mathcal{O}_{\phi\square}$	$(\phi^\dagger \phi) \Box (\phi^\dagger \phi)$	$\mathcal{O}_{\phi D}$	$(\phi^\dagger D_\mu \phi) [(D^\mu \phi)^\dagger \phi]$
	$\mathcal{O}_{\ell e}$	$(\bar{\ell}_i \gamma^\mu \ell^i) (\bar{e}_j \gamma_\mu e^j)$	$\mathcal{O}_{qu}^{(1)}$	$(ar q_i \gamma^\mu q^i) (ar u_j \gamma_\mu u^j)$		$\mathcal{O}_{\phi B}$	$(\phi^{\dagger}\phi)B_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi WB}$	$(\phi^{\dagger}\sigma^{a}\phi)W^{a}_{\mu u}B^{\mu u}$
(51)(50)	\mathcal{O}_{qe}	$(ar{q}_i\gamma^\mu q^i)(ar{e}_j\gamma_\mu e^j)$	$\mathcal{O}_{qu}^{(8)}$	$(\bar{q}_i\gamma^\mu T^A q^i)(\bar{u}_j\gamma_\mu T^A u^j)$	$X^2 \phi^2$	$\mathcal{O}_{\phi ilde{B}}$	$(\phi^{\dagger}\phi) ilde{B}_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi ilde{W}B}$	$(\phi^{\dagger}\sigma^{a}\phi) ilde{W}^{a}_{\mu u}B^{\mu u}$
(LL)(RR)	$\mathcal{O}_{\ell u}$	$(ar{\ell}_i \gamma^\mu \ell^i) (ar{u}_j \gamma_\mu u^j)$	$\mathcal{O}_{ad}^{(1)}$	$(ar q_i \gamma^\mu q^i) (ar d_j \gamma_\mu d^j)$	Loop generated	$\mathcal{O}_{\phi W}$	$(\phi^{\dagger}\phi)W^{a}_{\mu u}W^{a\mu u}$	$\mathcal{O}_{\phi G}$	$(\phi^\dagger \phi) G^A_{\mu u} G^{A\mu u}$
	$\mathcal{O}_{\ell d}$	$(ar{\ell}_i\gamma^\mu\ell^i)(ar{d}_j\gamma_\mu d^j)$	$\mathcal{O}_{qd}^{(8)}$	$(ar{q}_i\gamma^\mu T^A q^i)(ar{d}_j\gamma_\mu T^A d^j)$		$\mathcal{O}_{\phi ilde W}$	$(\phi^{\dagger}\phi) ilde{W}^{a}_{\mu u}W^{a\mu u}$	$\mathcal{O}_{\phi ilde{G}}$	$(\phi^{\dagger}\phi) \tilde{G}^{A}_{\mu u} G^{A\mu u}$
	$\mathcal{O}_{\phi\ell}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{\ell}_{i}\gamma^{\mu}\ell^{i})$	$\mathcal{O}_{\phi e}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{e}_{i}\gamma^{\mu}e^{i})$					
$\psi^2 \phi^2 D$	$\mathcal{O}_{\phi\ell}^{(3)}$	$(\phi^{\dagger}i \overleftrightarrow{D_{\mu}^{a}} \phi) (\bar{\ell}_{i} \gamma^{\mu} \sigma^{a} \ell^{i})$	$\mathcal{O}_{\phi u}$	$(\phi^\dagger i \overleftrightarrow{D}_\mu \phi) (ar{u}_i \gamma^\mu u^i)$	0	\sim			
	$\mathcal{O}_{\phi q}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(ar{q}_{i}\gamma^{\mu}q^{i})$	$\mathcal{O}_{\phi d}$	$(\phi^\dagger i \overleftrightarrow{D}_\mu \phi) (ar{d}_i \gamma^\mu d^i)$	• Greer	 Green: Can be generated at tre 			
	$\mathcal{O}_{\phi q}^{(3)}$	$(\phi^\dagger i \overset{\leftrightarrow}{D^a_\mu} \phi) (ar{q}_i \gamma^\mu \sigma^a q^i)$			in a re	enorr	nalisable U	V co	mpletion!

Q: What are all tree-level UV completions? AG, Palavric; 2305.08898

Leading (flavour-blind) directions

- Assume weakly coupled, perturbative UV with new spin-0, 1/2, 1 fields
- New fields have $M_X \gg v_{EW}$ and leading (renormalisable) interactions
- Goal: identify all possible ways to generate $\dim 6$ operator in the $U(3)^5$ flavour-symmetric basis
- Start from the UV/IR dictionary of 1711.10391 and impose $U(3)^5$:
 - New fields are irreps of the flavor group: 1, 3, 6, 8
 - Parameter reduction: Flavour tensors fixed by group theory
- In most cases, a single flavour irrep integrates to a single Hermitian operator with a definite sign (**a leading direction**)
- These define a UV motivated operator basis suitable for ID fits

Example: Fermions

Field	Irrep	Normalization	Operator
$N \sim (1, 1)_0$	3_ℓ	$ \lambda_N ^2/(4M_N^2)$	${\cal O}_{\phi\ell}^{(1)}-{\cal O}_{\phi\ell}^{(3)}$
$E \sim (1, 1)_{-1}$	3_ℓ	$- \lambda_E ^2/(4M_E^2)$	$\mathcal{O}_{\phi\ell}^{(1)} + \mathcal{O}_{\phi\ell}^{(3)} - [2y_e^*\mathcal{O}_{e\phi} + ext{h.c.}]$
$\Delta_1 \sim (1, 2)_{-\frac{1}{2}}$	3_{e}	$ \lambda_{\Delta_1} ^2/(2M_{\Delta_1}^2)$	$\mathcal{O}_{\phi e} + [y_e^* \mathcal{O}_{e\phi} + ext{h.c.}]$
$\Delta_3 \sim \left({f 1}, {f 2} ight)_{-rac{3}{2}}$	3_{e}	$- \lambda_{\Delta_3} ^2/(2M_{\Delta_3}^2)$	$\mathcal{O}_{\phi e} - [y_e^*\mathcal{O}_{e\phi} + \mathrm{h.c.}]$
$\Sigma \sim ({f 1},{f 3})_0$	3_ℓ	$ \lambda_{\Sigma} ^2/(16M_{\Sigma}^2)$	$3\mathcal{O}_{\phi\ell}^{(1)}+\mathcal{O}_{\phi\ell}^{(3)}+[4y_e^*\mathcal{O}_{e\phi}+ ext{h.c.}]$
$\Sigma_1 \sim (1, 3)_{-1}$	3_ℓ	$ \lambda_{\Sigma_1} ^2/(16M_{\Sigma_1}^2)$	${\mathcal O}_{\phi\ell}^{(3)} - 3{\mathcal O}_{\phi\ell}^{(1)} + [2y_e^*{\mathcal O}_{e\phi} + { m h.c.}]$
$U \sim (3, 1)_{rac{2}{3}}$	3_q	$\left \lambda_U ight ^2/(4M_U^2)$	$\mathcal{O}_{\phi q}^{(1)} - \mathcal{O}_{\phi q}^{(3)} + [2y_u^*\mathcal{O}_{u\phi} + \mathrm{h.c.}]$
$D \sim (3, 1)_{-\frac{1}{3}}$	3_q	$-\left \lambda_{D} ight ^{2}/(4M_{D}^{2})$	$\mathcal{O}_{\phi q}^{(1)} + \mathcal{O}_{\phi q}^{(3)} - [2y_d^*\mathcal{O}_{d\phi} + ext{h.c.}]$
(2, 2)	3_{u}	$- \lambda_{Q_1}^u ^2/(2M_{Q_1}^2)$	$\mathcal{O}_{\phi u} - [y_u^* \mathcal{O}_{u \phi} + ext{h.c.}]$
$Q_1\sim ({f 3},{f 2})_{1\over 6}$	3_d	$ \lambda_{Q_1}^d ^2/(2M_{Q_1}^2)$	$\mathcal{O}_{\phi d} + [y_d^* \mathcal{O}_{d \phi} + ext{h.c.}]$
$Q_5 \sim (3, 2)_{-rac{5}{6}}$	3_d	$- \lambda_{Q_5} ^2/(2M_{Q_5}^2)$	$\mathcal{O}_{\phi d} - [y_d^*\mathcal{O}_{d\phi} + ext{h.c.}]$
$Q_7 \sim (3, 2)_{rac{7}{6}}$	3_{u}	$ \lambda_{Q_7} ^2/(2M_{Q_7}^2)$	$\mathcal{O}_{\phi u} + [y_u^* \mathcal{O}_{u\phi} + ext{h.c.}]$
$T_1 \sim (3, 3)_{-\frac{1}{3}}$	3_q	$ \lambda_{T_1} ^2/(16M_{T_1}^2)$	$\mathcal{O}_{\phi q}^{(3)} - 3\mathcal{O}_{\phi q}^{(1)} + [2y_d^*\mathcal{O}_{d\phi} + 4y_u^*\mathcal{O}_{u\phi} + \text{h.c.}]$
$T_2 \sim (3, 3)_{rac{2}{3}}$	3_q	$ \lambda_{T_2} ^2/(16M_{T_2}^2)$	$\mathcal{O}_{\phi q}^{(3)} + 3\mathcal{O}_{\phi q}^{(1)} + [4y_d^*\mathcal{O}_{d\phi} + 2y_u^*\mathcal{O}_{u\phi} + \text{h.c.}]$

• See scalars, vectors and exceptional cases in AG, Palavric; 2305.08898

Compilation of EFT limits on leading directions

AG, Palavric; <u>2305.08898</u>

• Automatic protection against FCNC

23

• The case for Top/Higgs/EW fits

$\Xi_1 \sim \bar{6}_\ell$		$\mathcal{U}_2 \sim (3_q, \bar{3}_\ell)$	
C 2		$\mathcal{U}_5 \sim (\mathfrak{Z}_u, \mathfrak{Z}_e)$	
$S_1 \sim S_\ell$		$\frac{\omega_1 \sim (3_q, 3_\ell)}{\mathcal{V}_{\text{or}}(3, \overline{2}_\ell)}$	
$\mathcal{W} \sim 8_{\ell}$		$\begin{array}{c} \alpha \rightarrow (a_q, b_l) \\ \hline O_r \sim (3, 3) \end{array}$	
-		$\omega_1 \sim (3_{e_1} 3_{e_2})$	
$\mathcal{B} \sim 8_{\ell}$		$\mathcal{Q}_1 \sim (3_n, 3_\ell)$	
		$\Pi_7 \sim (3_u, \overline{3}_\ell)$	
$\mathcal{L}_3 \sim (3_\ell, 3_e)$		$\Pi_7 \sim (3_q, \bar{3}_e)$	
$\varphi \sim (3_\ell, \bar{3}_e)$		$\mathcal{U}_2 \sim (3_d, \bar{3}_e)$	
		$\zeta \sim (3_q, 3_\ell)$	
$S_2 \sim 6_e$		$\omega_4 \sim (3_d, 3_e)$	
$\mathcal{B} \sim 8_{c}$		$\mathcal{Q}_5 \sim (3_d, 3_\ell)$	
	4L	$\Pi_1 \sim (3_d, 3_\ell)$	2L2Q
(~3		$Q_{\rm r} \sim (\bar{3}, \bar{3})$	
		$\mathcal{V} \sim (\bar{3}, \bar{3})$	
$3t_1 \sim 5_q$		$\frac{\mathbf{y}_{3} + (\mathbf{y}_{q}, \mathbf{y}_{u})}{\mathbf{y}_{s} \sim (\bar{\mathbf{x}}, \bar{\mathbf{x}})}$	
$41 \sim 6_q$		$\frac{\mathbf{J}_1 + (\mathbf{J}_q, \mathbf{J}_d)}{\mathbf{B}_1 \sim (3 - \bar{\mathbf{J}}_1)}$	
$\omega_1 \sim 6_q$		$\frac{D_1 \sim (\bar{\mathbf{a}}_u, \mathbf{a}_d)}{D_1 \sim (\bar{\mathbf{a}}_u, \bar{\mathbf{a}}_d)}$	
$\omega_4 \sim 3_u$		$\frac{ \mathbf{y}_1 \sim (3_q, 3_d) }{ \mathbf{G}_1 \sim (2_q, 3_d) }$	
$\varphi \sim (\bar{3}_q, 3_u)$		$\mathbf{y}_1 \sim (\mathbf{s}_u, \mathbf{s}_d)$	
$\Omega_4 \sim 6_u$		$b \sim \delta_q$	
$\Phi \sim (\bar{3}_q, 3_u)$		$g \sim \delta_q$ $B \sim 8$	
$\Omega_1 \sim (3_u, 3_d)$		$\mathcal{W} \sim 8$	
$\omega_1 \sim (\bar{3}_u, \bar{3}_d)$		$G \sim 8$	
$\omega \sim (3\pi \overline{3} d)$		$\frac{g}{2} \sim \delta_u$	
$\Phi \approx \begin{pmatrix} 3 & \overline{3} \\ 2 & \overline{3} \end{pmatrix}$		$\frac{n}{2}$	
$\Psi \sim (3_q, 3_d)$	4Q	$n \sim o_q$	4Q
$N \sim 3_{\ell}$		E	
$\Delta_3 \sim 3_e$			
$E \sim 3_{\ell}$		$B_1 \sim 1$	
$\Delta_1 \sim 3_e$			
$\Sigma \sim 3_{\ell}$		- = ~ 1	
$D \sim 3_q$		$W_{\rm c} \sim 1$	
$Q_1 \sim 3_d$			
$T_1 \sim 3_q$		$S \sim 1$	
$T_2 \sim 3_q$			
$\Sigma_1 \sim 3_\ell$		$-\varphi \sim 1$	
$U \sim S_q$		$\Theta_{1} \sim 1$	
$Q_1 \sim S_u$			
$Q_z \sim 3a$		$\Theta_1 \sim 1$	
	Vertex	Obliq	ue/Higgs
.1 1 1 10 <i>M</i> [TeV]	30 0	0.1 1 10 <i>M</i> [TeV]	30

Global SMEFT likelihood

Towards a global SMEFT likelihood

- Building a global likelihood (GL) is very useful.
- Say you've got a new model and want to confront it against data.
 Step I: Match it to the SMEFT (now automated to one-loop)
 Step 2: Plug into the GL

```
L(\vec{C}) \approx \prod_{i} L_{exp}^{i}(\vec{O}_{th}(\vec{C}, \vec{\theta}_{0})) \times \tilde{L}_{exp}(\vec{O}_{th}(\vec{C}, \vec{\theta}_{0}))
\vec{C}_{SMEFT}(\Lambda_{NP})
\downarrow
\vec{C}_{SMEFT}(\mu_{h}) \longrightarrow EWPO
\downarrow
L_{global}(\vec{C})
```

мом

 $\vec{C}_{\mathsf{WET}}(\mu_l)$ -

https://flav-io.github.io/

 Challenges for constructing the GL: Compute huge number of observables in the SMEFT (a theory of many parameters) BUT once and for all

LSM global

Towards a global SMEFT likelihood

Example: AG, Salko, Smolkovic, Stangl; <u>2212.10497</u>, <u>2306.09401</u>

• Flavio implementation of the high-mass Drell-Yan data

Data

Theory

Search	Ref.	Channel	Luminosity
ATLAS	[45]	$pp \rightarrow ee$	$139 \ \mathrm{fb}^{-1}$
	[40]	$pp ightarrow \mu \mu$	$139 \ \mathrm{fb}^{-1}$
CMS	[46]	$pp \rightarrow ee$	$137 \ \mathrm{fb}^{-1}$
CMS	[40]	$pp \rightarrow \mu\mu$	$140~{\rm fb}^{-1}$
		$pp \rightarrow e\nu$	$139 \ \mathrm{fb}^{-1}$
ALLAS	[4]	$pp ightarrow \mu u$	$139~{\rm fb}^{-1}$
CMS	[48]	$pp \rightarrow e\nu$	$138 \ \mathrm{fb}^{-1}$
	[40]	$pp \rightarrow \mu \nu$	$138~{ m fb}^{-1}$

Drell-Yan data used

$Q_{lq}^{(1)} \ Q_{lq}^{(3)}$	$egin{aligned} &(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)\ &(ar{l}_p\gamma_\mu\sigma^i l_r)(ar{q}_s\gamma^\mu\sigma^i q_t) \end{aligned}$	$\psi^4:$ $\psi^4:$ $\sim {E^2\over \Lambda^2}$
Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$	$ar{q}'$ $\ell', u_{\ell'}$
Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	
Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	855 ops
Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	
Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_{tj})$	
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	

4F SMEFT operators with arbitrary flavor

SMEFT example

 $[C_{lq}^{(1)}]_{st}^{(l)}(\bar{l}_l\gamma_{\mu}l_l)(\bar{q}_s\gamma^{\mu}q_t)$

 $[C_{lq}^{(1)}]^{(\ell)} \equiv [C_{lq}^{(1)}]^{(e)} = [C_{lq}^{(1)}]^{(\mu)}$

 $Q_{la}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$

Conclusions

- A UV theory will leave imprints on the flavor structure of the SMEFT.
- The selection rules implied have the advantage of reducing the number of important SMEFT operators by truncating the flavor-spurion expansion.
- We constructed operator bases order by order in the spurion expansion for 28 different flavour symmetry assumptions.
- Ready-for-use setups for phenomenological studies and global fits.
- Classification of new physics mediators contributing at leading order in both the MFV and the SMEFT power counting (leading flavour-blind directions).
- High-mass Drell-Yan data added to the global SMEFT likelihood and studied its interplay with flavour data.

Alhambra of Granada

Thank you

https://physik.unibas.ch/en/persons/admir-greljo/ admir.greljo@unibas.ch

SMEFT: Systematic BSM

1308.2627, 1310.4838, 1312.2014, 1709.04486, 1711.05270, 1711.10391, 1710.06445, 1804.05033, 1908.05295, 2010.16341, 2012.08506, 2012.07851,

. . .

Flavour Puzzle

A Warsaw basis

Here we list the $\Delta B = 0$ dimension-6 fermionic SMEFT operators in the Warsaw basis [13] with division into classes as presented in [14].

5–7: Fermion Bilinears

	non-hermitian $(\bar{L}R)$							
	5: $\psi^2 H^3$ 6: $\psi^2 X H$							
Q_{eH}	$(H^{\dagger}H)(\bar{\ell}_{p}e_{r}H)$	Q_{eW}	$(\bar{\ell}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G^A_{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	
Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$	Q_{eB}	$(\bar{\ell}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	
Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$			Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	
	$h_{\text{constitute}} \left(\downarrow Q \right) = 7 \cdot \downarrow^2 U^2 D$							

hermitian $(+ Q_{Hud}) \sim 7: \psi^2 H^2 D$							
	$(\bar{L}L)$		$(\bar{R}R)$	$(\bar{R}R')$			
$Q_{H\ell}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{\ell}_{p}\gamma^{\mu}\ell_{r})$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Q_{Hud}	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$		
$Q_{H\ell}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{\ell}_{p}\tau^{I}\gamma^{\mu}\ell_{r})$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$				
$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$				
$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$						

8: Fermion Quadrilinears

	hermitian							
$(\bar{L}L)(\bar{L}L)$				$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$			
	$Q_{\ell\ell}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{\ell}_s \gamma^\mu \ell_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	$Q_{\ell e}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{e}_s \gamma^\mu e_t)$		
	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{\ell u}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{u}_s \gamma^\mu u_t)$		
	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{\ell d}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{d}_s \gamma^\mu d_t)$		
	$Q_{\ell q}^{(1)}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
	$Q_{\ell q}^{(3)}$	$(\bar{\ell}_p \gamma_\mu \tau^I \ell_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$		
			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
					$Q_{ad}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		

non-hermitian					
	$(\bar{I}$	$(\bar{R}L)$		$(\bar{L}R)(\bar{L}R)$	
	$Q_{\ell edq}$	$(\bar{\ell}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$	
			$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$	
			$Q_{\ell equ}^{(1)}$	$(\bar{\ell}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$	
			$Q_{\ell equ}^{(3)}$	$(\bar{\ell}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	

Phenomenology of leading directions

- Automatic protection against FCNC
- The case for Top/Higgs/EW fits
- Example:

AG, Palavric; <u>2305.08898</u>

	S	calars		Vectors			
Field	Irrep	M^{LE} [TeV]	$M^{ m DY}$ [TeV]	Field	Irrep	M^{LE} [TeV]	$M^{ m DY}$ [TeV]
$\omega_1 \sim (3, 1)_{-\frac{1}{3}}$	$(3_q,3_\ell)$	10.0	8.8	$\mathcal{U}_2 \sim (3, 1)_{rac{2}{2}}$	$(3_d, ar{3}_e)$	3.7	5.6
$\omega_1 \sim (3, 1)_{-rac{1}{3}}$	$(3_u,3_e)$	4.7	7.5	$\mathcal{U}_2 \sim (3, 1)^{rac{3}{2}}_{rac{3}{2}}$	$(3_q, ar{3}_\ell)$	14.4	8.3
$\omega_4 \sim (3, 1)_{-rac{4}{3}}$	$(3_d, 3_e)$	3.6	5.1	$\mathcal{U}_5 \sim (3, 1)^{rac{3}{5}}_{rac{5}{2}}$	$(3_u, ar{3}_e)$	3.5	12.4
$\Pi_1 \sim (3, 2)_{rac{1}{6}}$	$(3_d, ar{3}_\ell)$	3.7	2.8	$\mathcal{Q}_1 \sim (3, 2)_{rac{1}{c}}^{3}$	$(3_u, 3_\ell)$	4.0	7.5
$\Pi_7 \sim ({f 3},{f 2})_{rac{7}{6}}^{\circ}$	$(3_u, ar{3}_\ell)$	3.5	6.2	$\mathcal{Q}_5 \sim (3, 2)_{-rac{5}{\epsilon}}$	$(3_d, 3_\ell)$	3.4	5.1
$\Pi_7 \sim ({f 3},{f 2})_{rac{7}{6}}$	$(3_q, ar{3}_e)$	3.4	5.7	$\mathcal{Q}_5 \sim (3, 2)_{-rac{5}{\epsilon}}$	$(3_q,3_e)$	7.7	6.6
$\zeta \sim (3,3)_{-rac{1}{3}}$	$(3_q,3_\ell)$	4.3	5.3	$\mathcal{X} \sim (3,3)_{rac{2}{3}}$	$(3_q, ar{3}_\ell)$	3.1	8.7

Table 7: 2-quark-2-lepton phenomenology (Class II): The first two columns indicate gauge and flavor representations of the new scalars (left panel) and vectors (right panel). The third and fourth columns contain the lower bounds at 95% CL on the mediator masses (couplings set to unity) obtained by the low-energy experiments (M^{LE}) and the Drell-Yan production at the LHC (M^{DY}), respectively. For the induced SMEFT operators, consult the Tables 1 and 3 and Appendices C.1 and C.3 for more details.

NP in the Drell-Yan Tails

Drell-Yan in the SMEFT

	DY dim-6 ψ^4	AG, Pa					AG, Palavric; wip
	$\mathcal{O}(1)$ terms	MFV_L	$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^2$	$U(1)^{6}$	$U(1)^{3}$	No symmetry
	MFV_Q	7	14	14	21	21	63
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	10	20	20	30	30	90
Quark	$U(2)^3 \times U(1)_{b_R}$	12	24	24	36	36	108
Sector	$U(2)^{3}$	12	24	26	36	42	126
	No symmetry	53	106	148	159	285	855

Table 3: Flavor counting of the dimension-6 operators of the type ψ^4 which contribute to Drell-Yan scattering.

SMEFT fit: ID

4F SMEFT operators with arbitrary flavor

$Q_{lq}^{\left(1 ight)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$
$Q_{lq}^{(ar{3})}$	$(ar{l}_p\gamma_\mu\sigma^i l_r)(ar{q}_s\gamma^\mu\sigma^i q_t)$
Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$
Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$
Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$
Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$
Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_{tj})$
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu u} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu u} u_t)$

Drell-Yan data used

Search	Ref.	Channel	Luminosity
	[45]	$pp \rightarrow ee$	$139 { m ~fb^{-1}}$
ALLAS	[40]	$pp ightarrow \mu \mu$	$139 {\rm ~fb^{-1}}$
CMS	[46]	$pp \rightarrow ee$	$137 \ \mathrm{fb}^{-1}$
ONIS		$pp ightarrow \mu \mu$	$140~{\rm fb}^{-1}$
	[47]	$pp \rightarrow e\nu$	$139 { m ~fb^{-1}}$
AILAS		$pp ightarrow \mu u$	$139 \ \mathrm{fb}^{-1}$
CMS [48]	$pp \rightarrow e\nu$	$138 { m ~fb^{-1}}$	
	[40]	$pp \rightarrow \mu \nu$	$138 {\rm ~fb^{-1}}$

Table 4: The 2σ bounds on different flavor structures of single Wilson coefficients at $\Lambda = 1$ TeV. See Sec. 5.1 for details.

		Drell-Yan tails		B decays		
Operator	Flavor	NC	$\mathbf{C}\mathbf{C}$	$b o q \ell \ell$	b ightarrow q u u	
	1113	[-0.068, 0.068]	-	[-0.005, 0.002]	[-0.035, 0.039]	
$o^{(1)}$	2213	[-0.031, 0.032]	-	$[-4.96, 0.78] \times 10^{-4}$	[-0.035, 0.039]	
O_{lq}	1123	[-0.145, 0.152]	-	$[-4.26, 0.98] \times 10^{-4}$	[-0.038, 0.017]	
	2223	[-0.066, 0.071]	-	$[7.71, 51.86] \times 10^{-5}$	[-0.038, 0.017]	
	1113	[-0.068, 0.068]	[-0.017, 0.017]	[-0.005, 0.002]	[-0.037, 0.033]	
$o^{(3)}$	2213	[-0.032, 0.031]	[-0.029, 0.029]	$[-4.85, 0.7] \times 10^{-4}$	[-0.037, 0.033]	
O_{lq}	1123	[-0.152, 0.145]	[-0.054, 0.051]	$[-4.26, 0.98] \times 10^{-4}$	[-0.015, 0.035]	
	2223	[-0.071, 0.066]	[-0.089, 0.089]	$[7.71, 51.86] \times 10^{-5}$	[-0.015, 0.035]	
	1113	[-0.068, 0.068]	-	[-0.005, 0.002]	[-0.038, 0.038]	
0	2213	[-0.032, 0.032]	-	$[-2.79, 2.43] \times 10^{-4}$	[-0.038, 0.038]	
O_{ld}	1123	[-0.149, 0.149]	-	$[-4.04, 1.09] \times 10^{-4}$	[-0.007, 0.023]	
	2223	[-0.069, 0.069]	-	$[-1.68, 2.14] \times 10^{-4}$	[-0.007, 0.023]	
	1311	[-0.068, 0.068]	-	[-0.003, 0.004]	-	
Ø	1322	[-0.032, 0.032]	-	$[-3.35, 7.56] \times 10^{-4}$	-	
O_{qe}	2311	[-0.148, 0.149]	-	[-0.003, 0.001]	-	
	2322	[-0.068, 0.069]	-	$[-2.39, 4.97] \times 10^{-4}$	-	
	1113	[-0.068, 0.068]	-	[-0.003, 0.004]	-	
0	2213	[-0.032, 0.032]	-	$[-7.03, 3.76] \times 10^{-4}$	-	
\mathcal{O}_{ed}	1123	[-0.149, 0.149]	-	[-0.002, 0.002]	-	
	2223	[-0.069, 0.069]	-	$[-4.05, 4.37] \times 10^{-4}$	-	
	1113	[-0.079, 0.079]	-	$[-1.19, 1.18] \times 10^{-4}$	-	
	1131	[-0.079, 0.079]	[-0.037, 0.037]	$[-1.18, 1.18] \times 10^{-4}$	-	
	2213	[-0.037, 0.037]	-	$[-3.48, 0.67] \times 10^{-5}$	-	
(2231	[-0.037, 0.037]	[-0.061, 0.061]	$[-3.49, 0.68] \times 10^{-5}$	-	
\mathcal{O}_{ledq}	1123	[-0.173, 0.173]	-	$[-1.78, 1.79] \times 10^{-4}$	-	
	1132	[-0.173, 0.173]	[-0.113, 0.113]	$[-1.77, 1.78] \times 10^{-4}$	-	
	2223	[-0.08, 0.08]	-	$[-6.82, 16.57] \times 10^{-6}$	-	
	2232	[-0.08, 0.08]	[-0.194, 0.194]	$[-6.8, 16.48] \times 10^{-6}$	-	

AG, Salko, Smolkovic, Stangl; 2212.10497

Example

Example:

$$\mathscr{L}_{NP}^{\Delta C=1} \approx \frac{\epsilon_V^{\ell\ell}}{(15 \,\mathrm{TeV})^2} \,(\bar{u}_R \gamma^\mu c_R) (\bar{\ell}_R \gamma^\mu \ell_R)$$

Systematic exploration of the low- p_T / high- p_T interplay

1609.07138, 1704.09015, 1811.07920, 1805.11402, 1912.00425, 2002.05684, 2008.07541, 2104.02723, 2111.04748, ...

Field	Irrep	Normalization	Operator
$\mathcal{S}_1 \sim (1, 1)_1$	3_ℓ	$ y_{\mathcal{S}_1} ^2/M_{\mathcal{S}_1}^2$	$\mathcal{O}^{D}_{\ell\ell} - \mathcal{O}^{E}_{\ell\ell}$
$\mathcal{S}_2 \sim (1, 1)_2$	$ar{6}_{e}$	$ y_{\mathcal{S}_2} ^2/(2M_{\mathcal{S}_2}^2)$	\mathcal{O}_{ee}
	$(ar{3}_e, 3_\ell)$	$- y^e_\varphi ^2/(2M^2_\varphi)$	$\mathcal{O}_{\ell e}$
$arphi \sim (1,2)_{rac{1}{2}}$	$(ar{3}_d, 3_q)$	$- y^d_arphi ^2/(6M^2_arphi)$	${\cal O}_{qd}^{(1)}+6{\cal O}_{qd}^{(8)}$
2	$(ar{3}_q, 3_u)$	$- y^u_\varphi ^2/(6M_\varphi^2)$	${\cal O}_{qu}^{(1)}+6{\cal O}_{qu}^{(8)}$
$\Xi_1 \sim ({\bf 1},{\bf 3})_1$	$ar{6}_\ell$	$\left y_{\Xi_{1}} ight ^{2}/(2M_{\Xi_{1}}^{2})$	$\mathcal{O}^{D}_{\ell\ell} + \mathcal{O}^{E}_{\ell\ell}$
	$(3_q,3_\ell)$	$ y_{\omega_1}^{q\ell} ^2/(4M_{\omega_1}^2)$	$\mathcal{O}_{\ell q}^{(1)} - \mathcal{O}_{\ell q}^{(3)}$
(0,1)	$(3_e,3_u)$	$ y^{eu}_{\omega_1} ^2/(2M^2_{\omega_1})$	\mathcal{O}_{eu}
$\omega_1 \sim (3, 1)_{-rac{1}{3}}$	$ar{6}_q$	$ y^{qq}_{\omega_1} ^2/(4M^2_{\omega_1})$	$\mathcal{O}_{qq}^{(1)D}-\mathcal{O}_{qq}^{(3)D}+\mathcal{O}_{qq}^{(1)E}-\mathcal{O}_{qq}^{(3)E}$
	$(ar{3}_d,ar{3}_u)$	$ y^{du}_{\omega_1} ^2/(3M^2_{\omega_1})$	${\cal O}_{ud}^{(1)} - 3 {\cal O}_{ud}^{(8)}$
$\omega_2 \sim (3, 1)_{rac{2}{3}}$	3_d	$ y_{\omega_2} ^2/M_{\omega_2}^2$	$\mathcal{O}^{D}_{dd} - \mathcal{O}^{E}_{dd}$
(0,1)	$(3_e,3_d)$	$ y^{ed}_{\omega_4} ^2/(2M^2_{\omega_4})$	\mathcal{O}_{ed}
$\omega_4 \sim (3, 1)_{-\frac{4}{3}}$	3_{u}	$ y^{uu}_{\omega_4} ^2/M^2_{\omega_4}$	$\mathcal{O}^{D}_{uu}-\mathcal{O}^{E}_{uu}$
$\Pi_1 \sim ({f 3},{f 2})_{rac{1}{6}}$	$(ar{3}_\ell, 3_d)$	$- y_{\Pi_1} ^2/(2M_{\Pi_1}^2)$	$\mathcal{O}_{\ell d}$
$\Pi_{\mathbf{r}} \sim (3, 2)_{\mathbf{r}}$	$(ar{3}_\ell, 3_u)$	$-\left y_{\Pi_7}^{\ell u} ight ^2/(2M_{\Pi_7}^2)$	$\mathcal{O}_{\ell u}$
$\Pi_7 \sim (0, 2)_{\frac{7}{6}}$	$(ar{3}_e, 3_q)$	$- y_{\Pi_7}^{qe} ^2/(2M_{\Pi_7}^2)$	\mathcal{O}_{qe}
$\zeta \sim (3,3)_{-rac{1}{3}}$	$(3_q,3_\ell)$	$ y_\zeta^{q\ell} ^2/(4M_\zeta^2)$	$3\mathcal{O}_{\ell q}^{(1)}+\mathcal{O}_{\ell q}^{(3)}$
	3_q	$ y_\zeta^{qq} ^2/(2M_\zeta^2)$	$3\mathcal{O}_{qq}^{(1)D} + \mathcal{O}_{qq}^{(3)D} - 3\mathcal{O}_{qq}^{(1)E} - \mathcal{O}_{qq}^{(3)E}$
$\Omega_1 \sim ({f 6},{f 1})_{1\over 3}$	$(3_u,3_d)$	$ y^{ud}_{\Omega_1} ^2/(6M^2_{\Omega_1})$	$2 {\cal O}^{(1)}_{ud} + 3 {\cal O}^{(8)}_{ud}$
	$ar{3}_q$	$ y^{qq}_{\Omega_1} ^2/(4M^2_{\Omega_1})$	${\cal O}_{qq}^{(1)D} - {\cal O}_{qq}^{(3)D} - {\cal O}_{qq}^{(1)E} + {\cal O}_{qq}^{(3)E}$
$\Omega_2 \sim ({f 6},{f 1})_{-rac{2}{3}}$	6_d	$ y_{\Omega_2} ^2/(4M_{\Omega_2}^2)$	$\mathcal{O}^{D}_{dd} + \mathcal{O}^{E}_{dd}$
$\Omega_4 \sim ({f 6},{f 1})_{4\over 3}$	6_{u}	$ y_{\Omega_4} ^2/(4M_{\Omega_4}^2)$	$\mathcal{O}^{D}_{uu} + \mathcal{O}^{E}_{uu}$
$\Upsilon \sim ({f 6},{f 3})_{1\over 3}$	6_q	$ y_\Upsilon ^2/(8M_\Upsilon^2)$	$3\mathcal{O}_{qq}^{(1)D} + \mathcal{O}_{qq}^{(3)D} + 3\mathcal{O}_{qq}^{(1)E} + \mathcal{O}_{qq}^{(3)E}$
$\Phi \sim ({f 8},{f 2})_{1\over 2}$	$(ar{3}_q, 3_u)$	$- y_{\Phi}^{qu} ^2/(18M_{\Phi}^2)$	$4 {\cal O}_{qu}^{(1)} - 3 {\cal O}_{qu}^{(8)}$
	$(ar{3}_d, 3_q)$	$- y_{\Phi}^{dq} ^{2}/(18M_{\Phi}^{2})$	$4 {\cal O}_{qd}^{(1)} - 3 {\cal O}_{qd}^{(8)}$

Field	Irrep	Normalization	Operator	
${\cal B} \sim ({f 1},{f 1})_0$	$egin{array}{ccc} {f 8}_\ell & & \ {f 8}_e & & \ {f 8}_q & & \ {f 8}_u & & \ {f 8}_d & & \ \end{array}$	$\begin{array}{c} -(g_{\mathcal{B}}^{\ell})^2/(12M_{\mathcal{B}}^2) \\ -(g_{\mathcal{B}}^e)^2/(6M_{\mathcal{B}}^2) \\ -(g_{\mathcal{B}}^g)^2/(12M_{\mathcal{B}}^2) \\ -(g_{\mathcal{B}}^u)^2/(12M_{\mathcal{B}}^2) \\ -(g_{\mathcal{B}}^d)^2/(12M_{\mathcal{B}}^2) \end{array}$	$egin{aligned} & 3\mathcal{O}^E_{\ell\ell} - \mathcal{O}^D_{\ell\ell} \ & \mathcal{O}_{ee} \ & 3\mathcal{O}^{(1)E}_{qq} - \mathcal{O}^{(1)D}_{qq} \ & 3\mathcal{O}^E_{uu} - \mathcal{O}^D_{uu} \ & 3\mathcal{O}^E_{dd} - \mathcal{O}^D_{dd} \end{aligned}$	
$\mathcal{B}_1 \sim (1, 1)_1$	$(ar{3}_d, 3_u)$	$- g^{du}_{{\cal B}_1} ^2/(3M^2_{{\cal B}_1})$	${\cal O}_{ud}^{(1)} + 6 {\cal O}_{ud}^{(8)}$	
$\mathcal{W}\sim (1,3)_0$	$egin{array}{c} {f 8}_q \ {f 8}_\ell \end{array}$	$\begin{array}{c} -(g^q_{\mathcal{W}})^2/(48M^2_{\mathcal{W}}) \\ (g^\ell_{\mathcal{W}})^2/(48M^2_{\mathcal{W}}) \end{array}$	$egin{array}{l} 3\mathcal{O}_{qq}^{(3)E}-\mathcal{O}_{qq}^{(3)D}\ 5\mathcal{O}_{\ell\ell}^E-7\mathcal{O}_{\ell\ell}^D \end{array}$	
$\mathcal{L}_3 \sim (1, 2)_{-rac{3}{2}}$	$(3_e,3_\ell)$	$\left g_{\mathcal{L}_3} ight ^2/M_{\mathcal{L}_3}^2$	$\mathcal{O}_{\ell e}$	
$\mathcal{U}_2\sim (3,1)_{rac{2}{3}}$	$egin{aligned} (ar{3}_e, 3_d) \ (ar{3}_\ell, 3_q) \end{aligned}$	$- g^{ed}_{\mathcal{U}_2} ^2/M^2_{\mathcal{U}_2} \ - g^{\ell q}_{\mathcal{U}_2} ^2/(2M^2_{\mathcal{U}_2})$	$\mathcal{O}_{ed} \ \mathcal{O}_{\ell q}^{(1)} + \mathcal{O}_{\ell q}^{(3)}$	
$\mathcal{U}_5 \sim (3, 1)_{rac{5}{3}}$	$(ar{3}_e, 3_u)$	$- g_{\mathcal{U}_5} ^2/M_{\mathcal{U}_5}^2$	\mathcal{O}_{eu}	
$\mathcal{Q}_1 \sim (3, 2)_{rac{1}{6}}$	$egin{aligned} (3_u,3_\ell)\ (ar{3}_d,ar{3}_q) \end{aligned}$	$ g^{u\ell}_{\mathcal{Q}_1} ^2/M^2_{\mathcal{Q}_1} \ 2 g^{dq}_{\mathcal{Q}_1} ^2/(3M^2_{\mathcal{Q}_1})$	$\mathcal{O}_{\ell u} \ \mathcal{O}_{qd}^{(1)} - 3 \mathcal{O}_{qd}^{(8)}$	
$\mathcal{Q}_5 \sim (3, 2)_{-rac{5}{6}}$	$egin{aligned} & (3_d, 3_\ell) \ & (3_e, 3_q) \ & (ar{3}_u, ar{3}_q) \end{aligned}$	$ g_{\mathcal{Q}_5}^{d\ell} ^2/M_{\mathcal{Q}_5}^2 \ g_{\mathcal{Q}_5}^{eq} ^2/M_{\mathcal{Q}_5}^2 \ 2 g_{\mathcal{Q}_5}^{uq} ^2/(3M_{\mathcal{Q}_5}^2)$	$\mathcal{O}_{\ell d} \ \mathcal{O}_{q e} \ \mathcal{O}_{q u}^{(1)} - 3 \mathcal{O}_{q u}^{(8)}$	
$\mathcal{X} \sim (3, 3)_{rac{2}{3}}$	$(ar{3}_\ell, 3_q)$	$-\left g_{\mathcal{X}}\right ^{2}/(8M_{\mathcal{X}}^{2})$	$3\mathcal{O}_{\ell q}^{(1)}-\mathcal{O}_{\ell q}^{(3)}$	
$\mathcal{Y}_1 \sim (ar{6}, 2)_{rac{1}{6}}$	$(ar{3}_d,ar{3}_q)$	$\left g_{\mathcal{Y}_{1}} ight ^{2}/(3M_{\mathcal{Y}_{1}}^{2})$	$2{\cal O}_{qd}^{(1)}+3{\cal O}_{qd}^{(8)}$	
$\mathcal{Y}_5 \sim (ar{6}, 2)_{-rac{5}{6}}$	$(ar{3}_u,ar{3}_q)$	$ g_{\mathcal{Y}_5} ^2/(3M_{\mathcal{Y}_5}^2)$	$2{\cal O}_{qu}^{(1)}+3{\cal O}_{qu}^{(8)}$	
$\mathcal{G} \sim (8, 1)_0$	$egin{array}{c} {f 8}_q \ {f 8}_u \ {f 8}_d \end{array}$	$\frac{-(g_{\mathcal{G}}^q)^2/(144M_{\mathcal{G}}^2)}{(g_{\mathcal{G}}^u)^2/(36M_{\mathcal{G}}^2)} \\ (g_{\mathcal{G}}^d)^2/(36M_{\mathcal{G}}^2)}$	$\frac{11\mathcal{O}_{qq}^{(1)D} - 9\mathcal{O}_{qq}^{(1)E} + 9\mathcal{O}_{qq}^{(3)D} - 3\mathcal{O}_{qq}^{(3)E}}{3\mathcal{O}_{uu}^E - 5\mathcal{O}_{uu}^D}}{3\mathcal{O}_{dd}^E - 5\mathcal{O}_{dd}^D}$	
$\mathcal{G}_1 \sim (8, 1)_1$	$(ar{3}_d, 3_u)$	$\left g_{\mathcal{G}_{1}} ight ^{2}/(9M_{\mathcal{G}_{1}}^{2})$	$-4 {\cal O}^{(1)}_{ud} + 3 {\cal O}^{(8)}_{ud}$	
$\mathcal{H} \sim (8, 3)_0$	8_q	$-(g_{\mathcal{H}})^2/(576M_{\mathcal{H}}^2)$	$27\mathcal{O}_{qq}^{(1)D} - 9\mathcal{O}_{qq}^{(1)E} - 7\mathcal{O}_{qq}^{(3)D} - 3\overline{\mathcal{O}_{qq}^{(3)E}}$	

Table 3: New vectors (nontrivial flavor irreps): The first column presents the names

Table 1: New scalars (nontrivial flavor irreps): The first column presents the names

Field	Irrep	Normalization	Operator
$arphi \sim (1,2)_{rac{1}{2}}$	1	$ \lambda_{arphi} ^2 / M_{arphi}^2$	\mathcal{O}_{ϕ}
$\Theta_1 \sim (1, 4)_{rac{1}{2}}$	1	$ \lambda_{\Theta_1} ^2/(6M_{\Theta_1}^2)$	\mathcal{O}_{ϕ}
$\Theta_3 \sim (1, 4)_{rac{3}{2}}$	1	$ \lambda_{\Theta_3} ^2 / (2M_{\Theta_3}^2)$	\mathcal{O}_{ϕ}
${\cal S} \sim ({f 1},{f 1})_0$	1	$-\kappa_S^2/(2M_S^4)$	$\mathcal{O}_{\phi\square} - ar{\mathcal{C}}_\mathcal{S} \mathcal{O}_\phi$
$\Xi \sim ({f 1},{f 3})_0$	1	$\kappa_{\Xi}^2/(2M_{\Xi}^4)$	$-4\mathcal{O}_{\phi D}+\mathcal{O}_{\phi\Box}+ar{\mathcal{C}}_{\Xi}\mathcal{O}_{\phi}+2\left[\sum_{f}y_{f}^{*}\mathcal{O}_{f\phi}+ ext{h.c.} ight]$
$\Xi_1 \sim ({\bf 1},{\bf 3})_1$	1	$ \kappa_{\Xi_1} ^2 /M_{\Xi_1}^4$	$4\mathcal{O}_{\phi D} + 2\mathcal{O}_{\phi\Box} + \bar{\mathcal{C}}_{\Xi_1}\mathcal{O}_{\phi} + 2\left[\sum_f y_f^*\mathcal{O}_{f\phi} + \text{h.c.}\right]$
$\mathcal{B}_1 \sim (1, 1)_1$	1	$- g^{\phi}_{\mathcal{B}_{1}} ^{2}/(2M^{2}_{\mathcal{B}_{1}})$	$4(\lambda_{\phi} + C^{\mathcal{B}_1}_{\phi 4})\mathcal{O}_{\phi} - 2\mathcal{O}_{\phi D} + \mathcal{O}_{\phi \Box} + \left[\sum_f y_f^*\mathcal{O}_{f\phi} + ext{h.c.} ight]$
$\mathcal{W}_1 \sim (1, 3)_1$	1	$- g_{\mathcal{W}_1} ^2/(8M_{\mathcal{W}_1}^2)$	$4(\lambda_{\phi} + C_{\phi 4}^{\mathcal{W}_1})\mathcal{O}_{\phi} + 2\mathcal{O}_{\phi D} + \mathcal{O}_{\phi \Box} + \left[\sum_f y_f^*\mathcal{O}_{f\phi} + \text{h.c.}\right]$
$\mathcal{H} \sim ({\bf 8},{\bf 3})_0$	1	$(g_{\mathcal{H}})^2/(96M_{\mathcal{H}}^2)$	$2\mathcal{O}_{qq}^{(3)D} + 3\mathcal{O}_{qq}^{(3)E} - 9\mathcal{O}_{qq}^{(1)E}$

Table 4: Flavor singlets: First six rows are scalars (spin-0) while the last three are vectors (spin-1). The table format is the same as for Tables 1, 2 and 3. The f index in the $\mathcal{O}(y_f)$ terms goes over all three right-handed fields, i.e., $f = \{e, u, d\}$. The flavor indices are suppressed to reduce clutter. Parameters $C_{\phi 4}^X$ are fixed in terms of the normalisation, while $\bar{\mathcal{C}}_X$ are independent. See Appendices C.1 and C.3 for details.

Field	Irrep	# of parameters	Operators
$\mathcal{B} \sim (1, 1)_0$	1	$5\mathbb{R}+1\mathbb{C}$	$ \begin{array}{c} \mathcal{O}_{\ell\ell}^{D}, \mathcal{O}_{qq}^{(1)D}, \mathcal{O}_{\ell q}^{(1)}, \mathcal{O}_{ee}, \mathcal{O}_{dd}^{D}, \mathcal{O}_{uu}^{D}, \mathcal{O}_{ed}, \mathcal{O}_{eu}, \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{\ell e}, \mathcal{O}_{\ell d}, \mathcal{O}_{\ell u}, \mathcal{O}_{qe}, \mathcal{O}_{qu}^{(1)}, \mathcal{O}_{qd}^{(1)}, \mathcal{O}_{\phi \Box}, \mathcal{O}_{\phi D}, \mathcal{O}_{\phi u} \\ \mathcal{O}_{\phi d}, \mathcal{O}_{\phi e}, \mathcal{O}_{\phi \ell}^{(1)}, \mathcal{O}_{\phi q}^{(1)}, \mathcal{O}_{e\phi}, \mathcal{O}_{d\phi}, \mathcal{O}_{u\phi} \end{array} $
$\mathcal{W} \sim (1, 3)_0$	1	$2\mathbb{R}+1\mathbb{C}$	$egin{aligned} \mathcal{O}^D_{\ell\ell} - 2\mathcal{O}^E_{\ell\ell}, \mathcal{O}^{(3)D}_{qq}, \mathcal{O}^{(3)}_{\ell q}, \mathcal{O}_{\phi}, \mathcal{O}_{\phi D}, \ \mathcal{O}_{\phi \Box}, \mathcal{O}^{(3)}_{\phi \ell}, \mathcal{O}^{(3)}_{\phi q}, \mathcal{O}_{e\phi}, \mathcal{O}_{d\phi}, \mathcal{O}_{u\phi} \end{aligned}$
$\mathcal{G} \sim (8, 1)_0$	1	$3\mathbb{R}$	$ \begin{array}{c} \mathcal{O}^{D}_{dd} - 3\mathcal{O}^{E}_{dd}, \mathcal{O}^{D}_{uu} - 3\mathcal{O}^{E}_{uu}, \mathcal{O}^{(3)E}_{qq}, \mathcal{O}^{(8)}_{qu}, \mathcal{O}^{(8)}_{qd}, \\ 2\mathcal{O}^{(1)D}_{qq} - 3\mathcal{O}^{(1)E}_{qq}, \mathcal{O}^{(8)}_{ud} \end{array} $

Table 5: Flavor singlets (exceptions): Three vector (spin-1) fields match at tree-level to dimension-6 SMEFT operators shown in the last column. The corresponding WCs can be parameterised by a number of parameters indicated in the third column. See Appendix C.3 for details.

Significant simplification transpires, even for trivial flavor irreps, upon enforcing $U(3)^5$ symmetry on \mathcal{L}_{BSM} . Flavor singlets can only be either spin 0 or spin 1. In total, 12 such instances are shown in Tables 4 and 5. The former table presents nine straightforward cases, six expressible by a single parameter and three cases comprising a direction plus a free Wilson coefficient for the \mathcal{O}_{ϕ} operator. Remarkably, only three exceptional vector fields necessitate three or more parameters (at most seven) for describing the tree-level matching to dimension-6 SMEFT (Table 5).

In a UV theory featuring multiple new fields (flavor irreps), besides simply aggregating their WCs, nontrivial matching contributions may arise from diagrams involving several BSM fields. All such instances are charted in Appendix D. They involve either two or three new scalars and always match to a single dimension-6 operator at the tree level, \mathcal{O}_{ϕ} .