The SmeftFR code Handling vertices in SMEFT

Athanasios Dedes

Department of Physics University of Ioannina, Greece

Workshop on the Standard Model and Beyond, Corfu, 2023

Table of Contents

EFT framework

2 SmeftFR v3

Input parameter schemes (dim6)² contributions dim8 operators

- SmeftFR by example
- 4 Conclusions

Table of Contents

1 EFT framework

2 SmeftFR v3

Input parameter schemes (dim6)² contributions dim8 operators

③ SmeftFR by example

Occusion

The EFT picture

Symmetries: Lorentz + $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge invariance

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} C_{\nu} O_{\nu} + \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \frac{1}{\Lambda^3} \sum_{i} C_i O_i + \dots$$

Not counting flavour we have 60 operators up to dimension-6 and about 1000 for dim8 ones

Renormalization: infinities cancel by the new counterterms δC_i

Why the SM is so precise? Because the scale of NP, collectively called Λ , is much higher than every SM particle masses

Neutrino masses require physics beyond SM: they arise from dimension-5 operators. In SMEFT neutrinos are strictly Majorana particles.

Proton decay arises from dimension-6 operators first. Would this discovery come next...?!

Instead of studying a myriad of BSM physics models this SMEFT + experiments may guide us towards a new level of understanding.

This path may be proven to be useful at the LHC and future colliders

However, the non-redundant (Warsaw) basis contains 2499 d=6 operators! B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, JHEP **10** (2010), 085 [1008.4884] LHC Working groups have started EFT analyses, e.g.

SMEFT Feynman Rules

There are about 400 vertices (in R_{ξ} -gauges) that have been collected in A. D., W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, JHEP **06** (2017), 143 [1704.03888].

E.g., at $O(1/\Lambda^2)$, the $h\gamma\gamma$ vertex is

The code SmeftFR produces all of them! A. D., M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, Comput. Phys. Commun. 247 (2020), 106931 [arXiv:1904.03204]

EFT framework

2 SmeftFR v3

Input parameter schemes (dim6)² contributions dim8 operators

SmeftFR by example

Occusion

The code SmeftFR v3

The new version SmeftFR is now available¹ goes beyond dim6 operators.

- 1. input parameter schemes,
- 2. $(dim 6)^2$ operator effects
- 3. bosonic dim8 operators

<code>SmeftFR</code> extracts the full set of Feynman rules in LATEX or in UFO format or in FeynArts.

It can feed various event generators, such as ${\tt MadGraph},$ which perform amplitude calculations for LHC.

SmeftFR download web-page:

http://www.fuw.edu.pl/smeft

The program builts on FeynRules in Mathematica.

¹A.D., J. Rosiek, M. Ryczkowski, K. Suxho and L. Trifyllis, arXiv 2302.01353

There are two predefined input schemes in the up-to dim8:

"GF" : $\{G_F, m_W, m_Z, m_H\}$ "AEM" : $\{\alpha_{em}, m_W, m_Z, m_H\}$

SMEFT effects in CKM matrix 2 have been included up-to dim6

As yet, no SMEFT corrections in $\alpha_s(M_Z)$ and/or PMNS matrix

²S. Descotes-Genon, A. Falkowski, M. Fedele, M. González-Alonso and J. Virto, JHEP **05** (2019), 172 [arXiv:1812.08163 [hep-ph]].

$(dim 6)^2$ contributions in vertices

Canonical kinetic terms after EWSB, e.g., $\mathcal{O}_{\varphi\Box} = (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$

$$\varphi^{0} = \frac{1}{\sqrt{2}} \left(v + Z_{h}^{-1} h + i Z_{G^{0}}^{-1} G^{0} \right)$$

where

$$Z_{h}^{-1} = 1 + C_{arphi \Box} \left(rac{v}{\Lambda}
ight)^{2} + \overline{rac{3}{2} \left(C_{arphi \Box}
ight)^{2} \left(rac{v}{\Lambda}
ight)^{4}}$$

NDA: $C_{arphi \Box} \sim g_*^2$ (where g_* the UV-coupling to Higgs)

These $O(\Lambda^{-4})$ -terms become important for strongly-coupled UV theories $(g_* \sim 4\pi)$ and cutoffs $\Lambda \lesssim g_* v$.

On the other hand for weakly-coupled UV $(g_* \sim g)$ these $O(\Lambda^{-4})$ are negligible.

All field normalization parameters are inserted in SmeftFR automatically for every dimensionality of operators given

dim8 operators

- We include all bosonic dim8 operators (about 100)
- We use the basis of Ref 3 (apart from two $\varphi^6 D^2$ -operators defined differently by us)

Example:

- Important for LHC vector-boson scattering processes
- Fermionic dim8 operators can be included in SmftFR v3
 → (see tutorial in program's homepage)

³C. W. Murphy, JHEP **10** (2020), 174 [arXiv:2005.00059 [hep-ph]].

Table of Contents

EFT framework

2 SmeftFR v3

Input parameter schemes (dim6)² contributions dim8 operators

3 SmeftFR by example

Occusion

Step 1: Input the operators (gauge basis)

Step 2: Initialize SMEFT with available options

```
In[2]:= SMEFTInitializeModel[Operators→OpList,
    Gauge→Rxi,
    ExpansionOrder→2,
    WCXFInitFile→WCXFInput,
    InputScheme→"GF",
    CKMInput→"no",
    RealParameters→True,
    MaxParticles→4];
```

SmeftFR by example

(

Step 3: Read vertices (here $h\gamma\gamma$)

In[3]:= SMEFTExpandVertices[Input→"user",ExpOrder→2]; SelectVertices[GaugeHiggsVerticesExp,SelectParticles→{H,A,A}]

$$\begin{aligned} \text{Dut}[3] = & \{\{\{\{A,1\},\{A,2\},\{H,3\}\}, \left(\frac{1}{\Lambda^2}\right)^2 \frac{1}{2^{3/4} \ \mathsf{G}_F^{3/2} \ \mathsf{M}_Z^2} \left(\mathsf{M}_W^2 - \mathsf{M}_Z^2\right) \\ & \left(-\mathsf{c}^{\phi \mathsf{D}} \ \mathsf{c}^{\phi \mathsf{W}} \ \mathsf{M}_W^4 - 8 \ (\mathsf{c}^{\phi \mathsf{W}})^2 \ \mathsf{M}_W^4 + 4 \ (\mathsf{c}^{\phi \mathsf{WB}})^2 \ \mathsf{M}_W^4 + 16 \ (\mathsf{c}^{\phi \mathsf{W}})^2 \ \mathsf{M}_W^2 \ \mathsf{M}_Z^2 - 4 \ (\mathsf{c}^{\phi \mathsf{WB}})^2 \ \mathsf{M}_W^2 \ \mathsf{M}_Z^2 + \mathsf{c}^{\phi \mathsf{D}} \ \mathsf{c}^{\phi \mathsf{W}} \ \mathsf{M}_Z^4 \\ & -8 \ (\mathsf{c}^{\phi \mathsf{W}})^2 \ \mathsf{M}_Z^4 - \mathsf{c}^{\phi \mathsf{D}} \ \mathsf{C}^{\phi \mathsf{W}} \ \mathsf{M}_W^3 \ \sqrt{-\mathsf{M}_W^2 + \mathsf{M}_Z^2} - 12 \ \mathsf{c}^{\phi \mathsf{W}} \ \mathsf{c}^{\phi \mathsf{WB}} \ \mathsf{M}_W^3 \ \sqrt{-\mathsf{M}_W^2 + \mathsf{M}_Z^2} + 12 \ \mathsf{c}^{\phi \mathsf{W}} \ \mathsf{C}^{\phi \mathsf{WB}} \ \mathsf{M}_W \ \mathsf{M}_Z^2 \ \sqrt{-\mathsf{M}_W^2 + \mathsf{M}_Z^2} \\ & +8 \ (\mathsf{c}^{\phi \mathsf{B}})^2 \ (\mathsf{M}_W^4 - \mathsf{M}_W^2 \ \mathsf{M}_Z^2) + \mathsf{c}^{\phi \mathsf{B}} \ \mathsf{M}_W \ (\mathsf{M}_W^2 - \mathsf{M}_Z^2) \ (4 \ \mathsf{c}^{\phi \mathsf{Box}} \ \mathsf{M}_W + \mathsf{c}^{\phi \mathsf{D}} \ \mathsf{M}_W - 4 \ \mathsf{c}^{\phi \mathsf{WB}} \ \sqrt{-\mathsf{M}_W^2 + \mathsf{M}_Z^2}) \\ & -4 \ \mathsf{c}^{\phi \mathsf{Box}} \ (\mathsf{M}_W^2 - \mathsf{M}_Z^2) \ (\mathsf{c}^{\phi \mathsf{W}} \ \mathsf{M}_W^2 - \mathsf{c}^{\phi \mathsf{W}} \ \mathsf{M}_Z^2 + \mathsf{c}^{\phi \mathsf{WB}} \ \mathsf{M}_W \ \sqrt{-\mathsf{M}_W^2 + \mathsf{M}_Z^2}) \left) (\mathsf{p}_1^{\mu 2} \ \mathsf{p}_2^{\mu 1} - \eta_{\mu_1,\mu_2} \ \mathsf{p}_1 \cdot \mathsf{p}_2) \\ & + \frac{1}{\Lambda^2} \frac{2 \ i \ 2^{3/4}}{\sqrt{\mathsf{G}_F} \ \mathsf{M}_Z^2} \ \left(\mathsf{c}^{\phi \mathsf{WB}} \ \mathsf{M}_W \ \sqrt{-\mathsf{M}_W^2 + \mathsf{M}_Z^2} + \mathsf{c}^{\phi \mathsf{W}} \ (-\mathsf{M}_W^2 + \mathsf{M}_Z^2)\right) \ (\mathsf{p}_1^{\mu 2} \ \mathsf{p}_2^{\mu 1} - \eta_{\mu_1,\mu_2} \ \mathsf{p}_1 \cdot \mathsf{p}_2)\} \} \end{aligned}$$

Step 3: Read vertices (here ZZZZ)

In[4]:= SMEFTExpandVertices[Input→"user",ExpOrder→2]; SelectVertices[GaugeSelfVerticesExp,SelectParticles→{Z,Z,Z,Z}]

$$\begin{aligned} \text{Out}[4] = & \{ \{ \{ \{ Z, 1 \}, \{ Z, 2 \}, \{ Z, 3 \}, \{ Z, 3 \}, \{ Z, 4 \} \}, \ 2 \text{ i } (\mathsf{C}^{\phi 4 n D 4 1} + \mathsf{C}^{\phi 4 D 4 n 2} + \mathsf{C}^{\phi 4 D 4 n 3}) \\ & \left(\frac{1}{\Lambda^2} \right)^2 \mathsf{M}_Z^4 \ (\eta_{\mu_1, \mu_4} \ \eta_{\mu_2, \mu_3} + \eta_{\mu_1, \mu_3} \ \eta_{\mu_2, \mu_4} + \eta_{\mu_1, \mu_2} \ \eta_{\mu_3, \mu_4}) \} \} \end{aligned}$$

This is generated first at dim8 level !

Step 4: Produce UFO files and pass them on to Madgraph

In[5]:= SMEFTToUFO[SMEFT\$MBLagrangian, CorrectIO→True];

MG5> generate p p > w+ w- j j (NP<=2 $O(\Lambda^{-4})$) (NP<=1 $O(\Lambda^{-2})$)

	SmeftFR $\mathcal{O}(\Lambda^{-2})$	SmeftFR $\mathcal{O}(\Lambda^{-4})$
рр> w+ w+ јј QCD=0		
SM	0.12456 ± 0.00029	
C_W	8.564 ± 0.020	37161 ± 83
$+C_{\varphi\Box}$	0.13387 ± 0.00032	0.20981 ± 0.00059
$-C_{\varphi \Box}$	0.14670 ± 0.00043	0.12511 ± 0.00035
$C_{\varphi 6 \Box}$	-	0.12868 ± 0.00031
$C^{(i)}_{\varphi^4 D^4}$	-	10.891 ± 0.024

For this table we took $\mathit{C}_6 = 4\pi/\mathrm{TeV}^2$ and $\mathit{C}_8 = (4\pi)^2/\mathrm{TeV}^4$

SmeftFR by example

Step 5: Produce FeynArts/FormCalc or FeynCalc files

In[6]:= WriteFeynArtsOutput[SMEFT\$MBLagrangian, Output→FileNameJoin[{SMEFT\$Path,"output","FeynArts","FeynArts"}

and calculate matrix elements e.g., longitudinal WW-scattering

$$\mathcal{M}_{W_{L}^{+}W_{L}^{+}\to W_{L}^{+}W_{L}^{+}}(s,\theta) = -2\sqrt{2}G_{F}M_{H}^{2}\left[1 - \frac{M_{Z}^{2}}{M_{H}^{2}}\left(1 - \frac{4}{\sin^{2}\theta}\right)\right]$$
(SM)
+ $(2C_{\varphi\Box} + C_{\varphi D})\frac{s}{\Lambda^{2}}$ (dim - 6)
+ $\left[8C_{\varphi^{6}\Box} + 2C_{\varphi^{6}D^{2}} + 16(C_{\varphi\Box})^{2} + (C_{\varphi D})^{2} - 8C_{\varphi\Box}C_{\varphi D}\right]$
- $16(C_{\varphi^{4}D^{4}}^{(1)} + 2C_{\varphi^{4}D^{4}}^{(2)} + C_{\varphi^{4}D^{4}}^{(3)})G_{F}M_{W}^{2}\right]\frac{\sqrt{2}}{8G_{F}\Lambda^{2}}\frac{s}{\Lambda^{2}}$ (dim - 6)²
+ $\left[(3 + \cos 2\theta)(C_{\varphi^{4}D^{4}}^{(1)} + C_{\varphi^{4}D^{4}}^{(3)}) + 8C_{\varphi^{4}D^{4}}^{(2)}\right]\frac{s^{2}}{8\Lambda^{4}}$ dim - 8.

Validation of the code

SmeftFR v3 has been validated against other codes

- SmeftSim : for dim6 operator effects
- SMEFT@NL0 : for a sample of dim6 operators
- AnomalousGaugeCoupling : with dim8 F⁴ operators
 Almost perfect agreement found. Find more here

All details can be found in program's homepage

http://www.fuw.edu.pl/smeft

and the manual

SmeftFR v3 manual

Maintainer of the code: Janusz Rosiek

Table of Contents

EFT framework

2 SmeftFR v3

Input parameter schemes (dim6)² contributions dim8 operators

③ SmeftFR by example

4 Conclusions

• SMEFT is a calculable framework that encodes heavy BSM physics

- SMEFT is a calculable framework that encodes heavy BSM physics
- Bottom-Up: SmeftFR v3
 - I effortless way to handle a plethora of EFT vertices
 - 2 produces Latex, UFO and FeynArts files
 - **3** Full dim6 + $(dim6)^2$ + bosonic dim8 operator effects included
 - **4** Two predefined input schemes + CKM corrections
 - 6 Baryon number dim6 operators included

- SMEFT is a calculable framework that encodes heavy BSM physics
- Bottom-Up: SmeftFR v3
 - I effortless way to handle a plethora of EFT vertices
 - 2 produces Latex, UFO and FeynArts files
 - **3** Full dim6 + $(dim6)^2$ + bosonic dim8 operator effects included
 - Two predefined input schemes + CKM corrections
 - 6 Baryon number dim6 operators included
- Top-Down approach: matching (not discussed in this talk)
 - Advances in calculations: STr functional technics
 - 2 Examples at 1-loop exist: Heavy Leptoquarks, RH neutrinos,...
 - 3 Near future prospects: From models to observables automatically

Conclusions

- SMEFT is a calculable framework that encodes heavy BSM physics
- Bottom-Up: SmeftFR v3
 - I effortless way to handle a plethora of EFT vertices
 - 2 produces Latex, UFO and FeynArts files
 - **3** Full dim6 + $(dim6)^2$ + bosonic dim8 operator effects included
 - 4 Two predefined input schemes + CKM corrections
 - 6 Baryon number dim6 operators included
- Top-Down approach: matching (not discussed in this talk)
 - 1 Advances in calculations: STr functional technics
 - 2 Examples at 1-loop exist: Heavy Leptoquarks, RH neutrinos,...
 - 3 Near future prospects: From models to observables automatically

Thank you for your attention