Constraining new physics with hyperon decays

Corfu Summer Institute:
Workshop on the Standard Model and Beyond, 2023

German Valencia

based on work with Jusak Tandean and Xiao-Gang He 2304.02559 (to appear in PRD), Sci.Bull. 67 (2022) 1840-1843 (2209.04377), and JHEP 10 (2018) 040 (1806.08350), JHEP 07 (2019) 022 (1903.01242)

Present and future of hyperon physics

- LHCb A. Alves et. al. Prospects for Measurements with Strange Hadrons at LHCb JHEP 05 (2019) 048
$-\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$already measured, $B R \simeq 2.4 \times 10^{-8}$, for run II expects $\gtrsim 150$ events
$-\Xi^{0} \rightarrow p \pi^{-}(\Delta S=2) \mathrm{BR}$ of $10^{-9}-10^{-10}$ possible with LHCb upgrade
-semileptonic modes, Ω decays, and others, improving current limits by orders of magnitude
- BESIII M.Ablikim et. al. for BESIII, Future Physics Programme of BESIII Chin. Phys.C 44 (2020) 4, 040001, Hai-Bo Li Prospects for rare and forbidden hyperon decays at BESIII
- Can collect $10^{6-10^{8}} \Lambda, \Sigma, \Xi, \Omega$ and test BR in $10^{-5}-10^{-8}$ range
- Expect $\sim 10^{6}$ fully reconstructed $J / \psi \rightarrow \Lambda \bar{\Lambda} \rightarrow p \pi^{-} \bar{p} \pi^{+}$and other two body chains
- Super tau-charm factory м. Achasov et. al. STCF Conceptual Design Report: Volume I- Physics \& Detector e-Print: 2303.15790
- Whereas BESIII could get $\sim 10^{10} \mathrm{~J} / \psi$, the super tau-charm factory $\sim 3.4 \times 10^{12} \mathrm{~J} / \psi$

Outline of the talk

- Physics: $\Delta S=1$ and $\Delta S=2$ decays
-Rare decays
- $\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$- anomalies?
-complementary to $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}, K_{L} \rightarrow \mu^{+} \mu^{-}$
-long distance dominated, very difficult to calculate precisely
- $\Sigma^{+} \rightarrow p e^{ \pm} \mu^{\mp}$ - charged lepton flavour violation
complementary to $K{L} \rightarrow \mu^{ \pm} e^{\mp}, K^{+} \rightarrow \pi^{+} \mu^{ \pm} e^{\mp}$
$-\Delta S=2$ beyond kaon mixing
-CP violation beyond ϵ and ϵ^{\prime}

$\chi P T$ at leading order

- Strong interactions:

$$
\begin{aligned}
\mathscr{L}_{s}= & \frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)+\operatorname{Tr} \bar{B}(i \not \partial-M) B+i \operatorname{Tr} \bar{B} \gamma^{\mu}\left[V_{\mu}, B\right] \\
& +\operatorname{Tr}\left(D \bar{B} \gamma^{\alpha} \gamma_{5}\left\{\mathscr{A}_{\alpha}, B\right\}+F \bar{B} \gamma^{\alpha} \gamma_{5}\left[\mathscr{A}_{\alpha}, B\right]\right) \\
& +\epsilon_{k l n} \mathscr{C}\left[\left(\bar{T}_{n v w}\right)^{\alpha}\left(\mathscr{A}_{w l}\right)_{\alpha} B_{v k}+\bar{B}_{k v}\left(\mathscr{A}_{l w}\right)_{\alpha}\left(T_{n v w}\right)^{\alpha}\right],
\end{aligned}
$$

$$
\begin{aligned}
& \pi=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta_{8}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & n \\
\Xi^{-} & \Xi^{0} & -\frac{2 \Lambda}{\sqrt{6}}
\end{array}\right) \\
& T_{111}=\Delta^{++}, \quad T_{112}=\frac{1}{\sqrt{3}} \Delta^{+}, \quad T_{122}=\frac{1}{\sqrt{3}} \Delta^{0}, \quad T_{222}=\Delta \\
& T_{113}=\frac{1}{\sqrt{3}} \Sigma^{*+}, \quad T_{123}=\frac{1}{\sqrt{6}} \Sigma^{* 0}, \quad T_{223}=\frac{1}{\sqrt{3}} \Sigma^{*-} \\
& \xi=e^{i \pi / f}, U=\xi^{2} \\
& A_{\mu}=i\left(\xi \partial_{\mu} \xi^{\dagger}-\xi^{\dagger} \partial_{\mu} \xi\right) \\
& \hat{\kappa}=\left(\lambda_{6}+i \lambda_{7}\right) / 2
\end{aligned}
$$

- D, F from semileptonic decay and \mathscr{C} from strong $T B \phi$ decay
- Weak interactions

$$
\mathscr{L}_{\Delta S=1}^{s m} \supset \operatorname{Tr}\left(h_{D} \bar{B}\left\{\xi^{\dagger} \hat{\kappa} \xi, B\right\}+h_{F} \bar{B}\left[\xi^{\dagger} \hat{\kappa} \xi, B\right]\right)+h_{C}\left(\bar{T}_{k l n}\right)^{\eta}\left(\xi^{\dagger} \hat{\kappa} \xi\right)_{n o}\left(T_{k l o}\right)_{\eta}
$$

- h_{D}, h_{F}, h_{C} from fits to weak non-leptonic hyperon decay (S or P wave usual problem) and P waves of $\Omega \rightarrow B \phi$ decay
- order of magnitude estimate

$$
\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}
$$

$\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$- experiment

- HyperCP (2005) $B\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right)=\left(8.6_{-5.4}^{+6.6} \pm 5.5\right) \times 10^{-8}$
- LHCb (2018) $B\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right)=\left(2.2_{-1.3}^{+1.8}\right) \times 10^{-8}$ with no structure

FIG. 4. Real (points) and MC (histogram) dimuon mass distributions for (a) $\Sigma_{p \mu \mu}^{+}$MC events (arbitrary normalization) with a form-factor decay (solid histogram) and uniform phase-space decay (dashed histogram) model, and (b) $\Sigma_{p P \mu \mu}^{+}$MC events normalized to match the data.

$$
\begin{aligned}
& M_{P^{0}}=214.3 \pm 0.5 \mathrm{MeV} \\
& B\left(\Sigma^{+} \rightarrow p P^{0} \rightarrow p \mu^{+} \mu^{-}\right)=\left(3.1_{-1.9}^{+2.4} \pm 1.5\right) \times 10^{-8}
\end{aligned}
$$

HyperCP Collaboration: HyangKyu Park et al. PRL 94 (2005) 02I80। Evidence for the decay $\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$

$B\left(\Sigma^{+} \rightarrow p P^{0} \rightarrow p \mu^{+} \mu^{-}\right)<1.4 \times 10^{-8}$ at 90%

LHCb Collaboration: R.Aaij et al. PRL I20 (2018) 22I803
Evidence for the rare decay $\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$

sm calculation

- short distance: (Flavio wet basis at 1 GeV) $\mathscr{L}_{\text {eff }}=\sum_{i} C_{i} \mathcal{O}_{i}+$ H.c.

$$
\mathscr{O}_{9}^{\mu}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{\mu} \gamma_{\mu} \mu\right), \quad \mathscr{O}_{10}^{\mu}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right)
$$

$$
\begin{aligned}
\langle p| \bar{d}^{\kappa} s\left|\Sigma^{+}\right\rangle & =-\bar{u}_{p} \gamma^{\kappa} u_{\Sigma}, \\
\langle p| \bar{d}^{\nu} \gamma_{5} s\left|\Sigma^{+}\right\rangle & =(D-F)\left(\bar{u}_{p} \gamma^{\nu} \gamma_{5} u_{\Sigma}+\frac{m_{\Sigma}+m_{p}}{q^{2}-m_{K}^{2}} \bar{u}_{p} \gamma_{5} u_{\Sigma} q^{\nu}\right)
\end{aligned} \quad \Longrightarrow B_{S D}\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right) \sim \mathcal{O}\left(10^{-12}\right)
$$

- Long distance: $\quad \mathscr{M}_{\mathrm{SM}}^{\mathrm{LD}}=\frac{-i e^{2} G_{\mathrm{F}}}{q^{2}} \bar{u}_{p}\left(a+b \gamma_{5}\right) \sigma_{\kappa \nu} q^{\kappa} u_{\Sigma} \bar{u}_{\mu} \gamma^{\nu} v_{\bar{\mu}}-e^{2} G_{\mathrm{F}} \bar{u}_{p} \gamma_{\kappa}\left(c+d \gamma_{5}\right) u_{\Sigma} \bar{u}_{\mu} \gamma^{\kappa} v_{\bar{\mu}}$
imaginary part

- $a\left(q^{2}\right), c\left(q^{2}\right)$ are parity conserving
- $b\left(q^{2}\right), d\left(q^{2}\right)$ are parity violating
- $a(0), b(0)$ contribute to $\Sigma^{+} \rightarrow p \gamma$
- All four are complex

Long distance $\mathrm{BR} \sim \mathcal{O}\left(10^{-8}\right)$

He, Tandean, G.V JHEPIO(20I8)040

- imaginary parts from cut incorporating theory uncertainty
- using $\operatorname{Im} a(0), \operatorname{Im} b(0)$ extract the real part from $\Sigma^{+} \rightarrow p \gamma$, use 2σ range (four-fold ambiguity)
- Real parts of $c\left(q^{2}\right), d\left(q^{2}\right)$ from a vector meson dominance model

$$
1.2 \lesssim \mathscr{B} \times 10^{8} \lesssim 10.2
$$

- red lines LHCb central value and 2σ upper limit
- another recent estimate

$$
1.6 \lesssim \mathscr{B} \times 10^{8} \lesssim 8.9
$$

- constrain the $\bar{d} s \ell^{+} \ell^{-}$sector

$$
\begin{array}{rllll}
& \mathscr{O}_{9}^{\mu} & =\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{\mu} \gamma_{\mu} \mu\right) & \mathcal{O}_{10}^{\mu}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right) & \mathcal{O}_{7}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} S_{t d}^{*} \frac{e^{2}}{16 \pi^{2}} m_{s}+\mathrm{H} . \mathrm{c} . \\
\left.\bar{d}_{L} \sigma^{\mu \nu} s_{R}\right) F_{\mu \nu} \\
& \mathcal{O}_{9^{\prime}}^{\mu} & =\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{R} \gamma^{\mu} s_{R}\right)\left(\bar{\mu} \gamma_{\mu} \mu\right) & \mathcal{O}_{10^{\prime}}^{\mu}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{R} \gamma^{\mu} s_{R}\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right) & \mathcal{O}_{7^{\prime}}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}} m_{s}\left(\bar{d}_{R} \sigma^{\mu \nu} s_{L}\right) F_{\mu \nu}
\end{array}
$$

- Relevant modes are long-distance dominated
$-B\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right)_{S D} \simeq(2 \pm 1.5) \times 10^{-10}(\exp -\mathrm{abs})-$ below SD in SM
$-B\left(K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)_{\exp } \simeq(9.15 \pm 0.08) \times 10^{-8}$ NA62 - fits a new parameter in $\chi P T$
$-B\left(K_{L} \rightarrow \pi^{0} \pi^{0} \mu^{+} \mu^{-}\right)<9.2 \times 10^{-11} \mathrm{KTeV}$ at 90% - very small phase space volume available
- there is room for NP but calculations are not precise
- hyperon decays can provide additional observables (polarization)
- complementary coverage of parameter space, some directions are well tested, some can still be very large

additional observables: forward-backward asymmetry

- forward-backward asymmetry (binned by q^{2} or integrated)
- based on the angle in the dimuon rest frame
- very small in SM

$$
-1.4 \lesssim A_{F B} \times 10^{5} \lesssim 0.6
$$

- LD-SD interference so sensitive to NP

$$
\mathcal{A}_{\mathrm{FB}}=\frac{\int_{-1}^{1} d c_{\theta} \operatorname{sgn}\left(c_{\theta}\right) \Gamma^{\prime \prime}}{\int_{-1}^{1} d_{\theta} \Gamma^{\prime \prime}}, \quad \Gamma^{\prime \prime} \equiv \frac{d^{2} \Gamma\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right)}{d q^{2} d c_{\theta}}
$$

-Similar $A_{F B}=(0.0 \pm 0.7) \times 10^{-2}$ in $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$has been recently measured

additional observables: muon polarisation

- if the muon polarisation can be measured
- \mathcal{P}_{L} sensitive to P -violation in leptonic current (BSM)
- \mathcal{P}_{N} is naive T odd (BSM)

- \mathcal{P}_{T} sensitive to P-violation. (large in SM)

observables beyond the decay rate

- BSM

- keep rate unchanged: NP such that $B\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right) \simeq 2 \times 10^{-8}$
- modify only SD (combination of C_{10} and $C_{10^{\prime}}$ can be very large, effectively removing λ_{t} suppression)

$\mathcal{O}_{10}^{\mu}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right), \mathcal{O}_{10^{\prime}}^{\mu}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{* *} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{R} \gamma^{\mu} S_{R}\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right)$ $\mathcal{O}_{P}^{\mu}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{L} s_{R}\right)\left(\bar{\mu} \gamma_{5} \mu\right), \mathcal{O}_{P^{\prime}}^{\mu}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{e^{2}}{16 \pi^{2}}\left(\bar{d}_{R} s_{L}\right)\left(\bar{\mu} \gamma_{5} \mu\right)$

$$
\begin{gathered}
C_{10}=-C_{10^{\prime}} \Longrightarrow \bar{d}^{\mu} \gamma^{5} s \Longrightarrow \quad \mathscr{M}_{N P}\left(K \rightarrow \pi \mu^{+} \mu^{-}\right)=0 \\
C_{P}=-C_{P^{\prime}} \Longrightarrow \bar{d} \gamma^{5} s \Longrightarrow \quad \mathscr{M}_{N P}\left(K \rightarrow \pi \mu^{+} \mu^{-}\right)=0
\end{gathered}
$$

$\mathrm{LHCb}: B\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right)=\left(2.2_{-1.3}^{+1.8}\right) \times 10^{-8}$

$\frac{\operatorname{Re} a}{\mathrm{MeV}}$	$\frac{\operatorname{Re} b}{\mathrm{MeV}}$	$10^{8} \mathcal{B}$	$\tilde{A}_{\mathrm{FB}}(\%)$
13.3	-6.0	1.8	12
-13.3	6.0	3.7	-1
6.0	-13.3	5.3	3
-6.0	13.3	9.3	0.2
11.1	-7.3	2.5	12
-11.1	7.3	4.8	1
7.3	-11.1	4.2	6
-7.3	11.1	7.6	1

What about the light new particle? - probably ruled out

$$
\begin{gathered}
M_{P_{0}=2} 214.3 \pm 0.5 \mathrm{MeV} \\
B\left(\Sigma^{+} \rightarrow p P^{0} \rightarrow p \mu^{+} \mu^{-}\right)=\left(3.1_{-1.9}^{+2.4} \pm 1.5\right) \times 10^{-8} \mathrm{HyperCP} \\
B\left(\Sigma^{+} \rightarrow p P^{0} \rightarrow p \mu^{+} \mu^{-}\right)<1.4 \times 10^{-8} \mathrm{LHCb} \text { at } 90 \%
\end{gathered}
$$

CLFV: $B \rightarrow B^{\prime} e^{ \pm} \mu^{\mp}$

CLFV

- At dimension six, NP operators with CLFV take the form (SMEFT)

$$
\begin{aligned}
& \mathscr{S}_{\mathrm{NP}}=\frac{1}{\Lambda_{\mathrm{RP}}^{2}}\left(\sum_{k=1}^{5} c_{k}^{i k x \cdot Q_{k}^{i(i) y}}+\left(c_{6}^{i k v\left(Q_{6}^{i(x)}\right.}+\text { H.c. }\right)\right) \\
& \mathbb{Q}_{1}^{i j x y}=\overline{\bar{q}}_{i} \gamma^{n} q_{j} \bar{l}_{x} \gamma_{\eta} l_{y} \quad Q_{2}^{i x y}={\overline{q_{i}}}_{i} \tau_{l} \tau_{j} q_{j} \bar{T}_{x} \gamma_{\eta} \tau_{l} l_{y} \quad \mathbb{Q}_{3}^{i x y}=\bar{d}_{i} \gamma^{n} d_{j} \bar{e}_{x} \gamma_{n} e_{y} \\
& Q_{4}^{i x y}=\bar{d}_{i} r^{\eta} d_{j} \bar{l}_{x} \gamma_{n} l_{y} \quad Q_{5}^{i x y}=\bar{q}_{i} \gamma^{\eta} q_{j} \bar{e}_{x} \gamma_{n} e_{y} \quad Q_{6}^{i j x y}=\bar{l}_{i} e_{j} \bar{d}_{x} q_{y}
\end{aligned}
$$

- Matching at low scales to forms such as $\left.\left.\sigma_{9(9)}^{i j}=\left(\bar{s}_{L R}\right) \gamma_{\mu} d_{L R}^{k}\right)\left(\bar{e}_{i} \gamma^{\mu} \ell_{j}\right), \sigma_{10\left(10^{\prime}\right)}^{i j}=\left(\bar{s}_{L R}\right) \gamma_{\mu} d_{L R}^{k}\right)\left(\bar{e}_{i} \gamma^{\mu} \gamma_{5} \ell_{j}\right) \cdots$
- Leading order $\chi P T$ including octet and decuplet baryons coupled to external sources:

$$
\begin{aligned}
\bar{d} \gamma_{\eta} s \Leftrightarrow & -\sqrt{\frac{3}{2}} \bar{n} \gamma_{\eta} \Lambda-\bar{p} \gamma_{\eta} \Sigma^{+}+\sqrt{\frac{3}{2}} \bar{\Lambda} \gamma_{\eta} \Xi^{0}-\frac{1}{\sqrt{2}} \bar{\Sigma}^{0} \gamma_{\eta} \Xi^{0}+\bar{\Sigma}^{0} \gamma_{\eta} \Xi^{-} \\
\bar{d} s & \Leftrightarrow \sqrt{\frac{3}{2}} \frac{m_{\Lambda}-m_{N}}{\hat{m}-m_{s}} \bar{n} \Lambda+\frac{m_{\Sigma}-m_{N}}{\hat{m}-m_{s}} \bar{p} \Sigma^{+}+\sqrt{\frac{3}{2}} \frac{m_{\Xi}-m_{\Lambda}}{m_{s}-\hat{m}} \bar{\Lambda} \Xi^{0}+\frac{m_{\Xi}-m_{\Sigma}}{\hat{m}-m_{s}}\left(\frac{\bar{\Sigma}^{0} \Xi^{0}}{\sqrt{2}}-\bar{\Sigma}^{0} \Xi^{-}\right) \\
\bar{d} \gamma_{\eta} \gamma_{5} s & \Leftrightarrow \frac{-D-3 F}{\sqrt{6}} \bar{n} \gamma_{\eta} \gamma_{5} \Lambda+(D-F) \bar{p} \gamma_{\eta} \gamma_{5} \Sigma^{+}-\frac{D-3 F}{\sqrt{6}} \bar{\Lambda} \gamma_{\eta} \gamma_{5} \Xi^{0} \frac{D+F}{\sqrt{2}} \overline{\Sigma^{0}} \gamma_{\eta} \gamma_{5} \Xi^{0}+(D+F) \bar{\Sigma}^{0} \gamma_{\eta} \gamma_{5} \Xi^{-}+C \bar{\Xi}^{0} \Omega_{\eta}^{-}
\end{aligned}
$$

measurements with hyperons complement those with kaons

$$
\mathscr{L}_{N P} \supset \frac{-1}{\Lambda_{N P}^{2}} \sum_{\ell, \ell^{\prime}}\left[\bar{d}^{\kappa} s \bar{\ell}_{\kappa}\left(V_{\ell \ell^{\prime}}+\gamma_{5} A_{\ell \ell^{\prime}}\right) \ell^{\prime}+\bar{d} \gamma^{\kappa} \gamma_{5} s \bar{\ell}_{\kappa}\left(\tilde{V}_{\ell \ell^{\prime}}+\gamma_{5} \tilde{A}_{\ell \ell^{\prime}}\right) \ell^{\prime}+\bar{d} s \bar{\ell}\left(S_{\ell \ell^{\prime}}+\gamma_{5} P_{\ell \ell^{\prime}}\right) \ell^{\prime}+\bar{d} \gamma_{5} s \bar{\ell}\left(\tilde{S}_{\ell \ell^{\prime}}+\gamma_{5} \tilde{P}_{\ell \ell^{\prime}}\right) \ell^{\prime}\right]
$$

$$
\mathscr{B}\left(\Xi^{0} \rightarrow \Lambda e^{-} \mu^{+}\right)\left[2.4\left(\left|V_{e \mu}\right|^{2}+\left|A_{e \mu}\right|^{2}\right)+7.5\left(\left|S_{e \mu}\right|^{2}+\left|P_{e \mu}\right|^{2}\right)+6.5 \operatorname{Re}\left(A_{e \mu}^{*} P_{e \mu}-V_{e \mu}^{*} S_{e \mu}\right)\right.
$$

$$
\left.+0.25\left(\left|\tilde{V}_{e \mu}\right|^{2}+\left|\tilde{A}_{e \mu}\right|^{2}\right)+0.07\left(\left|\tilde{S}_{e \mu}\right|^{2}+\left|\tilde{P}_{e \mu}\right|^{2}\right)-0.08 \operatorname{Re}\left(\tilde{A}_{e \mu}^{*} \tilde{P}_{e \mu}-\tilde{V}_{e \mu}^{*} \tilde{S}_{e \mu}\right)\right] \times 10^{-5}\left(\frac{1 \mathrm{TeV}^{4}}{\Lambda_{N P}}\right)^{4}
$$

$$
\mathscr{B}\left(K_{L} \rightarrow e^{ \pm} \mu^{\mp}\right)=3.8\left[\left|\tilde{V}_{e \mu}+\tilde{V}_{\mu e}^{*}+19\left(\tilde{S}_{e \mu}-\tilde{S}_{\mu e}^{*}\right)\right|^{2}+\left|\tilde{A}_{e \mu}+\tilde{A}_{\mu e}^{*}-19\left(\tilde{P}_{e \mu}+\tilde{P}_{\mu e}^{*}\right)\right|^{2}\right] \times 10^{-1}\left(\frac{1 \mathrm{TeV}^{4}}{\Lambda_{N P}}\right)^{4}<4.7 \times 10^{-12}
$$

$$
\mathscr{B}\left(K^{+} \rightarrow \pi^{+} e^{-} \mu^{+}\right)=8.7\left[\left|V_{\mu e}\right|^{2}+\left|A_{\mu e}\right|^{2}+10\left(\left|S_{\mu e}\right|^{2}+\left|P_{\mu e}\right|^{2}\right)+3.6 \operatorname{Re}\left(A_{\mu e}^{*} P_{\mu e}+V_{\mu e}^{*} S_{\mu e}\right)\right] \times 10^{-2}\left(\frac{1 \mathrm{TeV}^{4}}{\Lambda_{N P}}\right)^{4}<1.3 \times 10^{-11}
$$

- kaon constraints on $\bar{d}\left(\gamma_{\mu}\right) \gamma_{5} s$ are more sensitive than those on $\bar{d}\left(\gamma_{\mu}\right) s$
- hyperons are complementary, and sensitive to all the couplings but need to reach very low $B R$ to be fully competitive with kaon modes

comparison of hyperon modes

- Possible constraints for different hyperon modes
- $\Lambda \rightarrow n e^{-} \mu^{+}, \Sigma^{+} \rightarrow p e^{-} \mu^{+}, \Xi^{0} \rightarrow \Lambda e^{-} \mu^{+}, \Omega^{-} \rightarrow \Xi^{-} e^{-} \mu^{+}$
- taking $\Lambda_{N P}=1 \mathrm{TeV}$ and assuming branching rations are probed at order 10-10 .
- Ω decays are the most sensitive when the branching ratios are probed at the same level but only to some couplings

current kaon constraints vs $\mathscr{B}_{\Omega} \sim \mathscr{O}\left(10^{-12}\right)$

- current constraints placed by $K_{L} \rightarrow e^{ \pm} \mu^{\mp}, K^{+} \rightarrow \pi^{+} e^{-} \mu^{+}$and $\mu^{-} \rightarrow e^{-}$ conversion compared to what can be achieved if sensitivity at the level of $\mathscr{B}\left(\Omega^{-} \rightarrow \Xi^{-} e^{-} \mu^{+}\right) \lesssim 10^{-12}$ is reached

$$
. Q_{1}^{e \mu}=\bar{q}_{1} \gamma^{\eta} q_{2} \bar{\epsilon}_{1} \gamma_{\eta} \ell_{2}, \quad Q_{2}^{e \mu}=\bar{q}_{1} \gamma^{\eta} \tau_{1} q_{2} \bar{\epsilon}_{1} \gamma_{\eta} \tau_{1} \ell_{2}, \quad Q_{6}^{e \mu}=\bar{\ell}_{1} \mu \bar{d} q_{2}, \cdots
$$

$|\Delta S|=2$ hyperon decays

- Within the SM look at kaon mixing

- But the matrix element is only sensitive to parity even part of the operators
- Hyperon decay is sensitive to both P odd and P even operators

- the SM operator is part of the $\left(27_{L}, 1_{R}\right)$ so its coefficient can be related to $\Delta I=3 / 2$ non-leptonic hyperon decay amplitudes
- Difficult due to $\Delta I=1 / 2$ dominance but slightly better for S-wave $\Sigma^{+} \rightarrow n \pi^{+}$ (octet matrix element vanishes at leading order in $\chi P T$)

$$
\begin{aligned}
& \mathbb{Q}_{L L}=\overline{d \gamma}^{\alpha} P_{L} s \bar{d}_{\alpha} P_{L} s=\mathrm{t}_{k l, n o} \bar{\psi}_{k} \gamma^{\alpha} P_{L} \psi_{n} \bar{\psi}_{l} \gamma_{\alpha} P_{L} \psi_{o} \\
& \rightarrow \Lambda_{\chi} f_{\pi}^{2} \mathrm{t}_{k l n o}\left[\hat{\beta}_{27}\left(\xi \bar{B} \xi^{\dagger}\right)_{n k}\left(\xi B \xi^{\dagger}\right)_{o l}+\hat{\delta}_{27} \xi_{n x} \xi_{o z} \xi_{v k}^{\dagger} \xi_{w l}^{\dagger}\left(\bar{T}_{r v w}\right)^{\alpha}\left(T_{r x z}\right)_{\alpha}\right], \\
& \mathscr{H}_{\Delta l=3 / 2, \Delta S=1}^{s m}=\sqrt{8}\left(\hat{c}_{1}+\hat{c}_{2}\right) G_{\mathrm{F}} V_{u d}^{*} V_{u s} \mathbb{Q}_{\Delta S=1}^{\Delta I=3 / 2}, \quad Q_{\Delta S=1}^{\Delta I=3 / 2}=\tilde{t}_{k l, n o} \overline{\psi_{k}} \gamma^{\alpha} P_{L} \psi_{n} \bar{\psi}_{i} \gamma_{\alpha} P_{L} \psi_{o} \\
& \widehat{Q}_{\Delta S=1}^{\Delta l=3 / 2} \rightarrow \Lambda_{\chi} f_{\pi}^{2} \tilde{t}_{k l, n o}\left[\hat{\beta}_{27}\left(\xi \bar{\xi} \xi^{\dagger}\right)_{n k}\left(\xi B \xi^{\dagger}\right)_{o l}+\hat{\delta}_{27} \xi_{n x} \xi_{o z} \xi_{v k}^{\dagger} \xi_{w l}^{\dagger}\left(\bar{T}_{r v w}\right)^{\eta}\left(T_{r x z}\right)_{\eta}\right]
\end{aligned}
$$

- $\hat{\beta}_{27}=0.076 \pm 0.015$ but $\hat{\delta}_{27}$ not known yet - assume similar size for estimate

Short distance SM results

- $\Delta S=2$ hyperon decay rates from short-distance SM are very small
- Even though ΔM_{K} only constrains the P -even part of the operator, the P -odd part is not independent in the SM
- There are also long-distance contributions which turn out to be much larger $-\eta_{c C}=1.87 \pm 0.76 \quad$ Brod and Gorbahn PRL 108 (2012) 121801

ΔM_{K} measured value

Long distance SM results

Pole diagrams with
two weak interactions

- $\Delta S=2$ hyperon decay rates from long distance SM can be much larger, but still too small for observation. Uncertainty is large, order of magnitude estimate

Sample decays

- SM estimates

Mode	Branching fractions		
	SD	SD $+\mathrm{LD}(\tilde{\mathrm{S}})$	$\mathrm{SD}+\mathrm{LD}(\tilde{\mathrm{P}})$
HyperCP 90\% c.I			
	$(0.03,1) \times 10^{-15}$	$(0.01,2.6) \times 10^{-14}$	$(0.7,8.2) \times 10^{-13}$
8×10^{-6}			
$\Xi^{0} \rightarrow n \pi^{0}$	$(0.03,1) \times 10^{-15}$	$(0 ., 0.9) \times 10^{-15}$	$(0.03,0.4) \times 10^{-13}$
$\Xi^{-} \rightarrow n \pi^{-}$	$(0.07,2.6) \times 10^{-16}$	$(0.01,1.3) \times 10^{-14}$	$(0.03,0.3) \times 10^{-12}$
$\Omega^{-} \rightarrow n K^{-}$	$(0.1,6.5) \times 10^{-17}$	$(0.2,0.6) \times 10^{-12}$	$(0.2,2.1) \times 10^{-12}$
$\Omega^{-} \rightarrow \Lambda \pi^{-}$	$(0.2,7.1) \times 10^{-17}$	$(0.4,1.5) \times 10^{-13}$	$(0.2,4.2) \times 10^{-13}$
$\Omega^{-} \rightarrow \Sigma^{0} \pi^{-}$	$(0.04,1.7) \times 10^{-17}$	$(0.5,3.1) \times 10^{-14}$	$(0.05,2.2) \times 10^{-14}$

- $\Xi^{0} \rightarrow p \pi^{-}$BR of $10^{-9}-10^{-10}$ possible with LHCb upgrade
- Window to new physics constrained by kaon mixing

$|\Delta S|=2$ decays beyond SM

- effective Hamiltonian at dimension six: (example)

$$
\begin{aligned}
\mathscr{H} & =C_{L L} Q_{L L}+C_{R R} Q_{R R}+C_{L R} Q_{L R}+C_{L R}^{\prime} Q_{L R}^{\prime} \\
{ }_{Q}^{Q L L} & =\bar{d} \gamma^{\alpha} P_{L} s \bar{d} \gamma_{\alpha} P_{L} S, \quad Q_{R R}=\bar{d} \gamma^{\alpha} P_{R} s \bar{d}_{\alpha} P_{R} s \\
Q_{L R} & =\bar{d} \gamma^{\alpha} P_{L} s \bar{d} \gamma_{\alpha} P_{R} S, \quad Q_{L R}^{\prime}=\bar{d} P_{L} s \bar{d}_{R} s
\end{aligned}
$$

a) fine-tuned using

b) or $\left(Q_{L L}-Q_{R R}\right) \sim \bar{d} \gamma^{\alpha} S \bar{d} \gamma_{\alpha} \gamma_{5} s$ which is parity odd (difficult to construct a model (see Tandean, He, GV 2304.02559)

small contribution to ΔM_{K} by fine-tuning

. consider Z^{\prime} FCNC couplings $\mathscr{L}_{d s Z^{\prime}}=-\bar{d} \gamma^{\beta}\left(g_{L} P_{L}+g_{R} P_{R}\right) s Z_{\beta}^{\prime}$

- then after QCD corrections

$$
\Delta M_{K}^{\prime}=\frac{2}{4 m_{K^{0}} m_{Z^{\prime}}^{2}} \Re\left(\eta_{L L}\left(g_{L}^{2}+g_{R}^{2}\right)\left\langle Q_{L L}\right\rangle+2 g_{L} g_{R}\left(\eta_{L R}\left\langle Q_{L R}\right\rangle+\eta_{L R}^{\prime}\left\langle Q_{L R}^{\prime}\right\rangle\right)\right)
$$

- using lattice input ${ }^{1}$ and values from ${ }^{2}$ the last 2 terms are negative, the first two positive
- allowing $-1<\Delta M_{K}^{z^{\prime}} / \Delta M_{K}^{\exp }<0.5$ which is the 2σ range of $\Delta M_{K}^{E X P}-\Delta M_{K}^{S M}$
- assuming g_{L}, g_{R} real there are regions of parameters with large $|\Delta S|=2$ hyperon rates.

2. J. Aebischer et. al JHEP 12 (2020) 187

CP violation in Hyperon non-leptonic decay

Hyperon non-leptonic decay - observables

$$
\begin{aligned}
& \frac{d \Gamma_{\mathscr{R}_{i} \rightarrow \mathscr{F}_{f} \pi}}{d \Omega_{f}}=\frac{\Gamma_{\mathscr{R}_{i} \rightarrow \mathscr{B}_{f} \pi}}{4 \pi}\left(1+\alpha \mathbf{P}_{i} \cdot \hat{\mathbf{p}}_{f}\right) \\
& \mathbf{P}_{\mathbf{f}}=\frac{\left(\alpha+\mathbf{P}_{\mathbf{i}} \cdot \hat{\mathbf{p}}_{\mathbf{f}}\right) \hat{\mathbf{p}}_{\mathbf{f}}+\beta \mathbf{P}_{\mathbf{i}} \times \hat{\mathbf{p}}_{\mathbf{f}}+\gamma \hat{\mathbf{p}}_{\mathbf{f}} \times\left(\mathbf{P}_{\mathbf{i}} \times \hat{\mathbf{p}}_{\mathbf{f}}\right)}{\mathbf{1}+\alpha \mathbf{P}_{\mathbf{i}} \cdot \hat{\mathbf{p}}_{\mathbf{f}}}
\end{aligned}
$$

. CP tests: $\quad \Delta=\frac{\Gamma-\bar{\Gamma}}{\Gamma+\bar{\Gamma}}$
. $A_{C P}=\frac{\alpha+\bar{\alpha}}{\alpha-\bar{\alpha}}, \quad B_{C P}=\frac{\beta+\bar{\beta}}{\alpha-\bar{\alpha}}$

Not all are the same size

- The matrix element receives contributions from different isospin and different parity amplitudes
- $\mathscr{M}=G_{F} m_{\pi}^{2} \bar{u}_{f}\left(A-B \gamma_{5}\right) u_{i}$

One finds

$$
\left\{\begin{array}{l}
S=A \rightarrow S_{1} e^{i \delta_{1}^{S}}+S_{3} e^{i \delta_{3}^{S}} \\
P=B \frac{\left|\vec{p}_{f}\right|}{E_{f}+m_{f}} \rightarrow P_{1} e^{i \delta_{1}^{P}}+P_{3} e^{i \delta_{3}^{P}} \\
\Delta_{C P} \simeq \sqrt{2} \quad \underbrace{\frac{S_{3}}{S_{1}}}_{\Delta I=1 / 2} \underbrace{\sin \left(\delta_{3}^{S}-\delta_{1}^{S}\right)}_{\text {rule }} \underbrace{\sin \left(\xi_{3}^{S}-\xi_{1}^{S}\right)}_{\text {weang phases phases }} \\
A_{C P} \simeq-\tan \left(\delta_{P}-\delta_{S}\right) \\
B_{C P} \simeq \tan \left(\xi_{P}-\xi_{S}\right)
\end{array}\right.
$$

CP violation beyond SM - illustrative example

constraint from ε^{\prime}

constraint from ε

$$
K_{0}----\square---\bar{K}_{0}
$$

$$
\begin{aligned}
& \mathscr{L}_{N P} \supset C_{8} \mathcal{O}_{8}+C_{8^{\prime}} \mathcal{O}_{8^{\prime}}, \\
& \mathcal{O}_{8\left(8^{\prime}\right)}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{g_{s}}{16 \pi^{2}} m_{s} \bar{d}_{L(R)} \sigma^{\mu \nu} T^{a} s_{R(L)} G_{\mu \nu}^{a}
\end{aligned}
$$

. use as an example $\mathscr{L}_{N P} \supset C_{8} \mathcal{O}_{8}+C_{8} \mathcal{O}_{8}, \mathcal{O}_{8(8)}=\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t d}^{*} \frac{g_{s}}{16 \pi^{2}} m_{s} \bar{d}_{L(R)} \sigma^{\mu \nu} T^{a} S_{R(L)} G_{\mu \nu}^{a}$ then $\quad\left(\xi_{P}-\xi_{S}\right) \sim\left(C^{\prime}\left(\frac{\epsilon^{\prime}}{\epsilon}\right)_{B S M}+C \epsilon_{B S M}\right)$
J. Tandean PHYSICAL REVIEW D 69, 076008 ? 2004 ? ${ }^{2}$, N Salone et.al. PHYSICAL REVIEW D 105, 116022 (2022)
. using $\left|\frac{\epsilon^{\prime}}{\epsilon}\right|_{B S M} \lesssim 1 \times 10^{-3},|\epsilon|_{B S M} \lesssim 2 \times 10^{-4}$

- (theoretical uncertainty in SM)
J. Aebischer, A. J. Buras, and J. Kumar, J. High Energy Phys. 12 (2020) 097.

HyperCP result

Phys.Rev.Lett.93:262001,2004.

$$
A_{\Xi \Lambda}=[0.0 \pm 5.1(\mathrm{stat}) \pm 4.4(\mathrm{syst})] \times 10^{-4}
$$

BES III results vs BSM scenarios

- BESIII also has a new result from 448×10^{6} $e^{+} e^{-} \rightarrow \psi(3686) \rightarrow \Xi^{0} \bar{\Xi}^{0} \rightarrow \pi^{0} \pi^{0} \Lambda \bar{\Lambda}$ events
- measure

$$
A_{C P}^{\Xi^{0}}=-0.007 \pm 0.082 \pm 0.025
$$

	Number of J / ψ	sensitivity to $A_{\bar{C} P}^{\Xi}$
BESIII (current)	1.3×10^{9}	1.3×10^{-2}
BESIII (future)	1×10^{10}	4.8×10^{-3}
tau-charm factory	3.4×10^{12}	2.6×10^{-4}

- Hyperon decays can play a role in probing BSM physics in the $s \rightarrow d$ sector, complementing kaon decays, but need much higher sensitivity
- Decay modes allowed in the SM receive large long distance contributions that are difficult to estimate reliably, the lattice community has started to look at some of these modes
- Near future LHCb $\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$can definitively rule out the "hyperCP" particle. It will also accurately measure the rate and spectrum.
- form factors
- new exotic particle searches
- expected sensitivity to $\Delta S=2$ modes at LHCb can begin to probe exotic BSM scenarios
- Upcoming BESIII measurements will add to our picture of CP violation in hyperons

