Higgs Physics in ATLAS and CMS

Rainer Mankel (DESY) for the ATLAS + CMS collaborations

Corfu Summer Institute: Workshop on the Standard Model and Beyond, 28 Aug-7 Sep 2023, Corfu (Greece)

Introduction

- The Higgs boson H observed in 2012 at a mass of 125 GeV gave striking support to the principle of spontaneous symmetry breaking in the electroweak theory → origin of elementary particles' masses
- Its discovery opened a rich field of research to address various questions, including:

Outline

Matching the previous questions

- Higgs boson mass and couplings
- ➢ Rare decay H→Zγ
- Higgs boson production at very high p_T
- Differential cross sections
- Higgs pair production and self-coupling

Precision measurements of the H boson properties

- Search for resonant Higgs boson production
- Search for low-mass Higgs bosons
- Search for flavor-violating Higgs boson decays

Precision measurements of the H boson properties

| Higgs physics in ATLAS and CMS | Rainer Mankel (DESY) | 28-August-2023

Measurement of Higgs boson mass: $H \rightarrow \gamma \gamma$

arxiv:2308.07216 submitted to Phys.Lett. B arxiv:2308:04775

- Precise knowledge of H mass essential e.g. for theory predictions
- Photon calibration has been dramatically improved: 320 MeV → 80 MeV systematic uncertainty

Full Run 2 result $H \rightarrow \gamma\gamma$: $m_H = 125.17 \pm 0.11 (stat.) \pm 0.09 (syst.) GeV = 125.17 \pm 0.14 GeV$ Combination $H \rightarrow \gamma\gamma + H \rightarrow 4\ell$, Run 1+2: $m_H = 125.11 \pm 0.09 (stat.) \pm 0.06 (syst.) GeV = 125.11 \pm 0.11 GeV$

Most precise m_H measurement to date (0.09% precision)

And combination with $H \rightarrow 4\ell$

Higgs production and decay

• Production and decay channels of the H boson have been intensively studied

• Data (Total uncertainty)

WH

ΖH

ttH

Production process

Syst. uncertainty

SM prediction

VBF

ATLAS Run 2

đ

tΗ

➔ At Run 2 precision, production cross sections and decay branching fractions agree well with SM

0

10⊨

10

1.5

0.5

Ratio to SM

Cross section [pb]

Decay mode

ATLAS Nature 607 (2022) 52-59

ggF + bbH

expected

Scaling with m_F and m_V^2 as

Higgs couplings

•

 \rightarrow

 \rightarrow

Combination of production

and decay measurements is

used to determine modifiers

of reduced H couplings to

fermions and bosons

agree with the SM

predictions

All measured couplings

Strong constraints on invisible / undetectable decays of the H boson beyond the SM

ATLAS Nature 607 (2022) 52-59

for CMS couplings results, see Nature 607 (2022) 60-68

The decay $H \rightarrow Z\gamma$

One of the rarest accessible decays

- SM: $B(H \rightarrow \gamma \gamma) = 2.3 \cdot 10^{-3}$
- discovered in 2012

- SM: $B(H \rightarrow Z\gamma) = 1.5 \cdot 10^{-3}$
 - similar diagram
 - but $B(Z \rightarrow ee, \mu\mu)$ gives additional reduction factor of 0.066
 - → more difficult to measure
- Sensitive to BSM effects which might modify the branching fraction relative to the SM

The decay $H \rightarrow Z\gamma$ (cont'd)

ATLAS-CONF-2023-005 CMS PAS HIG-23-002

- Combination of analyses by ATLAS and CMS (each with $> 2\sigma$ significance)
- → Combined signal strength: $\mu = 2.2 \pm 0.7$ agrees with SM, combined significance 3.4σ obs. $(1.6\sigma exp.)$
- → First evidence for this Higgs boson decay mode

Differential cross sections in $H \rightarrow 4\ell$

arxiv:2305.07532, accepted by JHEP

- ℓ =e, µ → Very clean signature, excellent resolution, analyzed with full Run 2 dataset
- Cross sections measured in fiducial kinematic region of detector minimize theory dependence → excellent agreement with SM

Differential cross sections in $H \rightarrow 4\ell$ (cont'd)

arxiv:2305.07532, accepted by JHEP

- Detailed (even double-) differential cross sections are measured, testing production models
 - ➔ dynamics of H boson and additional jets
 - → constraining anomalous couplings

H production at very high p_T

Highly Lorentz-boosted H→ττ

- Measure H production for $p_T^H > 250 \ GeV$
 - boosted topology \rightarrow decay products are collimated
 - four main decay channel combinations used: $\tau_e \tau_\mu, \tau_e \tau_{had}, \tau_\mu \tau_{had}, \tau_{had} \tau_{had}$
 - dedicated algorithm based on substructure techniques used to separate the two τ_{had} candidates
- Resulting signal strength wrt SM: $\mu = 1.64^{+0.68}_{-0.54}$
 - ➔ in agreement with SM
 - significance: 3.5 σ (2.2 σ exp.)

→ First measurement of highly boosted $H \rightarrow \tau \tau$

H production at very high p_T (cont'd)

Highly Lorentz-boosted $H \rightarrow \tau \tau$

CMS PAS HIG-21-017

- In addition, measure fiducial differential cross sections
 - as functions of p_T^H and p_T of leading jet, four bins each

• Comparison with models (two generators for gluon fusion process)

Pair production of Higgs bosons

- Fundamental test of the SM
- Directly sensitive to the trilinear Higgs coupling
 - destructive interference, small cross section
- Full Run 2, σ_{HH} relative to SM:

•
$$\mu_{HH} < \begin{cases} 3.4 (2.5 exp.) CMS \\ 2.4 (2.9 exp.) ATLAS \end{cases}$$
 @95% CL

- Strong improvement wrt initial Run 2 results with 2016 data (35.9 fb^{-1})
 - luminosity, enhanced methodology
- → At HL-LHC, expect to establish HH production at SM level

10

100

bb ττ Expected: 5.2

bb bb Expected: 4.0

Observed: 3.3

Observed: 6.4 Combined

Expected: 2.5 Observed: 3.4

t,b

t,b

 $\square M$

 $\kappa_{\rm t,b}$

t,b

Η

Pair production of Higgs bosons (cont'd)

ATLAS Phys.Lett. B 843 (2023) 137745 CMS Nature 607 (2022) 60-68

- Strong constraints on the modifier of the trilinear Higgs coupling, κ_{λ}
 - $-0.6 < \kappa_{\lambda} < 6.6$ (ATLAS), $-1.24 < \kappa_{\lambda} < 6.49$ (CMS), @ 95% CL
- VBF production also establishes non-zero quartic VVHH coupling at 6.6σ
 - $0.1 < \kappa_{2V} < 2.0$ (ATLAS), $0.67 < \kappa_{2V} < 1.38$ (CMS), @ 95% CL

Combining single- and double-Higgs production

ATLAS Phys.Lett. B 843 (2023) 137745

 g ODDD

g QQQQ

- Also single-Higgs boson production is sensitive to the trilinear Higgs coupling by means of NLO corrections
- Combined results of H + HH production (ATLAS):
 - assuming SM for all other H interactions: $-0.4 < \kappa_{\lambda} < 6.3$ @ 95% CL obs. ($-1.9 < \kappa_{\lambda} < 7.6$ exp.)
- Addition of single H analyses allows relaxing of assumptions on coupling modifiers like κ_t \bar{q}

Improved search for HH in the bbyy channel

ATLAS-CONF-2023-050

- Supersedes and expands the previous ATLAS analysis
 - event classification based on multivariate classifier \rightarrow improved sensitivity to κ_{λ} and κ_{2V}
 - interpretation within effective field theory (HEFT, SMEFT)

Improved search for HH in the bbyy channel (cont'd)

ATLAS-CONF-2023-050

- This analysis is also used to search for anomalous contributions from extensions of the SM
 - described by Wilson coefficients of operators describing these anomalous interactions
 - here: constraints on Wilson coefficients of Higgs effective field theory (HEFT)

Searches for BSM Higgs boson physics

| Higgs physics in ATLAS and CMS | Rainer Mankel (DESY) | 28-August-2023

Higgs physics beyond the Standard Model

Only a small selection

Extended Higgs sectors	
------------------------	--

- NMSSM: two Higgs doublets and one singlet
 - three CP-even (one of them H), two CP-odd and two charged Higgs bosons
- Two Higgs doublet models (2HDM)
 - two CP-even Higgs bosons (one of them H), one CP-odd and two charged Higgs bosons
 - in general, lepton flavor non-conservation possible

Signatures:	
X→SH X→HH light scalars (m<125 GeV)	

Signatures:

 $G \rightarrow HH$

```
H \rightarrow e\mu, H \rightarrow \tau\mu, H \rightarrow \tau e decays
```

\triangleright	Warped	extra	dimensions	(WED)
------------------	--------	-------	------------	-------

- heavy resonances:
 - spin 0: Radion (R)
 - spin 2: Kaluza-Klein graviton (G)

Signatures:	
R→HH	

Search for $X \rightarrow HH \rightarrow bb WW$

Going beyond the "big three" (bbbb, bbγγ, bbττ)

CMS PAS HIG-21-005

- Motivated by Warped Extra Dimensions and Extended Higgs sector models
- HH → bbWW channel has the second largest combined branching fraction
 - single-lepton ($bb\ell vqq$) and di-lepton ($bb\ell v\ell v$) final states (non-resonant analysis not shown)
- Multiclass DNN to classify events according to processes
- Signal extraction by simultaneous fit to all signal and background DNN discriminant distributions

Search for X→HH→bbWW (cont'd)

- Upper limits for X \rightarrow HH cross section between 250–900 GeV for spin-0 and spin-2 assumption
- Compared to warped extra dimension models (bulk radion and graviton)

Comparison of X→HH analyses

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsHIG

Combination of many channels gives the best sensitivity to resonant Higgs production

Search for $X \rightarrow SH \rightarrow VV \tau\tau$

Extending to non-bb decay modes

Motivation: extended Higgs sectors (e.g. NMSSM) with additional neutral (pseudo-) scalars X and S

Events / bin

10⁴⊨

 10^{3}

10²

10

Data / Pred. 1.22 1.22 0.72 0.20

0.5

ATLAS

Post-Fit

 $1\ell + 2\tau_{h-d}$ SR

- Signature:
 - $H \rightarrow \tau_{had} \tau_{had}$
 - $S \rightarrow WW \text{ or } ZZ$, with 1-2 leptons in final state
- Three signal regions: WW 1 ℓ 2 τ_{had} , WW 2l2 τ_{had} , ZZ 2l $2\tau_{had}$
- BDTs to separate signal and background
 - 12 BDTs parametric in m_x (one per signal) region and S mass point)
- Combined signal extraction from all BDT score distributions per (m_x, m_s) point

Search for $X \rightarrow SH \rightarrow VV \tau\tau$ (cont'd)

arxiv:2307.11120

- $B(S \rightarrow VV)$ are not known. Assume values of SM H boson at this mass \rightarrow large
- Unrolled upper limits from (m_X, m_S) space

- → No significant excess seen at any mass combination. Most sensitive category: WW $1\ell 2\tau_{had}$
- ➔ Approaching the maximally allowed NMSSM cross sections

• could manifest themselves in the $\gamma\gamma$ channel

Search for low-mass Higgs bosons

Extended Higgs sectors might contain additional spin-0 bosons with m<125 GeV

- Due to the material between interaction point and electromagnetic calorimeter, a significant fraction of the photons convert to e⁺e⁻ pairs
 - energy resolution

 $H \rightarrow \gamma \gamma$

- more difficult separation from electrons
- Important aspect:
 - background from Drell-Yan production ($Z \rightarrow e^+e^-$ decays)

Search for low-mass Higgs bosons (cont'd) $H \rightarrow \gamma\gamma$

ATLAS-CONF-2023-035

- Three conversion categories: $\gamma_{\rm u} \gamma_{\rm u}, \gamma_{\rm u} \gamma_{\rm c}, \gamma_{\rm c} \gamma_{\rm c}$
- Background modelling:
 - Non-resonant (continuum) background: shape and normalization determined from data
 - Resonant (Drell-Yan) background: $Z \rightarrow ee$ events from data with corrections determined from simulation

➔ Distributions are well described by SM background

Search for low-mass Higgs bosons (cont'd) $H \rightarrow \gamma\gamma$ ATLAS

ATLAS-CONF-2023-035

→ No significant excess observed at any mass (model-independent search)

• A multivariate analysis trained with SM-like $H \rightarrow \gamma \gamma$ gives more stringent, model-dependent limits (not shown)

Search for lepton-flavor violating H decays H→eµ

- In the SM, the H boson decays to lepton pairs of the same flavor
- In BSM models, e.g. in certain 2HDM variants, Yukawa couplings which do not conserve leptonflavor are possible
 - flavor-violating decays of H boson at 125 GeV
 - new bosons at other masses appearing in such final states
- Here: search for $H \rightarrow e_{\mu}$ in gluon-fusion and VBF
- Choose mass window beyond the peak from ttbar production → smoothly falling background
- Categorization with signal/background discriminating BDT → in total 6 categories

arxiv:2305.18106

Search for lepton-flavor violating H decays (cont'd) H→eµ arxiv:2305.18106

- No excess observed for $H \rightarrow e_{\mu}$ at m=125 GeV \rightarrow
- $B(H \rightarrow e\mu) < 4.4 (4.7) \cdot 10^{-5}$ obs.(exp.) at 95% CL \rightarrow most stringent direct limit so far \rightarrow

for recent results on $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ from ATLAS, see arXiv:2302.05225, JHEP 07 (2023) 166

Search for lepton-flavor violating H decays (cont'd) **H→e**μ arxiv:2305.18106

- At a larger mass of ~146 GeV, a mild excess is seen •
 - \rightarrow significance 3.8 σ local (2.8 σ global) \rightarrow might be a fluctuation, need more data to conclude
 - \rightarrow first result of a direct X \rightarrow eµ search with M_x < 2m_w

- Properties of H boson measured with unparalleled precision by ATLAS + CMS
 - Crucial recent updates on key questions in the Higgs sector
 - Currently all property measurements are a formidable confirmation of electroweak symmetry breaking as predicted in the SM

- Widely cast net searching for signatures of BSM physics involving Higgs bosons
 - Approaching the ultimate precision from Run 2
 - Some mild excesses observed whose nature needs to be clarified with further data and additional analyses

Outlook

• More Run 2 results still to come

- Run 3 will strongly increase the impact in Higgs boson physics
 - first measurements already done
 - further accumulation of integrated luminosity to surpass Run 2 precision
- Beyond Run 3, HL-LHC will paint the ultimate picture of the Higgs boson

Backup

Search for $X \rightarrow YH \rightarrow bb \gamma\gamma$

Resonant production of Higgs bosons

 Motivation: extended Higgs sectors (e.g. NMSSM) with additional neutral (pseudo-)scalars X and Y

1 GeV

Events / (

- warped extra dimensions in case of Y=H
- A growing experimental field... many channels still uncovered
- Reconstruct $m_{\gamma\gamma bb}$ taking nominal values of m_H and m_Y into account
- Signal extraction in 2D space of (m_{γγ}, m_{jj}) after M_X selection

for $m_x = 400 \text{ GeV}$

Search for $X \rightarrow YH \rightarrow bb \gamma\gamma$ (cont'd)

Resonant production of Higgs bosons

CMS PAS HIG-21-011

- Mild deviation from background-only hypothesis with local (global) significance of 3.8 σ (2.8 σ) for m_x = 650 GeV and m_y = 90 GeV.
- ➔ Exclusions in parameter space of NMSSM and TRSM models

DESY. | Higgs physics in ATLAS and CMS | Rainer Mankel (DESY) | 28-August-2023

Resonant production of Higgs bosons (cont'd)

Symmetric case: $X \rightarrow HH$ decays

CMS PAS HIG-21-011

- \rightarrow In the symmetric case (Y=H), strong exclusion limits in particular in the low m_x regime
- → Bulk radion (spin 0) and Kaluza Klein graviton (spin 2) excluded for specific parameters

Differential cross sections in $H \rightarrow 4\ell$ (cont'd)

- Even possible to constrain the trilinear Higgs coupling from the p_{T} distributions
 - NLO corrections depending on κ_{λ} in ttH and VH modes \rightarrow to be compared with results from HH production
- Gluon fusion process proceeds via quark loop \rightarrow sensitive to H-c Yukawa coupling

arxiv:2305.07532, accepted by JHEP

Page 38

Resonant production of Higgs bosons (cont'd)

Search for $X \rightarrow SH$ decays

arxiv:2307.11120

- No significant excess seen at any mass combination
- $B(S \rightarrow VV)$ are not known. Assume values of SM H boson at this mass \rightarrow large $B(\rightarrow VV)$

• SM H boson has CP=+1 \rightarrow confirmed by experiment, but some CP= -1 admixture not excluded

- Can be tested through CP structure of Yukawa interaction
 - quantified by mixing angle ϕ_{τ} , where ϕ_{τ} =0 corresponds to the SM (pure CP=+1)

Branching fraction

11.5% (10.8%)

25.9% (25.5%)

10.8% (9.3%)

9.8% (9.0%)

 $\tau \rightarrow \pi v$

 $(\tau \rightarrow \rho \nu)$

 $(\tau \rightarrow a_1 v)$

35.2%

- encoded in spin correlations in $H \rightarrow \tau \tau$ decays
- CP-sensitive variable: angle between the decay planes of the two τ leptons, $\phi^*{}_{\text{CP}}$
- Analysis focuses on 1- and 3-prong decays

Decay mode

 $\ell^{\pm}\bar{\nu}\nu$

 $h^{\pm}\nu (\pi^{\pm}\nu)$

 $h^{\pm}\pi^{0}\nu (\pi^{\pm}\pi^{0}\nu)$

 $h^{\pm} \ge 2\pi^0 \nu (\pi^{\pm} 2\pi^0 \nu)$

 $3h^{\pm}v (3\pi^{\pm}v)$

Notation

1p0n

1p1n

1pXn

3p0n

DESY. Higgs physics in ATLAS and CMS Rainer Mankel (DESY) 28-August-2023

impact parameter method

 ρ decay plane method

CP properties of $H\tau$ Yukawa interaction

φ_{CP}^{*} π^{-} π^{+} π^{+} π^{+} π^{+} π^{+} π^{+} π^{0} π^{-} π^{-} π^{0} π^{-} π^{-}

Eur. Phys. J. C 83 (2023) 563

CP properties of H_T Yukawa interaction (cont'd)

Eur. Phys. J. C 83 (2023) 563

- Signature tested on simulation (before detector effects)
- Variation of mixing angle ϕ_{τ} results in a phase shift of modulation in ϕ^*_{CP} distribution
- Strength of effect varies depending on decay channel combination

DESY. | Higgs physics in ATLAS and CMS | Rainer Mankel (DESY) | 28-August-2023

CP properties of H_T Yukawa interaction (cont'd)

Eur. Phys. J. C 83 (2023) 563

- → Combination of all data gives $\phi_{\tau} = 9^{\circ} \pm 16^{\circ}$ obs. ($0^{\circ} \pm 28^{\circ}$ exp.)
- \rightarrow The pure CP-odd hypothesis is excluded at a level of 3.4 σ

Resonant production of Higgs bosons (cont'd)

Search for $X \rightarrow SH$ decays

Measurement of Higgs boson mass: $H \rightarrow ZZ^* \rightarrow 4$? $\ell = e, \mu$

- Various improvements: increased dataset, improved muon momentum scale calibration
- Neural-network based classifier for S/B discrimination
- Full Run 2 result: $m_H = 124.99 \pm 0.18 (stat.) \pm 0.04 (syst.) GeV = 124.99 \pm 0.19 GeV$
- Run 1 + Run 2: $m_H = 124.94 \pm 0.17 (stat.) \pm 0.03 (syst.) GeV = 124.94 \pm 0.18 GeV$

